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PRACTICAL APPLICATION OF SIMPLEX METHOD FOR SOLVING LINEAR 
PROGRAMMING PROBLEMS 
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Abstract: In this paper we consider application of linear programming in solving optimization problems with 
constraints. We used the simplex method for finding a maximum of an objective function. This method is 
applied to a real example. We used the “linprog” function in MatLab for problem solving. We have shown, 
how to apply simplex method on a real world problem, and to solve it using linear programming. Finally we 
investigate the complexity of the method via variation of the computer time versus the number of control 
variables. 
Keywords: simplex method, linear programming, objective function, complexity. 
 
 

1. Introduction  
Linear programming was developed during World War II, when a system with which to maximize the efficiency 

of resources was of utmost importance. New war-related projects demanded optimization of constrained resources. 
“Programming” was used as a military term that referred to activities such as planning schedules efficiently or 
deploying men optimally [1].  

Mathematical programming is that branch of mathematics dealing with techniques for maximizing or minimizing 
an objective function subject to linear, nonlinear, and integer constraints on the variables. Special case of mathematical 
programming is a linear programming. Linear programming is concerned with the maximization or minimization of a 
linear objective function with many variables subject to linear equality and inequality constraints [2]. Linear 
programming can be viewed as a part of a great revolutionary development. It has the ability to define general goals 
and to find detailed decisions in order to achieve that goals. It can be faced with practical situations of great complexity. 
To formulate real-world problems, linear programming uses mathematical terms (models), techniques for solving the 
models (algorithms), and engines for executing the steps of algorithms (computers and software) [3].  

Optimization principles have important aspect in modern engineering design and system operations in various 
areas. Computers capable of solving large-scale problems contribute to the recent development of new optimization 
techniques. The main goal of these techniques is to optimize (maximize or minimize) some function f. This functions 
are called objective functions. As a case study we used the objective function f that represent the revenue of the 
production of electronic elements, more precisely graphics cards. We used methods for maximizing the revenue of 
the company. Using linear programming, we can model wide variety of objective functions as: yield per minute in a 
chemical process, revenue in a production of cars, the hourly number of customers served in a bank, the mileage per 
gallon of a certain type of car, the production of computers on monthly basis and so on. Sometimes we may want to 
minimize f if f is the cost per unit of producing certain graphics cards (opposite of our example where we maximize 
the revenue of production), the operating cost of some power plant, the time needed to produce a new type of car, the 
daily loss of heat in a heating system, the costs for IT infrastructure in some company and so on.  

In most optimization problems the objective function f depends on several variables:  

x1, x2,…..xn                                                                                                                                                                            

These variables are called “control variables” because we can control them, that is, we can choose their values. For 
example the production of some plant may depend on temperature x1, moisture content x2, nitrogen in the soil x3. The 
efficiency of a certain air-conditioning system may depend on air pressure x1, temperature x2, cross-sectional area of 
outlet x3, moisture content x4, and so on. The optimization theory develops methods for optimal choices of x1,…,xn, 
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CLASSIFICATION OF SMALL DATA SETS OF IMAGES WITH TRANSFER 
LEARNING IN CONVOLUTIONAL NEURAL NETWORKS  
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Abstract: Nowadays the rise of the artificial intelligence is with high speed. Neural networks are in a big 
expansion in a new millennium. Their application is wide: they are used in processing images, video, speech, 
audio, and text. Convolutional neural networks have been widely applied to a variety of pattern recognition 
problems, such as computer vision. Pre-trained convolutional neural networks developed by researches or big 
corporations were trained on millions of images. Sometimes we have a small set of images to be classified and in 
those situations, there is no success to train the network from a scratch. This article exploits the technique of 
transfer learning for classifying the images of small datasets. It transfers the knowledge of the pre-trained 
convolutional neural network and uses it for the classification of those data sets. Fine-tuning of the network is 
done through optimization of hyper parameters, in order to maximize the classification accuracy. In the end, the 
directions have been proposed for the selection of the hyper parameters and of the pre-existing network which can 
be suitable for transfer learning. 
Keywords: artificial intelligence, deep learning, AlexNet, hyper parameters, optimization, accuracy 
 
 

1. Introduction  
Artificial intelligence (AI) is a cutting edge discipline, which unites machine learning-based techniques and 

neural networks (NN). Even we are far away from the moment when machines are going to make decisions 
instead of human beings, the development in the field of neural networks is remarkable. Deep learning (DL) is 
based on a specialized architecture of neural networks. The concepts of AI are extremely technical, complex, 
and based on numerous fields of science, such as mathematics, statistics, probability theory, signal processing, 
machine learning, linguistics, and neuroscience. At the moment, there are a lot of problems which are incredibly 
complicated, not well understood and very difficult to solve it manually. The primary motivation for the further 
study of AI, and for profound developing of these techniques, is to find solutions of the kind of problems 
mentioned above. Increasingly, we rely on AI techniques to solve these problems for us, without requiring 
explicit programming instructions. 

There have been remarkable gains in the application of AI techniques and associated algorithms of AI. 
Popular examples of an AI solution includes IBM’s Watson, Apple’s Siri and Amazon’s Alexa. Watson was 
made famous by beating the two greatest Jeopardy champions in history. It is now being used as a question 
answering computing system for commercial applications [15]. So far AI has been used for speech recognition 
and natural language applications (processing, generation, and understanding). It is also used for other 
recognition tasks (pattern, text, image, video, audio, facial …), autonomous vehicles, medical diagnoses, 
gaming, search engines, robotics, spam filtering, crime fighting, marketing, remote sensing, transportation, 
classification, etc. 

At the time of this writing, there are a lot of pre-trained convolutional neural networks, developed by 
scientists or big corporations. One of the main purposes of these networks is to solve image classification 
problems. Pre-existing convolutional neural networks were trained on huge datasets and they have shown 
astonishing accuracies. Even that the above mentioned CNN were trained on certain image sets, they can be 
used for image classifications on other sets of images. This is achieved with transfer learning technique. We 
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transfer the weights and biases of the pre-trained CNN and then fine-tune the network in order to classify the 
small datasets on which it was not trained before. Fine-tuning the neural network actually consists selection of 
hyper parameters. 

In this article, we research one particular part of the area of AI, deep neural networks. They are neural 
networks with many computational stages. This article exploits convolution neural networks and their use for 
transfer learning. Transfer learning is a technique of optimization of pre-trained CNN in order to classify a set 
of images on which it was not trained before.  

  
 

2. Related work  
Lately, large public image data sets, such as ImageNet [3], and high-performance computing systems, such as 

GPUs or large-scale distributed clusters [20] have become available. This is the reason why convolutional networks 
have come out on top in large-scale image and video recognition [1], [17], [18], [19]. Convolutional neural networks 
have been a point of interest of researches in the last decade. The ImageNet Large-Scale Visual Recognition 
Challenge (ILSVRC) [21] is a competition with the most remarkable role in the advance of deep visual recognition 
architectures. From high-dimensional shallow feature encodings [22] to deep CNN [1], all these generations of 
image classification systems of enormous scale were tested in ImageNet Large-Scale Visual Recognition Challenge 
(ILSVRC). It is difficult to outperform the accuracies that have been achieved. 

Transfer learning technique as a method for computer vision is related to the pre-trained network from which 
we transfer the knowledge, in our case convolutional neural network AlexNet [1], especially with its hyper 
parameters. 

 
2.1 Transfer learning 
The purpose of transfer learning is to transfer knowledge between the source and target domains. For image 

classification, transfer learning is a good choice when the number of training samples is small. It is done by adapting 
classifiers trained for other categories. Transfer learning has been successfully applied except to image classification 
[5], [6], also to text sentiment classification [4], human activity classification [7], software defect classification [8], 
and multi-language text classification [9]. Since Pan [10] in 2010 published a research paper for transfer learning, 
there have been over 700 papers written about it. 

Existing networks, pre-trained on ImageNet [3], demonstrate a good ability to classify images outside this 
dataset via transfer learning. Figure 1 shows directions how to proceed with using the pre-trained neural network in 
a specific case [14].  

 

Figure 1. Transfer learning according to the characteristics of dataset [14] 

Case 1 – Size of the data set is small and the data similarity is very high – Here there is no need to retrain the 
network; the pre-existing model is used as a mechanism for feature extraction. But certainly, the convolutional 

neural network needs some changes. The output layers should be modified and adjusted according to the 
classification assignment.  
Case 2 – Size of the data is small and data similarity is very low – In this scenario, size of a data set is not 
sufficient for training the network from a scratch. So, k lower layers are frozen and the remaining (n-k) higher layers 
of the pre-existing network model are trained again. A certain number of layers has to be retrained, because of the 
fact that new data set has low similarity compared to the data set the network was originally trained on.  
Case 3 – Size of the data set is large and the data similarity is very low – Compared to case 3, here the condition 
for the effectiveness of a neural network training is fulfilled, the size of the data set is large enough. The similarity 
between two data sets is small, so using the pre-trained CNN will result in low classification accuracy. The best 
solution is to train the neural network from a scratch. 
Case 4 – Size of the data is large and there is high data similarity – When the data set is large, there are enough 
images to retrain the whole network. We are not doing it from a scratch, but the architecture of the model and its 
initial weights are kept.  

2.2 AlexNet 
Krizhevsky, Sutskever, and Hinton (KSH) trained and tested a deep convolutional neural network [1]. In their 

work, they used a subset of the ImageNet data repository [3]. The images were categorized into 1,000 categories. 
The validation set contained 50,000 images and test set contained 150,000 images. The developed deep 
convolutional network was later named AlexNet. AlexNet took part on ILSVRC 2012 and knocked off its 
competitors. AlexNet achieved an accuracy of 84.7 percent, according to the top-5 criterion. It was better than the 
second-rang CNN, which classification accuracy was 73.8 percent. When it comes strictly to the restrictive metric of 
accuracy, AlexNet achieved an accuracy of 63.3 percent. 

The KSH network consists of input layer, 7 layers of hidden neurons and output 1000-unit softmax layer. 5 of 
the hidden layers are convolutional layers, and 2 layers are fully-connected layers. Model architecture is shown in 
Figure 2 [1]. The network was trained on 2 parallel GPUs. Half of the kernels of the KSH network were put on the 
first GPU and the other half on the second GPU. The GPUs communicate in the third convolutional layer and in 
fully connected layers. Response-normalization layers follow the first and second convolutional layers. First, second 
and fifth convolutional layer are followed by a max-pooling layer with 3×3 regions. The pooling regions of the max-
pooling layer have a stride length of 2 pixels. In order to speed up training, the ReLU (Rectified Linear Unit) non-
linearity with activation function f (z) ≡ max (0, z) [2], is applied to the output of every convolutional and fully-
connected layer.  

 
 

 

KSH network had about 60 million learned parameters. In order to combat overfitting in such a large-scale network, 
Krizhevsky, Sutskever, and Hinton employed numerous techniques: the training set was expanded by using random 
cropping, a variant of L2 regularization and dropout were used. Alexnet was trained with a BP (Back Propagation) 
algorithm - momentum-based, mini-batch stochastic gradient descent. 

Figure 2: Architecture of AlexNet [1] 
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transfer the weights and biases of the pre-trained CNN and then fine-tune the network in order to classify the 
small datasets on which it was not trained before. Fine-tuning the neural network actually consists selection of 
hyper parameters. 

In this article, we research one particular part of the area of AI, deep neural networks. They are neural 
networks with many computational stages. This article exploits convolution neural networks and their use for 
transfer learning. Transfer learning is a technique of optimization of pre-trained CNN in order to classify a set 
of images on which it was not trained before.  

  
 

2. Related work  
Lately, large public image data sets, such as ImageNet [3], and high-performance computing systems, such as 

GPUs or large-scale distributed clusters [20] have become available. This is the reason why convolutional networks 
have come out on top in large-scale image and video recognition [1], [17], [18], [19]. Convolutional neural networks 
have been a point of interest of researches in the last decade. The ImageNet Large-Scale Visual Recognition 
Challenge (ILSVRC) [21] is a competition with the most remarkable role in the advance of deep visual recognition 
architectures. From high-dimensional shallow feature encodings [22] to deep CNN [1], all these generations of 
image classification systems of enormous scale were tested in ImageNet Large-Scale Visual Recognition Challenge 
(ILSVRC). It is difficult to outperform the accuracies that have been achieved. 

Transfer learning technique as a method for computer vision is related to the pre-trained network from which 
we transfer the knowledge, in our case convolutional neural network AlexNet [1], especially with its hyper 
parameters. 

 
2.1 Transfer learning 
The purpose of transfer learning is to transfer knowledge between the source and target domains. For image 

classification, transfer learning is a good choice when the number of training samples is small. It is done by adapting 
classifiers trained for other categories. Transfer learning has been successfully applied except to image classification 
[5], [6], also to text sentiment classification [4], human activity classification [7], software defect classification [8], 
and multi-language text classification [9]. Since Pan [10] in 2010 published a research paper for transfer learning, 
there have been over 700 papers written about it. 

Existing networks, pre-trained on ImageNet [3], demonstrate a good ability to classify images outside this 
dataset via transfer learning. Figure 1 shows directions how to proceed with using the pre-trained neural network in 
a specific case [14].  

 

Figure 1. Transfer learning according to the characteristics of dataset [14] 

Case 1 – Size of the data set is small and the data similarity is very high – Here there is no need to retrain the 
network; the pre-existing model is used as a mechanism for feature extraction. But certainly, the convolutional 

neural network needs some changes. The output layers should be modified and adjusted according to the 
classification assignment.  
Case 2 – Size of the data is small and data similarity is very low – In this scenario, size of a data set is not 
sufficient for training the network from a scratch. So, k lower layers are frozen and the remaining (n-k) higher layers 
of the pre-existing network model are trained again. A certain number of layers has to be retrained, because of the 
fact that new data set has low similarity compared to the data set the network was originally trained on.  
Case 3 – Size of the data set is large and the data similarity is very low – Compared to case 3, here the condition 
for the effectiveness of a neural network training is fulfilled, the size of the data set is large enough. The similarity 
between two data sets is small, so using the pre-trained CNN will result in low classification accuracy. The best 
solution is to train the neural network from a scratch. 
Case 4 – Size of the data is large and there is high data similarity – When the data set is large, there are enough 
images to retrain the whole network. We are not doing it from a scratch, but the architecture of the model and its 
initial weights are kept.  

2.2 AlexNet 
Krizhevsky, Sutskever, and Hinton (KSH) trained and tested a deep convolutional neural network [1]. In their 

work, they used a subset of the ImageNet data repository [3]. The images were categorized into 1,000 categories. 
The validation set contained 50,000 images and test set contained 150,000 images. The developed deep 
convolutional network was later named AlexNet. AlexNet took part on ILSVRC 2012 and knocked off its 
competitors. AlexNet achieved an accuracy of 84.7 percent, according to the top-5 criterion. It was better than the 
second-rang CNN, which classification accuracy was 73.8 percent. When it comes strictly to the restrictive metric of 
accuracy, AlexNet achieved an accuracy of 63.3 percent. 

The KSH network consists of input layer, 7 layers of hidden neurons and output 1000-unit softmax layer. 5 of 
the hidden layers are convolutional layers, and 2 layers are fully-connected layers. Model architecture is shown in 
Figure 2 [1]. The network was trained on 2 parallel GPUs. Half of the kernels of the KSH network were put on the 
first GPU and the other half on the second GPU. The GPUs communicate in the third convolutional layer and in 
fully connected layers. Response-normalization layers follow the first and second convolutional layers. First, second 
and fifth convolutional layer are followed by a max-pooling layer with 3×3 regions. The pooling regions of the max-
pooling layer have a stride length of 2 pixels. In order to speed up training, the ReLU (Rectified Linear Unit) non-
linearity with activation function f (z) ≡ max (0, z) [2], is applied to the output of every convolutional and fully-
connected layer.  

 
 

 

KSH network had about 60 million learned parameters. In order to combat overfitting in such a large-scale network, 
Krizhevsky, Sutskever, and Hinton employed numerous techniques: the training set was expanded by using random 
cropping, a variant of L2 regularization and dropout were used. Alexnet was trained with a BP (Back Propagation) 
algorithm - momentum-based, mini-batch stochastic gradient descent. 

Figure 2: Architecture of AlexNet [1] 
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2.2 Hyper parameters 
Different network training algorithms involve different sets of hyper-parameters [16]. Here we are discussing 

the hyper parameters which are optimized in our simulation scenario.  
The initial learning rate (η0) - the most important thing in neural network training is to tune the learning rate. 

Typically, its value is between the borders 10-6 - 1, for standardized neural network inputs (in the range (0, 1)). 
There are two possibilities for tuning the learning rate. The first one is to keep the learning rate values constant over 
whole network training, which is satisfying in most cases. The second possibility is to adapt the learning rate 
according to a given schedule, as presented in equation (1). It gives an O (1/t) learning rate schedule [11]. In 
equation (1) τ is time constant: when τ → ∞ then the learning rate is constant over whole network training.  

 

      (1) 

 
Here learning rate is kept constant for the first τ steps and then decreases it in O (1/tα). 

The mini-batch size B – usually, B moves between values of 1 and few hundreds. Selection of the mini-
batch size has strictly computational meaning. When the training set is larger, there is a possibility to choose a 
bigger mini batch size B. In those scenarios, network training takes advantage of matrix-matrix products.  

Number of training iterations T - this hyper-parameter optimization concerns best classification 
accuracy. Termination of network training is determined by the technique of early stopping. Every N updates of a 
mini-batch, we mark down the accuracy estimated on a validation set. We stop the neural network training if it 
doesn’t improve for quite some time (number of training iterations). 
     Layer-specific optimization hyper parameters – this scenario mostly concerns the learning rate; it can be 
different on different layers of a deep neural network. Another possibility is to have different learning rates for the 
different types of parameters in the neural network, like biases and weights. Apart biases and weights, usage of 
different learning rate for separate parameters has significance when parameters such as precision or variance are 
included in the training process [12]. 
     Weight decay regularization coefficient λ – adding a regularization term to the cost function is a way to 
reduce overfitting. There are two types of regularization L2 and L1. L2 adds a term  to the cost function. It 

decreases large weights more than small weights. The second type of regularization L1 adds a term .  It 

forces the network weights to go to zero, except in a small number of high-important connections [16]. Despite the 
fact that weights w and biases b are associated with the hidden neurons’ activation, some researches during neural 
network training regularize only the first ones.   
     The above mentioned hyper parameters are basic choices. There are also a number of other hyper 
parameters which can be optimized with different neural network models and training algorithms: momentum β, a 
number of hidden neurons (layers), neuron non-linearity, the sparsity of activation, weights initialization scaling 
coefficient, random seeds, preprocessing etc. 
 

3. Materials and methods 
The aim of our research is to use the technique of transfer learning for classification of small datasets. What 

was done is transfer the part of the architecture, weights, and biases from the pre-trained convolutional neural 
network and then fine-tune it. In our simulations, we were optimizing the hyper parameters of the convolutional 
neural network in order to maximize the classification accuracy on the small dataset. Here AlexNet [1] is used as 
pre-trained model architecture. AlexNet was trained on a restricted subset of the ImageNet data [3] by its creators. 
The goal is to classify a set of images on which the neural network was not trained before. Used images are a subset 
of CIFAR-10 dataset [13]. The subset consists of images which belong to 5 categories. The size of the test dataset 
was 20% the size of the training dataset. Except in the first studied situation where the size of the training data set 
varied from 500 to 4000 images and respectively the size of the test data set varied from 100 to 800 images, in the 
rest studied situations the size of the training data set was 3000 images and the size of a test data set was 600 
images. 
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In heading 2.2 Transfer learning, four possible scenarios that can take place are explained. Choice of the 
scenario depends on the size of the dataset and the similarity between the dataset on which the convolutional neural 
network was trained at first and the dataset which should be classified. The CIFAR-10 dataset consists of 60000 
32x32 colour images in 10 classes (airplane, automobile, cat, bird, deer, dog, frog, horse, ship, truck) with 6000 
images per class. We will use only part of CIFAR-10 dataset, so the data set size is small. The similarity between the 
ImageNet data and CIFAR-10 dataset is big. This situation can be resolved by scenario 1 – we fine tune the output 
layers of the pre-trained neural network. The images were pre-processed in an appropriate way at the input of 
AlexNet.  

The pre-existing network model AlexNet is used as a feature extractor. The last three layers form the original 
AlexNet architecture: a fully connected layer with 1000 neurons, a softmax layer, and the classification output layer 
are removed. They are replaced with new layers relevant to our assignment: a fully connected layer with 5 hidden 
units, softmax layer and classification layer of 5 categories. We choose the weights of the last layers we introduced 
in the network to learn faster than the others. That’s why weight learn rate factor and bias learn factor are from order 
101. 

The simulations were performed in MATLAB with GeForce GTX 960 GPU (Graphic Processor Unit), Intel 
Core2Duo 3.0 GHz CPU (Central Processor Unit) and 4GB RAM (Random Access Memory). Despite the 
computation of classification accuracy, we were plotting the training accuracy in order to visualize the process and 
to realize when the network starts severly to overfit.  

In the next heading, we will present and discuss the success of transfer learning as a function of the size of a 
training set, learning rate, regularization parameter λ, weight and bias learn rate factor, size of a mini batch, number 
of training epochs (iterations). 
 

4. Results and discussion 
The scale of the data set is a couple thousands of images, for which the pre-trained convolutional network 

gives acceptable accuracy, nearly 85%. Figure 3 shows the overall accuracy which is accomplished by CNN with 
transfer learning from AlexNet, as a function of the number of training images.  

 

 
 

Figure 3. Accuracy of pre-trained CNN as a function of dataset size 
 

Next parameter we optimized is learning rate. For bigger learning rates 0.1 and 0.01 our classification 
accuracies are no better than chance (0,2). The highest accuracies are achieved for learning rates 0.001 and 0.0001. 
Learning rate 0.00001 is too small and it slows down stochastic gradient descent. Figure 4 shows the process of 
training CNN with transfer learning from AlexNet with different learning rates. The neural network has a lot of 
parameters, so it tends to overfit during training with a small dataset. It can be seen that with η= 0.001 the network 
suffers from severe overfitting, so η= 0.0001 is the best option and this value for the learning rate is used in further 
simulations. 

Pre-trained CNN AlexNet was originally trained with L2 regularization parameter λ=0.0005. We tried to 
optimize the value of λ in the surrounding of that value. For λ=0.0001 we got a little bit better accuracy, Figure 5, 
and with further decrease of λ improvement was negligible. 
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2.2 Hyper parameters 
Different network training algorithms involve different sets of hyper-parameters [16]. Here we are discussing 

the hyper parameters which are optimized in our simulation scenario.  
The initial learning rate (η0) - the most important thing in neural network training is to tune the learning rate. 

Typically, its value is between the borders 10-6 - 1, for standardized neural network inputs (in the range (0, 1)). 
There are two possibilities for tuning the learning rate. The first one is to keep the learning rate values constant over 
whole network training, which is satisfying in most cases. The second possibility is to adapt the learning rate 
according to a given schedule, as presented in equation (1). It gives an O (1/t) learning rate schedule [11]. In 
equation (1) τ is time constant: when τ → ∞ then the learning rate is constant over whole network training.  

 

      (1) 

 
Here learning rate is kept constant for the first τ steps and then decreases it in O (1/tα). 

The mini-batch size B – usually, B moves between values of 1 and few hundreds. Selection of the mini-
batch size has strictly computational meaning. When the training set is larger, there is a possibility to choose a 
bigger mini batch size B. In those scenarios, network training takes advantage of matrix-matrix products.  

Number of training iterations T - this hyper-parameter optimization concerns best classification 
accuracy. Termination of network training is determined by the technique of early stopping. Every N updates of a 
mini-batch, we mark down the accuracy estimated on a validation set. We stop the neural network training if it 
doesn’t improve for quite some time (number of training iterations). 
     Layer-specific optimization hyper parameters – this scenario mostly concerns the learning rate; it can be 
different on different layers of a deep neural network. Another possibility is to have different learning rates for the 
different types of parameters in the neural network, like biases and weights. Apart biases and weights, usage of 
different learning rate for separate parameters has significance when parameters such as precision or variance are 
included in the training process [12]. 
     Weight decay regularization coefficient λ – adding a regularization term to the cost function is a way to 
reduce overfitting. There are two types of regularization L2 and L1. L2 adds a term  to the cost function. It 

decreases large weights more than small weights. The second type of regularization L1 adds a term .  It 

forces the network weights to go to zero, except in a small number of high-important connections [16]. Despite the 
fact that weights w and biases b are associated with the hidden neurons’ activation, some researches during neural 
network training regularize only the first ones.   
     The above mentioned hyper parameters are basic choices. There are also a number of other hyper 
parameters which can be optimized with different neural network models and training algorithms: momentum β, a 
number of hidden neurons (layers), neuron non-linearity, the sparsity of activation, weights initialization scaling 
coefficient, random seeds, preprocessing etc. 
 

3. Materials and methods 
The aim of our research is to use the technique of transfer learning for classification of small datasets. What 

was done is transfer the part of the architecture, weights, and biases from the pre-trained convolutional neural 
network and then fine-tune it. In our simulations, we were optimizing the hyper parameters of the convolutional 
neural network in order to maximize the classification accuracy on the small dataset. Here AlexNet [1] is used as 
pre-trained model architecture. AlexNet was trained on a restricted subset of the ImageNet data [3] by its creators. 
The goal is to classify a set of images on which the neural network was not trained before. Used images are a subset 
of CIFAR-10 dataset [13]. The subset consists of images which belong to 5 categories. The size of the test dataset 
was 20% the size of the training dataset. Except in the first studied situation where the size of the training data set 
varied from 500 to 4000 images and respectively the size of the test data set varied from 100 to 800 images, in the 
rest studied situations the size of the training data set was 3000 images and the size of a test data set was 600 
images. 
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AlexNet.  
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101. 
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Figure 4. Process of training with different learning rates 

 
Figure 5. Accuracy of pre-trained CNN as a function of L2 regularization parameter 

 
Choosing a size of a mini batch is closely related to the number of epochs (iterations) the network was 

trained. We trained the neural network for 20 epochs. The size of a mini batch varied from 8, 16, 32, 64 to 128 
images. For fixed size of training epochs, the number of iterations was biggest for MBS (mini batch size) 8 –more 
than 4000, and it was smallest for MBS 128 – below 500. With smaller mini batch the training images are visited 
many times, so CNN experienced enormous overfitting.  From the same reason, overfitting is less for larger mini 
batches. During training of the network, we introduced an accuracy threshold of 99.5, in order to stop the training 
process because of the overfitting. The training was stopped in cases when the size of a mini batch was 8 and 16, 
Figure 6. 

The classification accuracy which was achieved with MBS of 128 images and 20 training epochs was 81%. 
It can reach over 83% when the neural network is trained with MBS of 128 images and 30 training epochs.  

 
 

Figure 6. Training accuracy with mini batch size of 16 images 
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We simulated transfer learning from pre-trained CNN with layer-specific optimization parameter: the 
learning rate for weights and biases of the neurons of the last fully connected layer. Because ImageNet data and 
CIFAR-10 are similar data sets, it is reasonable to keep the weights and biases of the layers which we took from 
AlexNet in a great measure and to make the new fully connected layer to learn more. Fig.7 presents the increasing of 
the classification accuracy with the growth of the weight and bias learn rate factor. 

 

 
Figure 7. Accuracy of pre-trained CNN as a function of weight and bias learn factor 

 

5. Concluding remarks 
In our research assignment, we tried to solve the problem of classification of a small dataset of images with the 

technique known as transfer learning. We transferred knowledge from AlexNet and at the same time, we were 
optimizing the hyper parameters of our network with the purpose to maximize the accuracy on the test data. We got 
an accuracy of over 85% in specific cases of a simulation scenario. 

Neural network training was short in time and the training dataset consisted a couple thousands of images. We 
didn’t modify the weights too soon and too much. Taking in to consideration the similarity of ImageNet data set and 
CIFAR-10 dataset, we imported the architecture of AlexNet in a great measure, as far as the weights of all layers 
(except the last three one) of the pre-trained network.  

There are situations when the training and testing set of images are small, and yet we need to classify it with 
acceptable accuracy. Then comes to a situation when one should think of transfer learning from a pre-trained neural 
network as an option. In order to get as high as possible classification accuracy, the pre-trained model selected for 
transfer learning has to be trained on a similar data set as the data set we wish to use it on. If the image set we have 
to classify differs a lot from the one on which the pre-existing neural network was trained, then the classification 
would be very inaccurate. There are various architectures people have tried on different types of data sets.  
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Abstract: An application of web service for genomic data retrieval is considered. Records for nucleotide 
sequences are retrieved from the European Nucleotide Archive and preprocessed locally in order to be able 
to apply local host based analysis. This analysis is required because many of the built-in EMBL-EBI services 
pose restrictions upon the metrics with which will operate the user, what in some cases may also affect the 
structure of the solution, such as when performing pairwise or multiple DNA or mRNA comparison.  
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1. Introduction  
In recent years, a huge volume of genomic data has been accessed. This was possible due to the advances in the 

DNA sequencing techniques, such as shotgun sequencing and bridge PCR technique. The value of the collected 
DNA information increases by sharing in the scientific community. This idea drove the construction of the central 
repository of nucleotide data: ENA or The European Nucleotide Archive [1].   

ENA or The European Nucleotide Archive (web access: https://www.ebi.ac.uk/ena) [1] is a public database 
hosted under the European Bioinformatics Institute (EMBL-EBI) [2] that contains records for nucleotide sequences. 
ENA allows upload/access/download of nucleotide data derived from different sources (organisms) applying 
different sequencing techniques.  

ENA evolved from the EMBL Data Library which was officially released in 1982 [3] and it contained 568 
records with total size of 500,000 base pairs [4]. Since then the volume of the data in this repository exponentially 
grows [5]. 

Data stored in this repository is functionally annotated. This means that in spite of the exact order of nucleotides 
in the sequence, data linkage details are also available. For instance, when accessing a whole genome, each CDS 
(coding sequence) is differentiated from other coding frames, as well as from non-coding frames. By knowing the 
start and the end of each CDS, the structure of the mRNA being transcribed and the protein being translated can be 
exactly determined.  

Regardless record’s functional association, there is metadata common for all. This means that regardless the 
record is associated to a whole genome, chromosome or partial CDS (partial coding region or partial mRNA) there 
are descriptors which are common for all records.  

For each record there is information that describes: the source (organism) of nucleotide sequence, type and 
topology of the molecule, taxonomic division or taxonomic rank (ex. HUM (Human), PRO (Prokaryote)…etc.), 
length of the sequence or the number of base pairs, sequence version, date when the sequence was made public and 
the date of last update of the sequence. Keywords that describe the sequence and secondary accession information 
are also available.   

However, the most important feature of each record in ENA is that there is no restriction in the accession of 
exact structure of nucleotide sequence. This information can be accessed in three data formats: TEXT, FASTA and 
XML.  

The European Bioinformatics Institute (EMBL-EBI) also hosts web implementations of the most popular 
algorithms for genomic data analysis, such as: EMBOSS Needle – an implementation of the Needleman-Wunsch 
algorithm [6], EMBOSS Water – an implementation of the Smith-Waterman algorithm [7], EMBOSS Matcher – an 
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