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PRACTICAL APPLICATION OF SIMPLEX METHOD FOR SOLVING LINEAR 
PROGRAMMING PROBLEMS 

 
Aleksandar, Velinov1, Vlado, Gicev 1  

 
1Faculty of Computer Science, Goce Delcev University, Stip, Macedonia  

aleksandar.velinov@ugd.edu.mk 
vlado.gicev@ugd.edu.mk 

 
Abstract: In this paper we consider application of linear programming in solving optimization problems with 
constraints. We used the simplex method for finding a maximum of an objective function. This method is 
applied to a real example. We used the “linprog” function in MatLab for problem solving. We have shown, 
how to apply simplex method on a real world problem, and to solve it using linear programming. Finally we 
investigate the complexity of the method via variation of the computer time versus the number of control 
variables. 
Keywords: simplex method, linear programming, objective function, complexity. 
 
 

1. Introduction  
Linear programming was developed during World War II, when a system with which to maximize the efficiency 

of resources was of utmost importance. New war-related projects demanded optimization of constrained resources. 
“Programming” was used as a military term that referred to activities such as planning schedules efficiently or 
deploying men optimally [1].  

Mathematical programming is that branch of mathematics dealing with techniques for maximizing or minimizing 
an objective function subject to linear, nonlinear, and integer constraints on the variables. Special case of mathematical 
programming is a linear programming. Linear programming is concerned with the maximization or minimization of a 
linear objective function with many variables subject to linear equality and inequality constraints [2]. Linear 
programming can be viewed as a part of a great revolutionary development. It has the ability to define general goals 
and to find detailed decisions in order to achieve that goals. It can be faced with practical situations of great complexity. 
To formulate real-world problems, linear programming uses mathematical terms (models), techniques for solving the 
models (algorithms), and engines for executing the steps of algorithms (computers and software) [3].  

Optimization principles have important aspect in modern engineering design and system operations in various 
areas. Computers capable of solving large-scale problems contribute to the recent development of new optimization 
techniques. The main goal of these techniques is to optimize (maximize or minimize) some function f. This functions 
are called objective functions. As a case study we used the objective function f that represent the revenue of the 
production of electronic elements, more precisely graphics cards. We used methods for maximizing the revenue of 
the company. Using linear programming, we can model wide variety of objective functions as: yield per minute in a 
chemical process, revenue in a production of cars, the hourly number of customers served in a bank, the mileage per 
gallon of a certain type of car, the production of computers on monthly basis and so on. Sometimes we may want to 
minimize f if f is the cost per unit of producing certain graphics cards (opposite of our example where we maximize 
the revenue of production), the operating cost of some power plant, the time needed to produce a new type of car, the 
daily loss of heat in a heating system, the costs for IT infrastructure in some company and so on.  

In most optimization problems the objective function f depends on several variables:  

x1, x2,…..xn                                                                                                                                                                            

These variables are called “control variables” because we can control them, that is, we can choose their values. For 
example the production of some plant may depend on temperature x1, moisture content x2, nitrogen in the soil x3. The 
efficiency of a certain air-conditioning system may depend on air pressure x1, temperature x2, cross-sectional area of 
outlet x3, moisture content x4, and so on. The optimization theory develops methods for optimal choices of x1,…,xn, 
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which maximize or minimize the objective function f, that is, methods for finding optimal values of x1,…, xn. In many 
problems the choice of values of x1,…,xn depends on some constraints. Those are restrictions that arise from the nature 
of the problem and variables. When we determine the optimal values of control variables we must take into account 
those limitations. In our example the constraints refer to the number of graphics cards produced in a period of one 
hour, if we use four different machines in production. There are a lot of examples for constraints in a real world 
problems that can be solved with linear programming such as: if x1 is a production cost, then x1≥0, and there are many 
other variables (time, weight, distance traveled by salesmen) that can take nonnegative values only. In this example 
the constraints have the form of inequalities. Constraints can also have the form of equations. In this paper we consider 
the optimization problem with constraints. 

 In linear programming the objective function is a linear function given as: 

z=f(x1,…,xn) = a1x1 + a2x2 + …+ anxn 

 We can rearrange the structure that characterizes linear programming problems (perhaps after several manipulations) 
into the following form [1]: 

                                                             Maximize   c1x1 + c2x2 + · · · + cnxn  =   z 

Subject to a11x1 + a12x2 + · · · + a1nxn  = b1 

                  a21x1 + a22x2 + · · · + a2nxn = b2 

                   am1x1 + am2x2 + · · · + amnxn = bm 

                x1, x2,            . . . ,         xn ≥ 0 

The part after “Maximize” represent the objective function, and the part after “Subject to” represent the constraints. 
This is a normal form of the linear programming problem. Here x1,…,xn include also the slack variables. That are 
auxiliary variables for which the c’s in f are zero. We use the slack variables to convert inequalities to equations. For 
example if the objective function is: 

f=60x1+40x2 

And the constraints are:  

2x1+3x2≤80 

5x1+4x2≤80 

x1≥0 

x2≥0 

The normal form of the linear programming problem would be: 

         f-60x1-40x2             =  0 

               2x1+3x2+x3        =80 

               5x1+4x2+    x4    =80 

As we said before x1 and x2 are called control variables or decision variables while x3 and x4 are slack variables or 
auxiliary variables. A set of x1, x2 . . . xn satisfying all the constraints is called a feasible point and the set of all such 
points is called the feasible region. The solution of the linear program must be a point (x1, x2, . . . , xn) in the feasible 
region, otherwise not all the constraints would be satisfied. Linear programming algorithm find a point in feasible 
region, if there exist, on which the objective function has maximum (or minimum) value [4]. This is a feasible solution. 

…
 

…
 

…
 

…
 

A feasible solution is called an optimal solution if for it the objective function f becomes maximum, compared with 
the values of f at all feasible solutions. Basic feasible solution is a feasible solution for which at least n-m of variables 
x1, x2 . . . xn are zero. 

There are two methods for solving linear programming problems: Graphical method and simplex method. The 
graphical method is limited to linear programming problems involving two decision variables and a limited number 
of constraints due to the difficulty of graphing and evaluating more than two decision variables. This restriction 
severely limits the use of the graphical method for real-world problems. The graphical method is simple and easy to 
understand and it is a very good learning tool. The simplex method is much more powerful than the graphical method 
and provides the optimal solution to LP problems containing thousands of decision variables and constraints. It uses 
an iterative algorithm to solve for the optimal solution. Moreover, the simplex method provides information on slack 
variables (unused resources) and shadow prices (opportunity costs) that is useful in performing sensitivity analysis 
[5]. Because our real problem involve four decision variables we used the simplex method. We used it instead of 
graphical method due to the difficulty of graphing. 

2. Simplex method 
As we said before, for solving linear programming problems with two variables, the graphical solution method is 

convenient. For problems involving more than two variables or problems involving a large number of constraints, an 
algorithm should be tailored to computers. One such method is developed by George Dantzig in 1946, and it is called 
simplex method. This method provides a systematic way of examining the vertices of the feasible region to determine 
the optimal value of the objective function [6]. It is an iterative method. In this method, one proceeds stepwise from 
one basic feasible solution to another in such a way that the objective function f always increases. In previous example 
the objective function was: 

f=60x1+40x2 

We used a normal form to transform linear inequalities to equations. In this conversion we introduced two slack 
variables x3 and x4. The normal form of the objective function and the constraints were presented earlier. In this normal 
form x1≥0,…, x4≥0. Normal form contains linear system of equations. To find an optimal solution, we may consider 
its augmented matrix: 

Table 1: Initial simplex table 

T0= 

z x1 x2 x3 x4 b 

1 -60 -40 0 0 0 

0 2 3 1 0 80 

0 5 4 0 1 80 

This matrix is called a simplex table or simplex tableau. T0 is the initial simplex table. This table contains two types 
of variables: basic variables and non-basic variables. By basic variables we mean those whose columns contain only 
one nonzero entry. In our example basic variables are x3, x4 and x1, x2 are non-basic variables. From the simplex table 
we can get a basic feasible solution. We obtain it by setting the non-basic variables to zero. The basic feasible solution 
is: 

x1=0,     x2=0,     x3=80/1=80,     x4=80/1=80,     z=0; 

We get the values for x3 and x4 when we divide b with x3 and b with x4. We use pivoting to obtain the optimal solution. 
It is designed to take us to the basic feasible solution with higher and higher values of z until the maximum of z is 
reached. In this example x1,…,x4 are restricted to nonnegative values.  

Step 1a: Selection of the Column of the pivot 

We select as a column of the pivot the first column with a negative entry in row 1. In T0 it is a Column 2.  

Aleksandar Velinov, Vlado Gicev 
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Step 2a: Selection of the Row of the pivot 

We divide the values from b in the Row 2 and Row 3 with the corresponding entries of the column selected as pivot 
column (80/2 and 80/5). The row of the pivot will be the row with the smallest quotient. In our example the pivot will 
be 5 because 80/5 is smallest (80/5<80/2). If the rows in the pivot column have a non-positive values, we do not 
compute a ratio b/x1 and we do not take this quotient into account when deciding about the row of the pivot [7]. 

Step 3a: Elimination by Row operations 

We use elimination by row operation to make zeros the values above and below the pivot. For that we use Gauss-
Jordan method [8]. After row operation we have a new matrix determined by the values obtained from executed 
operations. The new matrix will be: 

Table 2: Simplex table T1 after elimination 

T1= 

z x1 x2 x3 x4 b  

1 0 8 0 12 960 Row1+12*Row3 

0 0 7/5 1 -2/5 48 Row2-
2/5*Row3 

0 5 4 0 1 80  

Now we can see that basic variables are x1 and x3, and non-basic variables are x2 and x4. The basic feasible solution 
given by T1 is [9]:  

x1=80/5=16,     x2=0,     x3=48/1=48,     x4=0,     z=960; 

Because T1 contains no more negative entries in Row 1, this is a basic feasible solution. We can conclude that 
z=f(16,0)=60*16+40*0=960 is the maximum possible value. This is the solution of our problem by the simplex 
method of linear programming. 

3. Numerical Example 
We apply simplex method on a linear programming problem and we solve it. Our problem is:  

The company for production of electronic chips produces 4 types of graphics cards (C1, C2, C3, C4), that are produced 
from 4 types of machines (M1, M2, M3 and M4). The M1 machine produces the C1 graphics card for 1 min, C2 for 
2 min, C3 for 3 min, and the graphics card C4 for 2 min. The M2 machine produces a C1 graphics card for 3 min, C2 
for 2 min, C3 for 4 min and C4 for 6 min. The M3 machine produces the C1 graphics card for 2 min, C2 for 1 min, 
C3 for 3 min and C4 for 3 min. The M4 machine produces a C1 graphics card for 2 min, C2 for 4 min, C3 for 3 min 
and C4 for 5 min. The C1 graphics card is sold for $20, C2 for $35, C3 for $40 and C4 for $50. Determine the number 
of graphics cards (x1 for C1, x2 for C2, x3 for C3, and x4 for C4) which maximizes the revenue generated from the 
production of graphics cards for an hour. 

The number of graphics cards x1, x2, x3, and x4 must be nonnegative. Hence the objective function (to be maximized) 
and the eight constraints are: 

Objective function: 

z=20x1+35x2+40x3+50x4 

M1: 1x1+2x2+3x3+2x4<=60 

M2: 3x1+2x2+4x3+6x4<=60 

M3: 2x1+1x2+3x3+3x4<=60 

M4: 2x1+4x2+3x3+5x4<=60 

x1≥0 

x2≥0 

x3≥0 

x4≥0 

4. Algorithm 
The normal form of the linear programming problem is: 

                                                           z-20x1-35x2-40x3-50x4                                     =  0 
       1x1+2x2+3x3+2x4+ x5                                     =60 
       3x1+2x2+4x3+6x4+    + x6                            =60 
       2x1+1x2+3x3+3x4+     +    +x7                  =60 
       2x1+4x2+3x3+5x4+     +     +   +x8        =60 

The initial simplex table T0 is: 

Table 3: Initial simplex table for our LP problem 

T0= 

z x1 x2 x3 x4 x5 x6 x7 x8 b 
1 20 35 40 50 0 0 0 0 0 
0 1 2 3 2 1 0 0 0 60 
0 3 2 4 6 0 1 0 0 60 
0 2 1 3 3 0 0 1 0 60 
0 2 4 3 5 0 0 0 1 60 

 
Step 1a: Selection of the Column of the pivot 

We select as a column of the pivot the first column with a negative entry in row 1. We used positive values in Row 1. 
They correspond to the negative values from objective function. In T0 it is a Column 2 (Value -20).  

Step 2a: Selection of the Row of the pivot 

We divide the values from b in the Row 2 and Row 3 with the corresponding entries of the column selected as pivot 
column (60/1, 60/3, 60/2, 60/2). The row of the pivot will be the row with the smallest quotient. In our example the 
pivot will be 3 because 60/3 is the smallest quotient (Row 3). 

Step 3a: Elimination by Row operations 
With elimination by row operation we got a new simplex table T1: 

Table 4: Simplex table after first row elimination 

T1= 

z x1 x2 x3 x4 x5 x6 x7 x8 b  

1 0 21.6 13.3 10 0 -6.67 0 0 -400 Row1-
20/3*Row3 

0 0 1.33 1.67 0 1 -0.33 0 0 40 Row2-
1/3*Row3 

0 1 0.67 1.33 2 0 0.33 0 0 20 Row3/Pivot 

0 0 -0.33 0.33 -1 0 -0.67 1 0 20 Row4-
2/3*Row3 

0 0 2.67 0.33 1 0 -0.67 0 1 20 Row5-
2/3*Row3 

 
In the Row 3 we used the quotient Row3/Pivot. It is a difference between this approach and the method described in 
the Part 2 of this paper. The difference is also the Row 1 where we used positive values instead of negative values in 
Part 2 (negative values at the end). The new pivot is 2.67. 
We repeated the steps from 1a to 3a and after the row eliminations we got the other simplex tables (Table 5 and Table 
6). 
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Step 2a: Selection of the Row of the pivot 

We divide the values from b in the Row 2 and Row 3 with the corresponding entries of the column selected as pivot 
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Now we can see that basic variables are x1 and x3, and non-basic variables are x2 and x4. The basic feasible solution 
given by T1 is [9]:  
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pivot will be 3 because 60/3 is the smallest quotient (Row 3). 
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In the Row 3 we used the quotient Row3/Pivot. It is a difference between this approach and the method described in 
the Part 2 of this paper. The difference is also the Row 1 where we used positive values instead of negative values in 
Part 2 (negative values at the end). The new pivot is 2.67. 
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Table 5: Simplex table after second row elimination 

T2= 

z x1 x2 x3 x4 x5 x6 x7 x8 b  
1 0 0 10.63 1.88 0 -1.25 0 -8.13 -562.5 Row1-8.09*Row5 
0 0 0 1.5 -0.5 1 0 0 -0.5 30 Row2-0.5*Row5 
0 1 0 1.25 1.75 0 0.5 0 -0.25 15 Row3-0.25*Row5 
0 0 0 0.38 -0.88 0 -0.75 1 0.13 22.5 Row4+0.12*Row5 
0 0 1 0.13 0.38 0 -0.25 0 0.38 7.5 Row5/Pivot 

 

Table 6: Final simplex table 

T3= 

z x1 x2 x3 x4 x5 x6 x7 x8 b  

1 -8.5 0 0 -13 0 -5.5 0 -6 -690 Row1-
8.5*Row5 

0 -1.2 0 0 -2.6 1 -0.6 0 -0.2 12 Row2-
1.2*Row3 

0 0.8 0 1 1.4 0 0.4 0 -0.2 12 Row3/Pivot 

0 -0.3 0 0 -1.4 0 -0.9 1 0.2 18 Row4-
0.304*Row3 

0 -0.1 1 0 0.2 0 -0.3 0 0.4 6 Row5-
0.104*Row3 

 
5. Implementation in Matlab 
As we can see in the solution (T3 simplex table), Row 1 contains no more positive entries in Row 1. We can see 

that now x2, x3, x5 and x7 are basic variables and x1, x4, x6, x8 are non-basic variables. Hence the basic feasible solution 
is: 

x1=0,   x2=6/1=6,   x3=12/1=12,  x4=0,   x5=12/1=12,   x6=0,   x7=18/1=18,   x8=0 

The maximum possible revenue is 690 because z = f(0,6,12,0)=20*0+35*6+40*12+50*0=690. The company will 
have maximum profit for one hour if it produces 6 graphics cards from type C2 and 12 graphics cards from type C3.  

We also used the MATLAB tool to find the solution of our linear programming problem. We used the “linprog” 
function [10]. 

This is the MATLAB code: 

>> f=[-20 -35 -40 -50] 

f = 

-20   -35   -40   -50 

>> A=[1 2 3 2; 3 2 4 6; 2 1 3 3; 2 4 3 5] 

A = 

1     2     3     2 

3     2     4     6 

2     1     3     3 

2     4     3     5 

>> b=[60 60 60 60] 

 

b = 

60    60    60    60 

>> Aeq=[] 

Aeq = 

[] 

>> beq=[] 

 

beq = 

[] 

>> lb=[0 0 0 0] 

lb = 

0     0     0     0 

>> ub=[] 

ub = 

[] 

>> [X,Z]=linprog(f,A,b,Aeq,beq,lb,ub) 

Optimization terminated. 

X = 

0.0000 

6.0000 

12.0000 

0.0000 

Z = 

-690.0000 

Here the “linprog function” has some parameters: 

• f – the linear objective function vector 
• A – the matrix of the linear inequality constraints 
• b - the matrix of the linear inequality constraints 
• Aeq - the matrix of the linear equality constraints 
• beq - the right-hand side vector of the linear equality constraints 
• lb - the vector of the lower bounds 
• ub - the vector of the upper bounds 
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Figure 1. Dependency between the number of control variables and computer time 

6. Order of complexity of the method 
Using the “tic/toc” method on “linprog” function in MatLab, we got the dependency between the number of 

control variables and computer time. We used different number of variables (from 50 to 300 with step 50). We can 
see from Figure 1 that the execution time (computer time) increases with increasing the number of control variables 
as exponential function.  

7. Conclusion 
Linear programming is an optimization technique that is used for obtaining the most optimal solution for a real 

world problem. We represent the problem with a mathematical model which involves an objective function and linear 
inequalities. There are two methods for solving linear programming problems: Graphical method and simplex method. 
Simplex method provides a systematic way of examining the vertices of the feasible region to determine the optimal 
value of the objective function. The “linprog” function in MatLab can be used to solve linear programming problems. 
The execution time of this function increases with increasing the number of control variables. 
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Abstract: Nowadays the rise of the artificial intelligence is with high speed. Neural networks are in a big 
expansion in a new millennium. Their application is wide: they are used in processing images, video, speech, 
audio, and text. Convolutional neural networks have been widely applied to a variety of pattern recognition 
problems, such as computer vision. Pre-trained convolutional neural networks developed by researches or big 
corporations were trained on millions of images. Sometimes we have a small set of images to be classified and in 
those situations, there is no success to train the network from a scratch. This article exploits the technique of 
transfer learning for classifying the images of small datasets. It transfers the knowledge of the pre-trained 
convolutional neural network and uses it for the classification of those data sets. Fine-tuning of the network is 
done through optimization of hyper parameters, in order to maximize the classification accuracy. In the end, the 
directions have been proposed for the selection of the hyper parameters and of the pre-existing network which can 
be suitable for transfer learning. 
Keywords: artificial intelligence, deep learning, AlexNet, hyper parameters, optimization, accuracy 
 
 

1. Introduction  
Artificial intelligence (AI) is a cutting edge discipline, which unites machine learning-based techniques and 

neural networks (NN). Even we are far away from the moment when machines are going to make decisions 
instead of human beings, the development in the field of neural networks is remarkable. Deep learning (DL) is 
based on a specialized architecture of neural networks. The concepts of AI are extremely technical, complex, 
and based on numerous fields of science, such as mathematics, statistics, probability theory, signal processing, 
machine learning, linguistics, and neuroscience. At the moment, there are a lot of problems which are incredibly 
complicated, not well understood and very difficult to solve it manually. The primary motivation for the further 
study of AI, and for profound developing of these techniques, is to find solutions of the kind of problems 
mentioned above. Increasingly, we rely on AI techniques to solve these problems for us, without requiring 
explicit programming instructions. 

There have been remarkable gains in the application of AI techniques and associated algorithms of AI. 
Popular examples of an AI solution includes IBM’s Watson, Apple’s Siri and Amazon’s Alexa. Watson was 
made famous by beating the two greatest Jeopardy champions in history. It is now being used as a question 
answering computing system for commercial applications [15]. So far AI has been used for speech recognition 
and natural language applications (processing, generation, and understanding). It is also used for other 
recognition tasks (pattern, text, image, video, audio, facial …), autonomous vehicles, medical diagnoses, 
gaming, search engines, robotics, spam filtering, crime fighting, marketing, remote sensing, transportation, 
classification, etc. 

At the time of this writing, there are a lot of pre-trained convolutional neural networks, developed by 
scientists or big corporations. One of the main purposes of these networks is to solve image classification 
problems. Pre-existing convolutional neural networks were trained on huge datasets and they have shown 
astonishing accuracies. Even that the above mentioned CNN were trained on certain image sets, they can be 
used for image classifications on other sets of images. This is achieved with transfer learning technique. We 


