
BALKAN JOURNAL
OF APPLIED MATHEMATICS

AND INFORMATICS

(BJAMI)

GOCE DELCEV UNIVERSITY - STIP, REPUBLIC OF MACEDONIA
FACULTY OF COMPUTER SCIENCE

ISSN 2545-479X print
ISSN 2545-4803 on line

ISSN 2545-479X print
ISSN 2545-4803 on line

BALKAN JOURNAL
OF APPLIED MATHEMATICS

AND INFORMATICS

(BJAMI)

GOCE DELCEV UNIVERSITY - STIP, REPUBLIC OF MACEDONIA
FACULTY OF COMPUTER SCIENCE

ISSN 2545-479X print
ISSN 2545-4803 on line

Managing editor
Biljana Zlatanovska Ph.D.

Editor in chief
Zoran Zdravev Ph.D.

Technical editor
Slave Dimitrov

Address of the editorial office
Goce Delcev University – Stip
Faculty of philology
Krste Misirkov 10-A
PO box 201, 2000 Štip,
R. of Macedonia

AIMS AND SCOPE:
BJAMI publishes original research articles in the areas of applied mathematics and informatics.

Topics:
1. Computer science;
2. Computer and software engineering;
3. Information technology;
4. Computer security;
5. Electrical engineering;
6. Telecommunication;
7. Mathematics and its applications;
8. Articles of interdisciplinary of computer and information sciences with education,

economics, environmental, health, and engineering.

BALKAN JOURNAL
OF APPLIED MATHEMATICS AND INFORMATICS (BJAMI), Vol 1

 ISSN 2545-479X print
ISSN 2545-4803 on line
Vol. 1, No. 1, Year 2018

EDITORIAL BOARD

Adelina Plamenova Aleksieva-Petrova, Technical University – Sofia,
Faculty of Computer Systems and Control, Sofia, Bulgaria

Lyudmila Stoyanova, Technical University - Sofia , Faculty of computer systems and control,
Department – Programming and computer technologies, Bulgaria

Zlatko Georgiev Varbanov, Department of Mathematics and Informatics,
Veliko Tarnovo University, Bulgaria

Snezana Scepanovic, Faculty for Information Technology,
University “Mediterranean”, Podgorica, Montenegro

 Daniela Veleva Minkovska, Faculty of Computer Systems and Technologies,
Technical University, Sofia, Bulgaria

 Stefka Hristova Bouyuklieva, Department of Algebra and Geometry,
Faculty of Mathematics and Informatics, Veliko Tarnovo University, Bulgaria

Vesselin Velichkov, University of Luxembourg, Faculty of Sciences,
Technology and Communication (FSTC), Luxembourg

Isabel Maria Baltazar Simões de Carvalho, Instituto Superior Técnico,
Technical University of Lisbon, Portugal

Predrag S. Stanimirović, University of Niš, Faculty of Sciences and Mathematics,
Department of Mathematics and Informatics, Niš, Serbia

Shcherbacov Victor, Institute of Mathematics and Computer Science,
Academy of Sciences of Moldova, Moldova

Pedro Ricardo Morais Inácio, Department of Computer Science,
Universidade da Beira Interior, Portugal

Sanja Panovska, GFZ German Research Centre for Geosciences, Germany
Georgi Tuparov, Technical University of Sofia Bulgaria

Dijana Karuovic, Tehnical Faculty “Mihajlo Pupin”, Zrenjanin, Serbia
Ivanka Georgieva, South-West University, Blagoevgrad, Bulgaria

Georgi Stojanov, Computer Science, Mathematics, and Environmental Science Department
The American University of Paris, France

Iliya Guerguiev Bouyukliev, Institute of Mathematics and Informatics,
Bulgarian Academy of Sciences, Bulgaria

 Riste Škrekovski, FAMNIT, University of Primorska, Koper, Slovenia
 Stela Zhelezova, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria
 Katerina Taskova, Computational Biology and Data Mining Group,

Faculty of Biology, Johannes Gutenberg-Universität Mainz (JGU), Mainz, Germany.
 Dragana Glušac, Tehnical Faculty “Mihajlo Pupin”, Zrenjanin, Serbia
 Cveta Martinovska-Bande, Faculty of Computer Science, UGD, Macedonia
 Blagoj Delipetrov, Faculty of Computer Science, UGD, Macedonia
 Zoran Zdravev, Faculty of Computer Science, UGD, Macedonia
 Aleksandra Mileva, Faculty of Computer Science, UGD, Macedonia
 Igor Stojanovik, Faculty of Computer Science, UGD, Macedonia
 Saso Koceski, Faculty of Computer Science, UGD, Macedonia
 Natasa Koceska, Faculty of Computer Science, UGD, Macedonia
 Aleksandar Krstev, Faculty of Computer Science, UGD, Macedonia
 Biljana Zlatanovska, Faculty of Computer Science, UGD, Macedonia
 Natasa Stojkovik, Faculty of Computer Science, UGD, Macedonia
 Done Stojanov, Faculty of Computer Science, UGD, Macedonia
 Limonka Koceva Lazarova, Faculty of Computer Science, UGD, Macedonia
 Tatjana Atanasova Pacemska, Faculty of Electrical Engineering, UGD, Macedonia

4

5

C O N T E N T

Aleksandar, Velinov, Vlado, Gicev
PRACTICAL APPLICATION OF SIMPLEX METHOD FOR SOLVING
LINEAR PROGRAMMING PROBLEMS .. 7

Biserka Petrovska , Igor Stojanovic , Tatjana Atanasova Pachemska
CLASSIFICATION OF SMALL DATA SETS OF IMAGES WITH
TRANSFER LEARNING IN CONVOLUTIONAL NEURAL NETWORKS 17

Done Stojanov
WEB SERVICE BASED GENOMIC DATA RETRIEVAL ... 25

Aleksandra Mileva, Vesna Dimitrova
SOME GENERALIZATIONS OF RECURSIVE DERIVATES
OF k-ary OPERATIONS .. 31

Diana Kirilova Nedelcheva
SOME FIXED POINT RESULTS FOR CONTRACTION
SET - VALUED MAPPINGS IN CONE METRIC SPACES .. 39

Aleksandar Krstev, Dejan Krstev, Boris Krstev, Sladzana Velinovska
DATA ANALYSIS AND STRUCTURAL EQUATION MODELLING
FOR DIRECT FOREIGN INVESTMENT FROM LOCAL POPULATION 49

Maja Srebrenova Miteva, Limonka Koceva Lazarova
NOTION FOR CONNECTEDNESS AND PATH CONNECTEDNESS IN
SOME TYPE OF TOPOLOGICAL SPACES ... 55

The Appendix

Aleksandra Stojanova , Mirjana Kocaleva , Natasha Stojkovikj , Dusan Bikov ,
Marija Ljubenovska , Savetka Zdravevska , Biljana Zlatanovska , Marija Miteva ,
Limonka Koceva Lazarova
OPTIMIZATION MODELS FOR SHEDULING IN KINDERGARTEN
AND HEALTHCARE CENTES .. 65

Maja Kukuseva Paneva, Biljana Citkuseva Dimitrovska, Jasmina Veta Buralieva,
Elena Karamazova, Tatjana Atanasova Pacemska
PROPOSED QUEUING MODEL M/M/3 WITH INFINITE WAITING
LINE IN A SUPERMARKET .. 73

Maja Mijajlovikj1, Sara Srebrenkoska, Marija Chekerovska, Svetlana Risteska,
Vineta Srebrenkoska
APPLICATION OF TAGUCHI METHOD IN PRODUCTION OF SAMPLES
PREDICTING PROPERTIES OF POLYMER COMPOSITES .. 79

Sara Srebrenkoska, Silvana Zhezhova, Sanja Risteski, Marija Chekerovska
Vineta Srebrenkoska Svetlana Risteska
APPLICATION OF FACTORIAL EXPERIMENTAL DESIGN IN
PREDICTING PROPERTIES OF POLYMER COMPOSITES ... 85

Igor Dimovski, Ice Gjumandeloski, Filip Kochoski, Mahendra Paipuri,
Milena Veneva , Aleksandra Risteska
COMPUTER AIDED (FILAMENT WINDING) TAPE PLACEMENT
FOR ELBOWS. PRACTICALLY ORIENTATED ALGORITHM .. 89

PRACTICAL APPLICATION OF SIMPLEX METHOD FOR SOLVING LINEAR
PROGRAMMING PROBLEMS

Aleksandar, Velinov1, Vlado, Gicev 1

1Faculty of Computer Science, Goce Delcev University, Stip, Macedonia

aleksandar.velinov@ugd.edu.mk
vlado.gicev@ugd.edu.mk

Abstract: In this paper we consider application of linear programming in solving optimization problems with
constraints. We used the simplex method for finding a maximum of an objective function. This method is
applied to a real example. We used the “linprog” function in MatLab for problem solving. We have shown,
how to apply simplex method on a real world problem, and to solve it using linear programming. Finally we
investigate the complexity of the method via variation of the computer time versus the number of control
variables.
Keywords: simplex method, linear programming, objective function, complexity.

1. Introduction
Linear programming was developed during World War II, when a system with which to maximize the efficiency

of resources was of utmost importance. New war-related projects demanded optimization of constrained resources.
“Programming” was used as a military term that referred to activities such as planning schedules efficiently or
deploying men optimally [1].

Mathematical programming is that branch of mathematics dealing with techniques for maximizing or minimizing
an objective function subject to linear, nonlinear, and integer constraints on the variables. Special case of mathematical
programming is a linear programming. Linear programming is concerned with the maximization or minimization of a
linear objective function with many variables subject to linear equality and inequality constraints [2]. Linear
programming can be viewed as a part of a great revolutionary development. It has the ability to define general goals
and to find detailed decisions in order to achieve that goals. It can be faced with practical situations of great complexity.
To formulate real-world problems, linear programming uses mathematical terms (models), techniques for solving the
models (algorithms), and engines for executing the steps of algorithms (computers and software) [3].

Optimization principles have important aspect in modern engineering design and system operations in various
areas. Computers capable of solving large-scale problems contribute to the recent development of new optimization
techniques. The main goal of these techniques is to optimize (maximize or minimize) some function f. This functions
are called objective functions. As a case study we used the objective function f that represent the revenue of the
production of electronic elements, more precisely graphics cards. We used methods for maximizing the revenue of
the company. Using linear programming, we can model wide variety of objective functions as: yield per minute in a
chemical process, revenue in a production of cars, the hourly number of customers served in a bank, the mileage per
gallon of a certain type of car, the production of computers on monthly basis and so on. Sometimes we may want to
minimize f if f is the cost per unit of producing certain graphics cards (opposite of our example where we maximize
the revenue of production), the operating cost of some power plant, the time needed to produce a new type of car, the
daily loss of heat in a heating system, the costs for IT infrastructure in some company and so on.

In most optimization problems the objective function f depends on several variables:

x1, x2,…..xn

These variables are called “control variables” because we can control them, that is, we can choose their values. For
example the production of some plant may depend on temperature x1, moisture content x2, nitrogen in the soil x3. The
efficiency of a certain air-conditioning system may depend on air pressure x1, temperature x2, cross-sectional area of
outlet x3, moisture content x4, and so on. The optimization theory develops methods for optimal choices of x1,…,xn,

17

CLASSIFICATION OF SMALL DATA SETS OF IMAGES WITH TRANSFER
LEARNING IN CONVOLUTIONAL NEURAL NETWORKS

Biserka Petrovska 1, Igor Stojanovic 2, Tatjana Atanasova Pachemska3

Military Academy “General Mihailo Apostolski”, University “Goce Delcev”, Stip, Macedonia

biserka.petrovska@morm.gov.mk1

Faculty of Computer Science, University “Goce Delcev”, Stip, Macedonia
igor.stojanovik@ugd.edu.mk2

Faculty of Computer Science, University “Goce Delcev”, Stip, Macedonia

tatjana.pacemska@ugd.edu.mk3

Abstract: Nowadays the rise of the artificial intelligence is with high speed. Neural networks are in a big
expansion in a new millennium. Their application is wide: they are used in processing images, video, speech,
audio, and text. Convolutional neural networks have been widely applied to a variety of pattern recognition
problems, such as computer vision. Pre-trained convolutional neural networks developed by researches or big
corporations were trained on millions of images. Sometimes we have a small set of images to be classified and in
those situations, there is no success to train the network from a scratch. This article exploits the technique of
transfer learning for classifying the images of small datasets. It transfers the knowledge of the pre-trained
convolutional neural network and uses it for the classification of those data sets. Fine-tuning of the network is
done through optimization of hyper parameters, in order to maximize the classification accuracy. In the end, the
directions have been proposed for the selection of the hyper parameters and of the pre-existing network which can
be suitable for transfer learning.
Keywords: artificial intelligence, deep learning, AlexNet, hyper parameters, optimization, accuracy

1. Introduction
Artificial intelligence (AI) is a cutting edge discipline, which unites machine learning-based techniques and

neural networks (NN). Even we are far away from the moment when machines are going to make decisions
instead of human beings, the development in the field of neural networks is remarkable. Deep learning (DL) is
based on a specialized architecture of neural networks. The concepts of AI are extremely technical, complex,
and based on numerous fields of science, such as mathematics, statistics, probability theory, signal processing,
machine learning, linguistics, and neuroscience. At the moment, there are a lot of problems which are incredibly
complicated, not well understood and very difficult to solve it manually. The primary motivation for the further
study of AI, and for profound developing of these techniques, is to find solutions of the kind of problems
mentioned above. Increasingly, we rely on AI techniques to solve these problems for us, without requiring
explicit programming instructions.

There have been remarkable gains in the application of AI techniques and associated algorithms of AI.
Popular examples of an AI solution includes IBM’s Watson, Apple’s Siri and Amazon’s Alexa. Watson was
made famous by beating the two greatest Jeopardy champions in history. It is now being used as a question
answering computing system for commercial applications [15]. So far AI has been used for speech recognition
and natural language applications (processing, generation, and understanding). It is also used for other
recognition tasks (pattern, text, image, video, audio, facial …), autonomous vehicles, medical diagnoses,
gaming, search engines, robotics, spam filtering, crime fighting, marketing, remote sensing, transportation,
classification, etc.

At the time of this writing, there are a lot of pre-trained convolutional neural networks, developed by
scientists or big corporations. One of the main purposes of these networks is to solve image classification
problems. Pre-existing convolutional neural networks were trained on huge datasets and they have shown
astonishing accuracies. Even that the above mentioned CNN were trained on certain image sets, they can be
used for image classifications on other sets of images. This is achieved with transfer learning technique. We

UDK: 004.852:004.93’1

18

transfer the weights and biases of the pre-trained CNN and then fine-tune the network in order to classify the
small datasets on which it was not trained before. Fine-tuning the neural network actually consists selection of
hyper parameters.

In this article, we research one particular part of the area of AI, deep neural networks. They are neural
networks with many computational stages. This article exploits convolution neural networks and their use for
transfer learning. Transfer learning is a technique of optimization of pre-trained CNN in order to classify a set
of images on which it was not trained before.

2. Related work
Lately, large public image data sets, such as ImageNet [3], and high-performance computing systems, such as

GPUs or large-scale distributed clusters [20] have become available. This is the reason why convolutional networks
have come out on top in large-scale image and video recognition [1], [17], [18], [19]. Convolutional neural networks
have been a point of interest of researches in the last decade. The ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) [21] is a competition with the most remarkable role in the advance of deep visual recognition
architectures. From high-dimensional shallow feature encodings [22] to deep CNN [1], all these generations of
image classification systems of enormous scale were tested in ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC). It is difficult to outperform the accuracies that have been achieved.

Transfer learning technique as a method for computer vision is related to the pre-trained network from which
we transfer the knowledge, in our case convolutional neural network AlexNet [1], especially with its hyper
parameters.

2.1 Transfer learning
The purpose of transfer learning is to transfer knowledge between the source and target domains. For image

classification, transfer learning is a good choice when the number of training samples is small. It is done by adapting
classifiers trained for other categories. Transfer learning has been successfully applied except to image classification
[5], [6], also to text sentiment classification [4], human activity classification [7], software defect classification [8],
and multi-language text classification [9]. Since Pan [10] in 2010 published a research paper for transfer learning,
there have been over 700 papers written about it.

Existing networks, pre-trained on ImageNet [3], demonstrate a good ability to classify images outside this
dataset via transfer learning. Figure 1 shows directions how to proceed with using the pre-trained neural network in
a specific case [14].

Figure 1. Transfer learning according to the characteristics of dataset [14]

Case 1 – Size of the data set is small and the data similarity is very high – Here there is no need to retrain the
network; the pre-existing model is used as a mechanism for feature extraction. But certainly, the convolutional

neural network needs some changes. The output layers should be modified and adjusted according to the
classification assignment.
Case 2 – Size of the data is small and data similarity is very low – In this scenario, size of a data set is not
sufficient for training the network from a scratch. So, k lower layers are frozen and the remaining (n-k) higher layers
of the pre-existing network model are trained again. A certain number of layers has to be retrained, because of the
fact that new data set has low similarity compared to the data set the network was originally trained on.
Case 3 – Size of the data set is large and the data similarity is very low – Compared to case 3, here the condition
for the effectiveness of a neural network training is fulfilled, the size of the data set is large enough. The similarity
between two data sets is small, so using the pre-trained CNN will result in low classification accuracy. The best
solution is to train the neural network from a scratch.
Case 4 – Size of the data is large and there is high data similarity – When the data set is large, there are enough
images to retrain the whole network. We are not doing it from a scratch, but the architecture of the model and its
initial weights are kept.

2.2 AlexNet
Krizhevsky, Sutskever, and Hinton (KSH) trained and tested a deep convolutional neural network [1]. In their

work, they used a subset of the ImageNet data repository [3]. The images were categorized into 1,000 categories.
The validation set contained 50,000 images and test set contained 150,000 images. The developed deep
convolutional network was later named AlexNet. AlexNet took part on ILSVRC 2012 and knocked off its
competitors. AlexNet achieved an accuracy of 84.7 percent, according to the top-5 criterion. It was better than the
second-rang CNN, which classification accuracy was 73.8 percent. When it comes strictly to the restrictive metric of
accuracy, AlexNet achieved an accuracy of 63.3 percent.

The KSH network consists of input layer, 7 layers of hidden neurons and output 1000-unit softmax layer. 5 of
the hidden layers are convolutional layers, and 2 layers are fully-connected layers. Model architecture is shown in
Figure 2 [1]. The network was trained on 2 parallel GPUs. Half of the kernels of the KSH network were put on the
first GPU and the other half on the second GPU. The GPUs communicate in the third convolutional layer and in
fully connected layers. Response-normalization layers follow the first and second convolutional layers. First, second
and fifth convolutional layer are followed by a max-pooling layer with 3×3 regions. The pooling regions of the max-
pooling layer have a stride length of 2 pixels. In order to speed up training, the ReLU (Rectified Linear Unit) non-
linearity with activation function f (z) ≡ max (0, z) [2], is applied to the output of every convolutional and fully-
connected layer.

KSH network had about 60 million learned parameters. In order to combat overfitting in such a large-scale network,
Krizhevsky, Sutskever, and Hinton employed numerous techniques: the training set was expanded by using random
cropping, a variant of L2 regularization and dropout were used. Alexnet was trained with a BP (Back Propagation)
algorithm - momentum-based, mini-batch stochastic gradient descent.

Figure 2: Architecture of AlexNet [1]

Biserka Petrovska, Igor Stojanovic, Tatjana Atanasova Pachemska

19

transfer the weights and biases of the pre-trained CNN and then fine-tune the network in order to classify the
small datasets on which it was not trained before. Fine-tuning the neural network actually consists selection of
hyper parameters.

In this article, we research one particular part of the area of AI, deep neural networks. They are neural
networks with many computational stages. This article exploits convolution neural networks and their use for
transfer learning. Transfer learning is a technique of optimization of pre-trained CNN in order to classify a set
of images on which it was not trained before.

2. Related work
Lately, large public image data sets, such as ImageNet [3], and high-performance computing systems, such as

GPUs or large-scale distributed clusters [20] have become available. This is the reason why convolutional networks
have come out on top in large-scale image and video recognition [1], [17], [18], [19]. Convolutional neural networks
have been a point of interest of researches in the last decade. The ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) [21] is a competition with the most remarkable role in the advance of deep visual recognition
architectures. From high-dimensional shallow feature encodings [22] to deep CNN [1], all these generations of
image classification systems of enormous scale were tested in ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC). It is difficult to outperform the accuracies that have been achieved.

Transfer learning technique as a method for computer vision is related to the pre-trained network from which
we transfer the knowledge, in our case convolutional neural network AlexNet [1], especially with its hyper
parameters.

2.1 Transfer learning
The purpose of transfer learning is to transfer knowledge between the source and target domains. For image

classification, transfer learning is a good choice when the number of training samples is small. It is done by adapting
classifiers trained for other categories. Transfer learning has been successfully applied except to image classification
[5], [6], also to text sentiment classification [4], human activity classification [7], software defect classification [8],
and multi-language text classification [9]. Since Pan [10] in 2010 published a research paper for transfer learning,
there have been over 700 papers written about it.

Existing networks, pre-trained on ImageNet [3], demonstrate a good ability to classify images outside this
dataset via transfer learning. Figure 1 shows directions how to proceed with using the pre-trained neural network in
a specific case [14].

Figure 1. Transfer learning according to the characteristics of dataset [14]

Case 1 – Size of the data set is small and the data similarity is very high – Here there is no need to retrain the
network; the pre-existing model is used as a mechanism for feature extraction. But certainly, the convolutional

neural network needs some changes. The output layers should be modified and adjusted according to the
classification assignment.
Case 2 – Size of the data is small and data similarity is very low – In this scenario, size of a data set is not
sufficient for training the network from a scratch. So, k lower layers are frozen and the remaining (n-k) higher layers
of the pre-existing network model are trained again. A certain number of layers has to be retrained, because of the
fact that new data set has low similarity compared to the data set the network was originally trained on.
Case 3 – Size of the data set is large and the data similarity is very low – Compared to case 3, here the condition
for the effectiveness of a neural network training is fulfilled, the size of the data set is large enough. The similarity
between two data sets is small, so using the pre-trained CNN will result in low classification accuracy. The best
solution is to train the neural network from a scratch.
Case 4 – Size of the data is large and there is high data similarity – When the data set is large, there are enough
images to retrain the whole network. We are not doing it from a scratch, but the architecture of the model and its
initial weights are kept.

2.2 AlexNet
Krizhevsky, Sutskever, and Hinton (KSH) trained and tested a deep convolutional neural network [1]. In their

work, they used a subset of the ImageNet data repository [3]. The images were categorized into 1,000 categories.
The validation set contained 50,000 images and test set contained 150,000 images. The developed deep
convolutional network was later named AlexNet. AlexNet took part on ILSVRC 2012 and knocked off its
competitors. AlexNet achieved an accuracy of 84.7 percent, according to the top-5 criterion. It was better than the
second-rang CNN, which classification accuracy was 73.8 percent. When it comes strictly to the restrictive metric of
accuracy, AlexNet achieved an accuracy of 63.3 percent.

The KSH network consists of input layer, 7 layers of hidden neurons and output 1000-unit softmax layer. 5 of
the hidden layers are convolutional layers, and 2 layers are fully-connected layers. Model architecture is shown in
Figure 2 [1]. The network was trained on 2 parallel GPUs. Half of the kernels of the KSH network were put on the
first GPU and the other half on the second GPU. The GPUs communicate in the third convolutional layer and in
fully connected layers. Response-normalization layers follow the first and second convolutional layers. First, second
and fifth convolutional layer are followed by a max-pooling layer with 3×3 regions. The pooling regions of the max-
pooling layer have a stride length of 2 pixels. In order to speed up training, the ReLU (Rectified Linear Unit) non-
linearity with activation function f (z) ≡ max (0, z) [2], is applied to the output of every convolutional and fully-
connected layer.

KSH network had about 60 million learned parameters. In order to combat overfitting in such a large-scale network,
Krizhevsky, Sutskever, and Hinton employed numerous techniques: the training set was expanded by using random
cropping, a variant of L2 regularization and dropout were used. Alexnet was trained with a BP (Back Propagation)
algorithm - momentum-based, mini-batch stochastic gradient descent.

Figure 2: Architecture of AlexNet [1]

CLASSIFICATION OF SMALL DATA SETS OF IMAGES WITH TRANSFER LEARNING
IN CONVOLUTIONAL NEURAL NETWORKS

20

2.2 Hyper parameters
Different network training algorithms involve different sets of hyper-parameters [16]. Here we are discussing

the hyper parameters which are optimized in our simulation scenario.
The initial learning rate (η0) - the most important thing in neural network training is to tune the learning rate.

Typically, its value is between the borders 10-6 - 1, for standardized neural network inputs (in the range (0, 1)).
There are two possibilities for tuning the learning rate. The first one is to keep the learning rate values constant over
whole network training, which is satisfying in most cases. The second possibility is to adapt the learning rate
according to a given schedule, as presented in equation (1). It gives an O (1/t) learning rate schedule [11]. In
equation (1) τ is time constant: when τ → ∞ then the learning rate is constant over whole network training.

 (1)

Here learning rate is kept constant for the first τ steps and then decreases it in O (1/tα).

The mini-batch size B – usually, B moves between values of 1 and few hundreds. Selection of the mini-
batch size has strictly computational meaning. When the training set is larger, there is a possibility to choose a
bigger mini batch size B. In those scenarios, network training takes advantage of matrix-matrix products.

Number of training iterations T - this hyper-parameter optimization concerns best classification
accuracy. Termination of network training is determined by the technique of early stopping. Every N updates of a
mini-batch, we mark down the accuracy estimated on a validation set. We stop the neural network training if it
doesn’t improve for quite some time (number of training iterations).
 Layer-specific optimization hyper parameters – this scenario mostly concerns the learning rate; it can be
different on different layers of a deep neural network. Another possibility is to have different learning rates for the
different types of parameters in the neural network, like biases and weights. Apart biases and weights, usage of
different learning rate for separate parameters has significance when parameters such as precision or variance are
included in the training process [12].
 Weight decay regularization coefficient λ – adding a regularization term to the cost function is a way to
reduce overfitting. There are two types of regularization L2 and L1. L2 adds a term to the cost function. It

decreases large weights more than small weights. The second type of regularization L1 adds a term . It

forces the network weights to go to zero, except in a small number of high-important connections [16]. Despite the
fact that weights w and biases b are associated with the hidden neurons’ activation, some researches during neural
network training regularize only the first ones.
 The above mentioned hyper parameters are basic choices. There are also a number of other hyper
parameters which can be optimized with different neural network models and training algorithms: momentum β, a
number of hidden neurons (layers), neuron non-linearity, the sparsity of activation, weights initialization scaling
coefficient, random seeds, preprocessing etc.

3. Materials and methods
The aim of our research is to use the technique of transfer learning for classification of small datasets. What

was done is transfer the part of the architecture, weights, and biases from the pre-trained convolutional neural
network and then fine-tune it. In our simulations, we were optimizing the hyper parameters of the convolutional
neural network in order to maximize the classification accuracy on the small dataset. Here AlexNet [1] is used as
pre-trained model architecture. AlexNet was trained on a restricted subset of the ImageNet data [3] by its creators.
The goal is to classify a set of images on which the neural network was not trained before. Used images are a subset
of CIFAR-10 dataset [13]. The subset consists of images which belong to 5 categories. The size of the test dataset
was 20% the size of the training dataset. Except in the first studied situation where the size of the training data set
varied from 500 to 4000 images and respectively the size of the test data set varied from 100 to 800 images, in the
rest studied situations the size of the training data set was 3000 images and the size of a test data set was 600
images.

),max(
0

t
thh
tt =

å
i

i
2ql

å
i

iql

In heading 2.2 Transfer learning, four possible scenarios that can take place are explained. Choice of the
scenario depends on the size of the dataset and the similarity between the dataset on which the convolutional neural
network was trained at first and the dataset which should be classified. The CIFAR-10 dataset consists of 60000
32x32 colour images in 10 classes (airplane, automobile, cat, bird, deer, dog, frog, horse, ship, truck) with 6000
images per class. We will use only part of CIFAR-10 dataset, so the data set size is small. The similarity between the
ImageNet data and CIFAR-10 dataset is big. This situation can be resolved by scenario 1 – we fine tune the output
layers of the pre-trained neural network. The images were pre-processed in an appropriate way at the input of
AlexNet.

The pre-existing network model AlexNet is used as a feature extractor. The last three layers form the original
AlexNet architecture: a fully connected layer with 1000 neurons, a softmax layer, and the classification output layer
are removed. They are replaced with new layers relevant to our assignment: a fully connected layer with 5 hidden
units, softmax layer and classification layer of 5 categories. We choose the weights of the last layers we introduced
in the network to learn faster than the others. That’s why weight learn rate factor and bias learn factor are from order
101.

The simulations were performed in MATLAB with GeForce GTX 960 GPU (Graphic Processor Unit), Intel
Core2Duo 3.0 GHz CPU (Central Processor Unit) and 4GB RAM (Random Access Memory). Despite the
computation of classification accuracy, we were plotting the training accuracy in order to visualize the process and
to realize when the network starts severly to overfit.

In the next heading, we will present and discuss the success of transfer learning as a function of the size of a
training set, learning rate, regularization parameter λ, weight and bias learn rate factor, size of a mini batch, number
of training epochs (iterations).

4. Results and discussion
The scale of the data set is a couple thousands of images, for which the pre-trained convolutional network

gives acceptable accuracy, nearly 85%. Figure 3 shows the overall accuracy which is accomplished by CNN with
transfer learning from AlexNet, as a function of the number of training images.

Figure 3. Accuracy of pre-trained CNN as a function of dataset size

Next parameter we optimized is learning rate. For bigger learning rates 0.1 and 0.01 our classification
accuracies are no better than chance (0,2). The highest accuracies are achieved for learning rates 0.001 and 0.0001.
Learning rate 0.00001 is too small and it slows down stochastic gradient descent. Figure 4 shows the process of
training CNN with transfer learning from AlexNet with different learning rates. The neural network has a lot of
parameters, so it tends to overfit during training with a small dataset. It can be seen that with η= 0.001 the network
suffers from severe overfitting, so η= 0.0001 is the best option and this value for the learning rate is used in further
simulations.

Pre-trained CNN AlexNet was originally trained with L2 regularization parameter λ=0.0005. We tried to
optimize the value of λ in the surrounding of that value. For λ=0.0001 we got a little bit better accuracy, Figure 5,
and with further decrease of λ improvement was negligible.

Biserka Petrovska, Igor Stojanovic, Tatjana Atanasova Pachemska

21

2.2 Hyper parameters
Different network training algorithms involve different sets of hyper-parameters [16]. Here we are discussing

the hyper parameters which are optimized in our simulation scenario.
The initial learning rate (η0) - the most important thing in neural network training is to tune the learning rate.

Typically, its value is between the borders 10-6 - 1, for standardized neural network inputs (in the range (0, 1)).
There are two possibilities for tuning the learning rate. The first one is to keep the learning rate values constant over
whole network training, which is satisfying in most cases. The second possibility is to adapt the learning rate
according to a given schedule, as presented in equation (1). It gives an O (1/t) learning rate schedule [11]. In
equation (1) τ is time constant: when τ → ∞ then the learning rate is constant over whole network training.

 (1)

Here learning rate is kept constant for the first τ steps and then decreases it in O (1/tα).

The mini-batch size B – usually, B moves between values of 1 and few hundreds. Selection of the mini-
batch size has strictly computational meaning. When the training set is larger, there is a possibility to choose a
bigger mini batch size B. In those scenarios, network training takes advantage of matrix-matrix products.

Number of training iterations T - this hyper-parameter optimization concerns best classification
accuracy. Termination of network training is determined by the technique of early stopping. Every N updates of a
mini-batch, we mark down the accuracy estimated on a validation set. We stop the neural network training if it
doesn’t improve for quite some time (number of training iterations).
 Layer-specific optimization hyper parameters – this scenario mostly concerns the learning rate; it can be
different on different layers of a deep neural network. Another possibility is to have different learning rates for the
different types of parameters in the neural network, like biases and weights. Apart biases and weights, usage of
different learning rate for separate parameters has significance when parameters such as precision or variance are
included in the training process [12].
 Weight decay regularization coefficient λ – adding a regularization term to the cost function is a way to
reduce overfitting. There are two types of regularization L2 and L1. L2 adds a term to the cost function. It

decreases large weights more than small weights. The second type of regularization L1 adds a term . It

forces the network weights to go to zero, except in a small number of high-important connections [16]. Despite the
fact that weights w and biases b are associated with the hidden neurons’ activation, some researches during neural
network training regularize only the first ones.
 The above mentioned hyper parameters are basic choices. There are also a number of other hyper
parameters which can be optimized with different neural network models and training algorithms: momentum β, a
number of hidden neurons (layers), neuron non-linearity, the sparsity of activation, weights initialization scaling
coefficient, random seeds, preprocessing etc.

3. Materials and methods
The aim of our research is to use the technique of transfer learning for classification of small datasets. What

was done is transfer the part of the architecture, weights, and biases from the pre-trained convolutional neural
network and then fine-tune it. In our simulations, we were optimizing the hyper parameters of the convolutional
neural network in order to maximize the classification accuracy on the small dataset. Here AlexNet [1] is used as
pre-trained model architecture. AlexNet was trained on a restricted subset of the ImageNet data [3] by its creators.
The goal is to classify a set of images on which the neural network was not trained before. Used images are a subset
of CIFAR-10 dataset [13]. The subset consists of images which belong to 5 categories. The size of the test dataset
was 20% the size of the training dataset. Except in the first studied situation where the size of the training data set
varied from 500 to 4000 images and respectively the size of the test data set varied from 100 to 800 images, in the
rest studied situations the size of the training data set was 3000 images and the size of a test data set was 600
images.

),max(
0

t
thh
tt =

å
i

i
2ql

å
i

iql

In heading 2.2 Transfer learning, four possible scenarios that can take place are explained. Choice of the
scenario depends on the size of the dataset and the similarity between the dataset on which the convolutional neural
network was trained at first and the dataset which should be classified. The CIFAR-10 dataset consists of 60000
32x32 colour images in 10 classes (airplane, automobile, cat, bird, deer, dog, frog, horse, ship, truck) with 6000
images per class. We will use only part of CIFAR-10 dataset, so the data set size is small. The similarity between the
ImageNet data and CIFAR-10 dataset is big. This situation can be resolved by scenario 1 – we fine tune the output
layers of the pre-trained neural network. The images were pre-processed in an appropriate way at the input of
AlexNet.

The pre-existing network model AlexNet is used as a feature extractor. The last three layers form the original
AlexNet architecture: a fully connected layer with 1000 neurons, a softmax layer, and the classification output layer
are removed. They are replaced with new layers relevant to our assignment: a fully connected layer with 5 hidden
units, softmax layer and classification layer of 5 categories. We choose the weights of the last layers we introduced
in the network to learn faster than the others. That’s why weight learn rate factor and bias learn factor are from order
101.

The simulations were performed in MATLAB with GeForce GTX 960 GPU (Graphic Processor Unit), Intel
Core2Duo 3.0 GHz CPU (Central Processor Unit) and 4GB RAM (Random Access Memory). Despite the
computation of classification accuracy, we were plotting the training accuracy in order to visualize the process and
to realize when the network starts severly to overfit.

In the next heading, we will present and discuss the success of transfer learning as a function of the size of a
training set, learning rate, regularization parameter λ, weight and bias learn rate factor, size of a mini batch, number
of training epochs (iterations).

4. Results and discussion
The scale of the data set is a couple thousands of images, for which the pre-trained convolutional network

gives acceptable accuracy, nearly 85%. Figure 3 shows the overall accuracy which is accomplished by CNN with
transfer learning from AlexNet, as a function of the number of training images.

Figure 3. Accuracy of pre-trained CNN as a function of dataset size

Next parameter we optimized is learning rate. For bigger learning rates 0.1 and 0.01 our classification
accuracies are no better than chance (0,2). The highest accuracies are achieved for learning rates 0.001 and 0.0001.
Learning rate 0.00001 is too small and it slows down stochastic gradient descent. Figure 4 shows the process of
training CNN with transfer learning from AlexNet with different learning rates. The neural network has a lot of
parameters, so it tends to overfit during training with a small dataset. It can be seen that with η= 0.001 the network
suffers from severe overfitting, so η= 0.0001 is the best option and this value for the learning rate is used in further
simulations.

Pre-trained CNN AlexNet was originally trained with L2 regularization parameter λ=0.0005. We tried to
optimize the value of λ in the surrounding of that value. For λ=0.0001 we got a little bit better accuracy, Figure 5,
and with further decrease of λ improvement was negligible.

CLASSIFICATION OF SMALL DATA SETS OF IMAGES WITH TRANSFER LEARNING
IN CONVOLUTIONAL NEURAL NETWORKS

22

Figure 4. Process of training with different learning rates

Figure 5. Accuracy of pre-trained CNN as a function of L2 regularization parameter

Choosing a size of a mini batch is closely related to the number of epochs (iterations) the network was

trained. We trained the neural network for 20 epochs. The size of a mini batch varied from 8, 16, 32, 64 to 128
images. For fixed size of training epochs, the number of iterations was biggest for MBS (mini batch size) 8 –more
than 4000, and it was smallest for MBS 128 – below 500. With smaller mini batch the training images are visited
many times, so CNN experienced enormous overfitting. From the same reason, overfitting is less for larger mini
batches. During training of the network, we introduced an accuracy threshold of 99.5, in order to stop the training
process because of the overfitting. The training was stopped in cases when the size of a mini batch was 8 and 16,
Figure 6.

The classification accuracy which was achieved with MBS of 128 images and 20 training epochs was 81%.
It can reach over 83% when the neural network is trained with MBS of 128 images and 30 training epochs.

Figure 6. Training accuracy with mini batch size of 16 images

0.7767

0.7967
0.8067 0.8117

0.75
0.76
0.77
0.78
0.79
0.8

0.81
0.82

0.001 0.0005 0.0001 0.00001

A
cc

ur
ac

y

L2 regularization parameter

We simulated transfer learning from pre-trained CNN with layer-specific optimization parameter: the
learning rate for weights and biases of the neurons of the last fully connected layer. Because ImageNet data and
CIFAR-10 are similar data sets, it is reasonable to keep the weights and biases of the layers which we took from
AlexNet in a great measure and to make the new fully connected layer to learn more. Fig.7 presents the increasing of
the classification accuracy with the growth of the weight and bias learn rate factor.

Figure 7. Accuracy of pre-trained CNN as a function of weight and bias learn factor

5. Concluding remarks
In our research assignment, we tried to solve the problem of classification of a small dataset of images with the

technique known as transfer learning. We transferred knowledge from AlexNet and at the same time, we were
optimizing the hyper parameters of our network with the purpose to maximize the accuracy on the test data. We got
an accuracy of over 85% in specific cases of a simulation scenario.

Neural network training was short in time and the training dataset consisted a couple thousands of images. We
didn’t modify the weights too soon and too much. Taking in to consideration the similarity of ImageNet data set and
CIFAR-10 dataset, we imported the architecture of AlexNet in a great measure, as far as the weights of all layers
(except the last three one) of the pre-trained network.

There are situations when the training and testing set of images are small, and yet we need to classify it with
acceptable accuracy. Then comes to a situation when one should think of transfer learning from a pre-trained neural
network as an option. In order to get as high as possible classification accuracy, the pre-trained model selected for
transfer learning has to be trained on a similar data set as the data set we wish to use it on. If the image set we have
to classify differs a lot from the one on which the pre-existing neural network was trained, then the classification
would be very inaccurate. There are various architectures people have tried on different types of data sets.

5. References

[1] A. Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”, pp. 1106–
1114, 2012

[2] Michael A. Nielsen, “Neural Networks and Deep learning”, Determination Press 2015
[3] Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image Database”, In

CVPR09, 2009
[4] Wang C, Mahad-evan S, “Heterogeneous Domain Adaptation Using Manifold Alignment”, Proceedings of the 22nd

international joint conference on artificial intelligence, vol. 2. 2011. p. 541–46.
[5] Duan L, Xu D, Tsang IW, “Learning with Augmented Features for Heterogeneous Domain Adaptation”, IEEE Trans

Pattern Anal Mach Intell 2012; 36(6):1134–48.
[6] Zhu Y, Chen Y, Lu Z, Pan S, Xue G, Yu Y, Yang Q, “Heterogeneous Transfer Learning for Image Classification”,

Proceedings of the national conference on artificial intelligence, vol. 2. 2011. p. 1304–9
[7] Harel M, Mannor, “Learning from Multiple Outlooks”, Proceedings of the 28th international conference on machine

learning 2011, p. 401–8
[8] Nam J, Kim S, “Heterogeneous Defect Prediction”, Proceedings of the 2015 10th joint meeting on foundations of software

engineering, 2015. p. 508–19

0,6383 0,725 0,7933 0,815

0
0,2
0,4
0,6
0,8

1

2;5 5;10 8;15 10;20

A
cc

ur
ac

y

Weight learn rate factor
Bias learn rate factor

Biserka Petrovska, Igor Stojanovic, Tatjana Atanasova Pachemska

23

Figure 4. Process of training with different learning rates

Figure 5. Accuracy of pre-trained CNN as a function of L2 regularization parameter

Choosing a size of a mini batch is closely related to the number of epochs (iterations) the network was

trained. We trained the neural network for 20 epochs. The size of a mini batch varied from 8, 16, 32, 64 to 128
images. For fixed size of training epochs, the number of iterations was biggest for MBS (mini batch size) 8 –more
than 4000, and it was smallest for MBS 128 – below 500. With smaller mini batch the training images are visited
many times, so CNN experienced enormous overfitting. From the same reason, overfitting is less for larger mini
batches. During training of the network, we introduced an accuracy threshold of 99.5, in order to stop the training
process because of the overfitting. The training was stopped in cases when the size of a mini batch was 8 and 16,
Figure 6.

The classification accuracy which was achieved with MBS of 128 images and 20 training epochs was 81%.
It can reach over 83% when the neural network is trained with MBS of 128 images and 30 training epochs.

Figure 6. Training accuracy with mini batch size of 16 images

0.7767

0.7967
0.8067 0.8117

0.75
0.76
0.77
0.78
0.79
0.8

0.81
0.82

0.001 0.0005 0.0001 0.00001

A
cc

ur
ac

y

L2 regularization parameter

We simulated transfer learning from pre-trained CNN with layer-specific optimization parameter: the
learning rate for weights and biases of the neurons of the last fully connected layer. Because ImageNet data and
CIFAR-10 are similar data sets, it is reasonable to keep the weights and biases of the layers which we took from
AlexNet in a great measure and to make the new fully connected layer to learn more. Fig.7 presents the increasing of
the classification accuracy with the growth of the weight and bias learn rate factor.

Figure 7. Accuracy of pre-trained CNN as a function of weight and bias learn factor

5. Concluding remarks
In our research assignment, we tried to solve the problem of classification of a small dataset of images with the

technique known as transfer learning. We transferred knowledge from AlexNet and at the same time, we were
optimizing the hyper parameters of our network with the purpose to maximize the accuracy on the test data. We got
an accuracy of over 85% in specific cases of a simulation scenario.

Neural network training was short in time and the training dataset consisted a couple thousands of images. We
didn’t modify the weights too soon and too much. Taking in to consideration the similarity of ImageNet data set and
CIFAR-10 dataset, we imported the architecture of AlexNet in a great measure, as far as the weights of all layers
(except the last three one) of the pre-trained network.

There are situations when the training and testing set of images are small, and yet we need to classify it with
acceptable accuracy. Then comes to a situation when one should think of transfer learning from a pre-trained neural
network as an option. In order to get as high as possible classification accuracy, the pre-trained model selected for
transfer learning has to be trained on a similar data set as the data set we wish to use it on. If the image set we have
to classify differs a lot from the one on which the pre-existing neural network was trained, then the classification
would be very inaccurate. There are various architectures people have tried on different types of data sets.

5. References

[1] A. Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”, pp. 1106–
1114, 2012

[2] Michael A. Nielsen, “Neural Networks and Deep learning”, Determination Press 2015
[3] Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image Database”, In

CVPR09, 2009
[4] Wang C, Mahad-evan S, “Heterogeneous Domain Adaptation Using Manifold Alignment”, Proceedings of the 22nd

international joint conference on artificial intelligence, vol. 2. 2011. p. 541–46.
[5] Duan L, Xu D, Tsang IW, “Learning with Augmented Features for Heterogeneous Domain Adaptation”, IEEE Trans

Pattern Anal Mach Intell 2012; 36(6):1134–48.
[6] Zhu Y, Chen Y, Lu Z, Pan S, Xue G, Yu Y, Yang Q, “Heterogeneous Transfer Learning for Image Classification”,

Proceedings of the national conference on artificial intelligence, vol. 2. 2011. p. 1304–9
[7] Harel M, Mannor, “Learning from Multiple Outlooks”, Proceedings of the 28th international conference on machine

learning 2011, p. 401–8
[8] Nam J, Kim S, “Heterogeneous Defect Prediction”, Proceedings of the 2015 10th joint meeting on foundations of software

engineering, 2015. p. 508–19

0,6383 0,725 0,7933 0,815

0
0,2
0,4
0,6
0,8

1

2;5 5;10 8;15 10;20

A
cc

ur
ac

y

Weight learn rate factor
Bias learn rate factor

CLASSIFICATION OF SMALL DATA SETS OF IMAGES WITH TRANSFER LEARNING
IN CONVOLUTIONAL NEURAL NETWORKS

24

[9] Zhou JT, Pan S, Tsang IW, Yan Y, “Hybrid Heterogeneous Transfer Learning Through Deep Learning”, Proceedings of
the national conference on artificial intelligence, vol. 3. 2014. p. 2213–20.

[10] Pan SJ, Yang Q, “A Survey on Transfer Learning” IEEE Trans Knowl Data Eng 2010; 22(10):1345–59.
[11] Bergstra, J. and Bengio, Y. (2012), “Random Search for Hyper-Parameter Optimization”, J. Machine Learning Res., 13,

281–305.
[12] Courville, A., Bergstra, J., and Bengio, Y. (2011), “Unsupervised Models of Images by Spike-And-Slab RBMs”, In

ICML’2011
[13] Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, 2009
[14] www.analyticsvidhya.com,https://www.analyticsvidhya.com/blog/2017/06/transfer-learning-the-art-of-fine-tuning-a-pre-

trained-model/
[15] www.innoarchitech.com, https://www.innoarchitech.com/artificial-intelligence-deep-learning-neural-networks-explained/
[16] Bengio, Y. (2012), “Practical Recommendations for Gradient-Based Training of Deep Architectures”, arXiv: 1206.5533V2

[cs.LG] 16 Sep 2012
[17] Zeiler, M. D., and Fergus, R. “Visualizing and understanding convolutional networks”, CoRR, abs/1311.2901, 2013.

Published in Proc. ECCV, 2014
[18] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. OverFeat: “Integrated Recognition,

Localization and Detection using Convolutional Networks”. In Proc. ICLR, 2014.
[19] Simonyan, K. and Zisserman, A. “Two-stream convolutional networks for action recognition in videos”. CoRR,

abs/1406.2199, 2014. Published in Proc. NIPS, 2014
[20] Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato, M., Senior, A., Tucker, P., Yang, K., Le, Q. V.,

and Ng, A. Y. “Large scale distributed deep networks”. In NIPS, pp. 1232–1240, 2012
[21] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.,

Berg, A. C., and Fei-Fei, L. “ImageNet large scale visual recognition challenge”. CoRR, abs/1409.0575, 2014.
[22] Perronnin, F., Sa´nchez, J., and Mensink, T. “Improving the Fisher kernel for large-scale image classification”. In Proc.

ECCV, 2010.

WEB SERVICE BASED GENOMIC DATA RETRIEVAL

Done Stojanov

Faculty of computer science, Goce Delcev University, Stip, Macedonia

done.stojanov@ugd.edu.mk

Abstract: An application of web service for genomic data retrieval is considered. Records for nucleotide
sequences are retrieved from the European Nucleotide Archive and preprocessed locally in order to be able
to apply local host based analysis. This analysis is required because many of the built-in EMBL-EBI services
pose restrictions upon the metrics with which will operate the user, what in some cases may also affect the
structure of the solution, such as when performing pairwise or multiple DNA or mRNA comparison.

Keywords: web, service, data, retrieval, ENA

1. Introduction
In recent years, a huge volume of genomic data has been accessed. This was possible due to the advances in the

DNA sequencing techniques, such as shotgun sequencing and bridge PCR technique. The value of the collected
DNA information increases by sharing in the scientific community. This idea drove the construction of the central
repository of nucleotide data: ENA or The European Nucleotide Archive [1].

ENA or The European Nucleotide Archive (web access: https://www.ebi.ac.uk/ena) [1] is a public database
hosted under the European Bioinformatics Institute (EMBL-EBI) [2] that contains records for nucleotide sequences.
ENA allows upload/access/download of nucleotide data derived from different sources (organisms) applying
different sequencing techniques.

ENA evolved from the EMBL Data Library which was officially released in 1982 [3] and it contained 568
records with total size of 500,000 base pairs [4]. Since then the volume of the data in this repository exponentially
grows [5].

Data stored in this repository is functionally annotated. This means that in spite of the exact order of nucleotides
in the sequence, data linkage details are also available. For instance, when accessing a whole genome, each CDS
(coding sequence) is differentiated from other coding frames, as well as from non-coding frames. By knowing the
start and the end of each CDS, the structure of the mRNA being transcribed and the protein being translated can be
exactly determined.

Regardless record’s functional association, there is metadata common for all. This means that regardless the
record is associated to a whole genome, chromosome or partial CDS (partial coding region or partial mRNA) there
are descriptors which are common for all records.

For each record there is information that describes: the source (organism) of nucleotide sequence, type and
topology of the molecule, taxonomic division or taxonomic rank (ex. HUM (Human), PRO (Prokaryote)…etc.),
length of the sequence or the number of base pairs, sequence version, date when the sequence was made public and
the date of last update of the sequence. Keywords that describe the sequence and secondary accession information
are also available.

However, the most important feature of each record in ENA is that there is no restriction in the accession of
exact structure of nucleotide sequence. This information can be accessed in three data formats: TEXT, FASTA and
XML.

The European Bioinformatics Institute (EMBL-EBI) also hosts web implementations of the most popular
algorithms for genomic data analysis, such as: EMBOSS Needle – an implementation of the Needleman-Wunsch
algorithm [6], EMBOSS Water – an implementation of the Smith-Waterman algorithm [7], EMBOSS Matcher – an

Biserka Petrovska, Igor Stojanovic, Tatjana Atanasova Pachemska

