GOCE DELCEV UNIVERSITY - STIP FACULTY OF COMPUTER SCIENCE

ISSN 2545-4803 on line

BALKAN JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS (BJAMI)

GOCE DELCEV UNIVERSITY - STIP, REPUBLIC OF NORTH MACEDONIA FACULTY OF COMPUTER SCIENCE

BALKAN JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

(BJAMI)

AIMS AND SCOPE:

BJAMI publishes original research articles in the areas of applied mathematics and informatics.

Topics:

1. Computer science;
2. Computer and software engineering;
3. Information technology;
4. Computer security;
5. Electrical engineering;
6. Telecommunication;
7. Mathematics and its applications;
8. Articles of interdisciplinary of computer and information sciences with education, economics, environmental, health, and engineering.

Managing editor
 Biljana Zlatanovska Ph.D.

Editor in chief

Zoran Zdravev Ph.D.

Lectoure
 Snezana Kirova

Technical editor
 Slave Dimitrov

Address of the editorial office
Goce Delcev University - Stip
Faculty of philology
Krste Misirkov 10-A
PO box 201, 2000 Štip,
Republic of North Macedonia

EDITORIAL BOARD

Adelina Plamenova Aleksieva-Petrova, Technical University - Sofia,
Faculty of Computer Systems and Control, Sofia, Bulgaria
Lyudmila Stoyanova, Technical University - Sofia , Faculty of computer systems and control, Department - Programming and computer technologies, Bulgaria Zlatko Georgiev Varbanov, Department of Mathematics and Informatics, Veliko Tarnovo University, Bulgaria
Snezana Scepanovic, Faculty for Information Technology,
University "Mediterranean", Podgorica, Montenegro
Daniela Veleva Minkovska, Faculty of Computer Systems and Technologies, Technical University, Sofia, Bulgaria
Stefka Hristova Bouyuklieva, Department of Algebra and Geometry, Faculty of Mathematics and Informatics, Veliko Tarnovo University, Bulgaria
Vesselin Velichkov, University of Luxembourg, Faculty of Sciences, Technology and Communication (FSTC), Luxembourg
Isabel Maria Baltazar Simões de Carvalho, Instituto Superior Técnico, Technical University of Lisbon, Portugal
Predrag S. Stanimirović, University of Niš, Faculty of Sciences and Mathematics, Department of Mathematics and Informatics, Niš, Serbia
Shcherbacov Victor, Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, Moldova
Pedro Ricardo Morais Inácio, Department of Computer Science, Universidade da Beira Interior, Portugal
Sanja Panovska, GFZ German Research Centre for Geosciences, Germany Georgi Tuparov, Technical University of Sofia Bulgaria
Dijana Karuovic, Tehnical Faculty "Mihajlo Pupin", Zrenjanin, Serbia Ivanka Georgieva, South-West University, Blagoevgrad, Bulgaria
Georgi Stojanov, Computer Science, Mathematics, and Environmental Science Department The American University of Paris, France
Iliya Guerguiev Bouyukliev, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria
Riste Škrekovski, FAMNIT, University of Primorska, Koper, Slovenia
Stela Zhelezova, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria
Katerina Taskova, Computational Biology and Data Mining Group,
Faculty of Biology, Johannes Gutenberg-Universität Mainz (JGU), Mainz, Germany. Dragana Glušac, Tehnical Faculty "Mihajlo Pupin", Zrenjanin, Serbia
Cveta Martinovska-Bande, Faculty of Computer Science, UGD, Republic of North Macedonia
Blagoj Delipetrov, Faculty of Computer Science, UGD, Republic of North Macedonia Zoran Zdravev, Faculty of Computer Science, UGD, Republic of North Macedonia Aleksandra Mileva, Faculty of Computer Science, UGD, Republic of North Macedonia Igor Stojanovik, Faculty of Computer Science, UGD, Republic of North Macedonia Saso Koceski, Faculty of Computer Science, UGD, Republic of North Macedonia Natasa Koceska, Faculty of Computer Science, UGD, Republic of North Macedonia Aleksandar Krstev, Faculty of Computer Science, UGD, Republic of North Macedonia Biljana Zlatanovska, Faculty of Computer Science, UGD, Republic of North Macedonia Natasa Stojkovik, Faculty of Computer Science, UGD, Republic of North Macedonia Done Stojanov, Faculty of Computer Science, UGD, Republic of North Macedonia
Limonka Koceva Lazarova, Faculty of Computer Science, UGD, Republic of North Macedonia
Tatjana Atanasova Pacemska, Faculty of Electrical Engineering, UGD, Republic of North Macedonia

CONTENT

DISTANCE BASED TOPOLOGICAL INDICES ON MULTIWALL CARBON NANOTUBES SAMPLES OBTAINED BY ELECTROLYSIS IN MOLTEN SALTS 7
Beti Andonovic, Vesna Andova, Tatjana Atanasova Pacemska, Perica Paunovic, Viktor Andonovic, Jasmina Djordjevic and Aleksandar T. Dimitrov
CALCULATION FOR PHASE ANGLE AT RL CIRCUIT SUPPLIED WITH SQUARE VOLTAGE PULSE 13
Goce Stefanov, Vasilija Sarac, Maja Kukuseva Paneva
APPLICATION OF THE FOUR-COLOR THEOREM FOR COLORING A CITY MAP 25
Natasha Stojkovikj, Mirjana Kocaleva, Cveta Martinovska Bande, Aleksandra Stojanova and Biljana Zlatanovska
DECISION MAKING FOR THE OPTIMUM PROFIT BY USING THE PRINCIPLE OF GAME THEORY 37
Shakoor Muhammad, Nekmat Ullah, Muhammad Tahir, Noor Zeb Khan
EIGENVALUES AND EIGENVECTORS OF A BUILDING MODEL AS A ONE-DIMENSIONAL ELEMENT 43
Mirjana Kocaleva and Vlado Gicev
EXAMPLES OF GROUP $\exp (\mathrm{t} \quad \mathrm{A}),(\mathrm{t} \in \mathrm{R})$ OF 2×2 REAL MATRICES IN CASE MATRIX A DEPENDS ON SOME REAL PARAMETERS
Ramiz Vugdalic 55
GROUPS OF OPERATORS IN C² DETERMINED BY SOME COSINE OPERATOR FUNCTIONS IN C² 63
Ramiz Vugdalić
COMPARISON OF CLUSTERING ALGORITHMS FOR THYROID DATABASE 73Anastasija Samardziska and Cveta Martinovska Bande
MEASUREMENT AND VISUALIZATION OF ANALOG SIGNALS WITH A MICROCOMPUTER CONNECTION 85
Goce Stefanov, Vasilija Sarac, Biljana Chitkusheva Dimitrovska
GAUSSIAN METHOD FOR COMPUTING THE EARTH'S MAGNETIC FIELD 95
Blagica Doneva

DECISION MAKING FOR THE OPTIMUM PROFIT BY USING THE PRINCIPLE OF GAME THEORY

Shakoor Muhammad ${ }^{1}$, Nekmat Ullah ${ }^{1}$, Muhammad Tahir ${ }^{\mathbf{2}},{ }^{3}$ Noor Zeb Khan
${ }^{1}$ Department of Mathematics, Abdul Wali Khan University Mardan Khyber Pakhtunkhwa, Pakistan
${ }^{2}$ Deparment of Computer Science, Attok Campus, COMSAT University, Islamabad
${ }^{3}$ Department of Mathematics, Cecos University Peshawar Khyber Pakhtunkhwa, Pakistan
shakoormath@gmail.com, nekmatmaths@gmail.com, m tahir@cuiatk.edu.pk, noorzeb@,cecos.edu.pk

Abstract

Game theory is a mathematical study of planning and strategy and interaction among the competing objects. The procreation of game techniques are the best methods that have been used to obtain various feasible problems. For example, politicians want to nominate proper candidates in order to win, and businesspersons organize their businesses in proper locations for maximum income. This paper applies the principle of game theory to produce rules for most favorable settings of three different varieties launching in three different localities in order to maximize profit.

Keywords: Pay-off, matrix games, decision making, continuous and discrete, maximizer, minimizer.

Introduction

The mathematical game theory was basically presented by John von Neumann along with Oskar Morgenstern in 1944. The participants in a game are called players. These players are trying to exploit their pay-off, and formulate their plans that are known as "Strategies". Each player has his/her own strategies regardless of the strategies of the other player. For the result of the game, the net outcome of all the strategies selected by the participants in a game may result in a win or loss or a draw to a participant.

Game theory is related to the distinct optimization box connecting two or more contestants to dashing passions. Game theory problems may be discrete or continuous. Discrete game problems are generally represented in matrix forms. These matrices may have order ($\mathrm{n} \mathrm{x} m$) or ($\mathrm{m} x \mathrm{n}$) see [6], [1].

Table 1: Typical Game Matrix

Player P	Player Q Chooses					
		Q_{1}	Q_{2}	Q_{3}	\ldots	Q_{n}
	P_{1}	t 11	t 12	t 13	\ldots	t 1 n
	P_{2}	t 21	t 22	t 23	\ldots	t 2 n
	P_{3}	t 31	t 32	t 33	\ldots	t 3 n
	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
	P_{m}	tm 1	tm 2	tm 3	\ldots	tmn

In a continuous game, the choices of P and Q are continuous instead of discrete [2]. Therefore, there must be a continuous pay-off function $\mathrm{H}(\mathrm{P}, \mathrm{Q})$ instead of a pay-off matrix H_{ij} as illustrated in discrete games.

We look for a pair of choices

$$
\begin{equation*}
\mathrm{H}\left(\mathrm{P}^{\circ}, \mathrm{Q}\right) \leq \mathrm{G}\left(\mathrm{P}^{\circ}, \mathrm{Q}^{\circ}\right) \leq \mathrm{H}\left(\mathrm{P}, \mathrm{Q}^{\circ}\right) \text { for all } \mathrm{P}, \mathrm{Q} \tag{1}
\end{equation*}
$$

The necessary and sufficient conditions for $\mathrm{P}^{\circ}, \mathrm{Q}^{\circ}$ are

$$
\begin{equation*}
\partial \mathrm{H} / \partial \mathrm{P}=0, \partial \mathrm{H} / \partial \mathrm{Q}=0 \tag{2}
\end{equation*}
$$

If condition (2) does not satisfy, then we apply the following condition (3)

$$
\begin{equation*}
\partial^{2} \mathrm{H} / \partial \mathrm{P}^{2} \geq 0, \partial^{2} \mathrm{H} / \partial \mathrm{Q}^{2} \leq 0 \tag{3}
\end{equation*}
$$

When any $\mathrm{P}^{\circ}, \mathrm{Q}^{\circ}$ fulfill the sufficient conditions, it is said to be the game-theoretic saddle point [7], [5].

MINMAX (MAXMIN) Principle

In game theory, minmax is a decision making rule used to minimize the worst-case potential loss. In each competition, players are interested to optimize their self-interest. As each game has its own conflicts, and moreover the lack of information regarding the specific strategies selected by the opponent player(s), optimality for the outcome of the game has to be based on conservative principles [1], [7]. Due to the huge importance of maxmin (minmax) rule which is used for the optimal strategies of the opponents in this paper, we define this rule as follows.
Consider a two-player game as illustrated in Table 2:
Table 2: (3×3) Discrete Game Matrix

Player X	Player Z			
		Z_{1}	Z_{2}	Z_{3}
	X_{1}	$\mathrm{E}_{12}=6$	$\mathrm{E}_{12}=1$	$\mathrm{E}_{13}=7$
	X_{2}	$\mathrm{E}_{21}=4$	$\mathrm{E}_{22}=3$	$\mathrm{E}_{23}=5$
	X_{3}	$\mathrm{E}_{31}=5$	$\mathrm{E}_{32}=1$	$\mathrm{E}_{33}=-2$

If Player X (the maximizer), selects his first plan $\left(\mathrm{X}_{1}\right)$ he could get 6,1 , or 7 depending on the strategy selected by player Z .

Thus, player X is guaranteed to gain at least $1=\min (6,1,7)$ if he selects strategy X_{1} regardless of the strategy preferred by player Z .

In the same way, X is sure to gain as a minimum

$$
\begin{aligned}
3 & =\min (4,3,5) \text { for } X_{2} \text { strategy selection } \\
-2 & =\min (5,1,-2) \text { for } X_{3} \text { strategy selection }
\end{aligned}
$$

Consequently, for player X to maximize his gain regardless the strategies of Z , he has to maximize his minimum gain i.e.

$$
3=\max (1,3,-2)
$$

Similarly, if player Z chooses strategy Z_{1} he loses 6,4 or 5 depending on the strategy selected by player X.
As a result, player Z loses no more than

$$
\begin{aligned}
& 6=\max (6,4,5) \text { for } Z_{1} \text { strategy } \\
& 3=\max (1,3,1) \text { for } Z_{2} \text { strategy } \\
& 7=\max (7,5,-2) \text { for } Z_{3} \text { strategy }
\end{aligned}
$$

Thus for player Z to reduce his loss, regardless of player X , he has to minimize his utmost losses by selecting $\min (6,3,7)=3$

It is the minmax value of the game for player Z .
Hence:

$$
\begin{array}{cc}
\operatorname{maxmin} \mathrm{H}_{\mathrm{ij}} & =3 \\
\mathrm{Z} \mathrm{X} & \mathrm{X} \mathrm{Z} \\
(\mathrm{X} \text { plays first) } & \mathrm{H}_{\mathrm{ij}} \\
(\mathrm{Z} \text { plays first) }
\end{array}
$$

Methodology

Game theory is to be used for solving problems in a condition of variance and contention involving two or more challengers. The mode at this time is the thought of opposes in terms of varieties in a particular feasibility situation.
We present three different varieties for sale V_{1}, V_{2} and V_{3} having different quantities in three different localities: locality 1 , locality 2 and locality 3 of a city, respectively $[4,6]$.

If we agree to a feasibility investigation regarding the situation that 45% of the people of the city close to locality $1,35 \%$ of the population of the city lives near locality 2 , and the remaining 20% of the population of the city lives near locality 3 .
In locality 1 , approximately 30% of the people like variety $1,50 \%$ of the people like variety 2 and 20% like variety 3 .
In locality 2 , approximately 80% of the people like variety $1,15 \%$ of the people like variety 2 and 5% of the people like variety 3 .
In locality 3 , approximately 20% of the people like variety $1,20 \%$ of the people like variety 2 and 60% of the people like variety 3 .
Out of the three different localities L_{1}, L_{2}, and L_{3}, we will compare two of them for the three varieties V_{1}, V_{2}, and V_{3} by rules of matrices. Firstly, we compare L_{1} and L_{2}, then L_{2} and L_{3}, and then L_{3} and L_{1}. Here we use the principle of the game theory in order to find the best possible outcomes for the three localities by assuming that the varieties contain no other competitors in the metropolitan. The pay-off matrix to the game is given in the following table as:

Table 3 (3×3 matrix) Game illustration

L1	L 2			
		$\mathrm{~b}_{1=\mathrm{V} 1}$	$\mathrm{~b}_{2=\mathrm{V} 2}$	$\mathrm{~b}_{3}=\mathrm{V} 3$
	$\mathrm{a}_{1=\mathrm{V} 1}$	$\mathrm{~F}_{11}$	$\mathrm{~F}_{12}$	$\mathrm{~F}_{13}$
	$\mathrm{a}_{2=\mathrm{V} 2}$	$\mathrm{~F}_{21}$	$\mathrm{~F}_{22}$	$\mathrm{~F}_{23}$
	$\mathrm{a}_{3=\mathrm{V} 3}$	$\mathrm{~F}_{31}$	$\mathrm{~F}_{32}$	$\mathrm{~F}_{33}$

Here we use the notations L_{1}, L_{2} and L_{3} for locality 1 , locality 2 and locality 3 respectively. Similarly, we use V_{1} for variety $1, V_{2}$ for variety 2 and V_{3} for variety 3 respectively.

The function $F_{i j}$ represents the percentage business in L_{1} if it is located for locality i and L_{2} for locality j. Similar reasoning applies for L_{2} and L_{3}, and for L_{3} and L_{1} respectively.

The elements F_{11}, F_{22} and F_{33} correspond to the cases where V_{1}, V_{2} and V_{3} are located in the same locality. In the following decision making competition, we will have to check which variety has more profit in a particular locality.

I. Competition for profit between $L_{1} \boldsymbol{\&} L_{2}$

If the same variety V_{1} is located in L_{1} and L_{2}, then V_{1} gets 30% of the business of $L_{1}(45 \%$ of the population) and 80% of L_{2} (35% of the population) which gives a total of:
$\mathrm{G}_{11}=30(0.45)+80(0.35)=41.5 \%$
Now V_{1} gets 30% of L_{1} (45% population) and V_{2} gets 15% of L_{2} (35% population) $\mathrm{G}_{12}=30(0.45)+15(0.35)=18.75 \%$
Now V_{1} gets 30% of $L_{1}\left(45 \%\right.$ population) and V_{3} gets 5% of L_{2} (35% population)

$$
\mathrm{G}_{13}=30(0.45)+5(0.35)=15.25 \%
$$

Now V_{2} gets 50% of L_{1} (45% population) and V_{1} gets 80% of L_{2} (35% population)

$$
\mathrm{G}_{21} 50(0.45)+80(0.35)=50.5 \%
$$

Now V_{2} gets 50% of L_{1} (45% population) and V_{2} gets 15% of L_{2} (35% population)

$$
\mathrm{G}_{22}=50(0.45)+15(0.35)=27.75 \%
$$

Now V_{2} gets 50% of $L_{1}\left(45 \%\right.$ population) and V_{3} gets 5% of $L_{2}(35 \%$ population)

$$
\mathrm{G}_{23}=50(0.45)+5(0.35)=24.25 \%
$$

Now V_{3} gets 20% of L_{1} (45% population) and V_{1} gets 80% of $L_{2}(35 \%$ population) $\mathrm{G}_{31}=20(0.45)+80(0.35)=37 \%$
Now V_{3} gets 20% of L_{1} (45% population) and V_{2} gets 15% of $\mathrm{L}_{2}(35 \%$ population) $\mathrm{G}_{32}=20(0.45)+15(0.35)=14.25 \%$
Now V_{3} gets 20% of L_{1} (45% population) and V_{3} gets 5% of L_{2} (35% population) $\mathrm{G}_{33}=20(0.45)+5(0.35)=10.75 \%$
Now G_{ij} can be written in matrix form and we will use the minmax and maxmin rule in order to get the desired results.

Table 4 (3×3 Matrices) Game representation

L_{1}	$\mathrm{~L}_{2}$			
		$\mathrm{~b}_{1=\mathrm{V} 1}$	$\mathrm{~b}_{2=\mathrm{V} 2}$	$\mathrm{~b}_{3=\mathrm{V} 3}$
	$\mathrm{a}_{1=\mathrm{V} 1}$	$\mathrm{G}_{11=41.5}$	$\mathrm{G}_{12=18.75}$	$\mathrm{G}_{13=15.25}$
	$\mathrm{a}_{2=\mathrm{V} 2}$	$\mathrm{G}_{21=50.5}$	$\mathrm{G}_{22=27.75}$	$\mathrm{G}_{23=24.25}$
	$\mathrm{a}_{3=\mathrm{V} 3}$	$\mathrm{G}_{31=37}$	$\mathrm{G}_{32=14.25}$	$\mathrm{G}_{33=10.75}$

$\min (41.5,18.75,15.25)=15.25$
$\min (50.5,27.75,24.25)=24.25$
$\min (37,14.25,10.75)=10.75$
$\max (15.25,24.2510 .75)=24.25$
By the said rules, we get 24.25% pay-off for V_{2} in L_{1} and for V_{3} in L_{2}, which gives a saddle point of 24.25\%.

II. Competition for profit between $L_{2} \& L_{3}$

If V_{1} is located in L_{2} and L_{3}, where V_{1} attains 80% of the business of $L_{2}(35 \%$ of the population) and V_{1} gets 20% of L_{3} (20% of the population) which gives a total pay-off:

$$
\mathrm{H}_{11}=80(0.35)+20(0.20)=32 \%
$$

If V_{1} gets 80% of L_{2} (35% population) and V_{2} gets 20% of L_{3} (20% population),

$$
\mathrm{H}_{12}=80(0.35)+20(0.20)=32 \%
$$

If V_{1} gets 80% of L_{2} (35% population) and V_{3} gets 60% of L_{3} (20% population),

$$
\mathrm{H}_{13}=80(0.35)+60(0.20)=40 \%
$$

If V_{2} gets 15% of L_{2} (35% population) and V_{1} gets 20% of L_{3} (20% population),

$$
\mathrm{H}_{21}=15(0.35)+20(0.20)=9.25 \%
$$

If V_{2} gets 15% of L_{2} (35% population) and V_{2} gets 20% of L_{3} (20% population),

$$
\mathrm{H}_{22}=15(0.35)+20(0.20)=9.25 \%
$$

If V_{2} gets 15% of L_{2} (35\% population) and V_{3} gets 60% of L_{3} (20% population),

$$
\mathrm{H}_{23}=15(0.35)+60(0.20)=17.25 \%
$$

If V_{3} gets 5% of L_{2} (35% population) and V_{1} gets 20% of L_{3} (20% population),

$$
\mathrm{H}_{31}=5(0.35)+20(0.20)=5.75 \%
$$

If V_{3} gets 5% of L_{2} (35% population) and V_{2} gets 20% of L_{3} (20% population),

$$
\mathrm{H}_{32}=5(0.35)+20(0.20)=5.75 \%
$$

If V_{3} gets 5% of L_{2} (35% population) and V_{3} gets 60% of $\mathrm{L}_{2}(20 \%$ population), $\mathrm{H}_{33}=5(0.35)+60(0.20)=13.75 \%$
Now H_{ij} can be written in matrix form and use the minmax and maxmin rule in order to get the desired results.

Table 5 (3×3 Matrices) Game representation

L_{2}	$\mathrm{~L}_{3}$			
		$\mathrm{c}_{1}=\mathrm{V} 1$	$\mathrm{c}_{2}=\mathrm{V} 2$	$\mathrm{c}_{3}=\mathrm{V} 3$
	$\mathrm{~b}_{1=\mathrm{V} 1}$	$\mathrm{H}_{11=32}$	$\mathrm{H}_{12=32}$	$\mathrm{H}_{13}=40$
	$\mathrm{~b}_{2=\mathrm{V} 2}$	$\mathrm{H}_{21=9.25}$	$\mathrm{H}_{22=9.25}$	$\mathrm{H}_{23=17.25}$
	$\mathrm{~b}_{3=\mathrm{V} 3}$	$\mathrm{H}_{31=5.75}$	$\mathrm{H}_{32=5.75}$	$\mathrm{H}_{33=13.75}$

$\min (32,32,40)=32$
$\min (9.25,9.25,17.25)=9.25$
$\min (5.75,5.75,13.75)=5.75$
$\max (32,9.25,5.75)=32$
Saddle point of L_{2} and L_{3} is 32
By minmax and maxmin rules, we get 32% pay-off for V_{1} in L_{2} and for V_{2} in L_{3}.

III. Competition for profit between $L_{3} \& L_{1}$

If V_{1} is located in L_{3} and L_{1}, where V_{1} gets 20% of the business of $L_{3}\left(20 \%\right.$ of the population) and V_{1} gets 50% of L_{1} (45% of the population) which gives a total pay-off:

$$
\mathrm{I}_{11=} 20(0.20)+30(0.45)=17.5 \%
$$

If V_{1} gets 20% of L_{3} (20% population) and V_{2} gets 50% of L_{1} (45% population), then

$$
\mathrm{I}_{12}=20(0.20)+50(0.45)=26.5 \%
$$

If V_{1} gets 20% of L_{3} (20% population) and V_{3} gets 20% of $L_{1}(45 \%$ population), then $\mathrm{I}_{13}=20(0.20)+20(0.45)=13 \%$
If V_{2} gets 20% of L_{3} (20% population) and V_{1} gets 30% of L_{1} (45% population), then

$$
\mathrm{I}_{21}=20(0.20)+30(0.45)=17.5 \%
$$

If V_{2} gets 20% of $L_{3}\left(20 \%\right.$ population) and V_{2} gets 50% of L_{1} (45% population), then

$$
\mathrm{I}_{22}=20(0.20)+50(0.45)=26.5 \%
$$

If V_{2} gets 20% of $L_{3}\left(20 \%\right.$ population) and V_{3} gets 20% of L_{1} (45% population), then $\mathrm{I}_{23}=20(0.20)+20(0.45)=13 \%$
If V_{3} gets 60% of $L_{3}\left(20 \%\right.$ population) and V_{1} gets 30% of L_{1} (45% population), then $\mathrm{I}_{31}=60(0.20)+30(0.45)=25.5 \%$
If V_{3} gets 60% of L_{3} (20% population) and V_{2} gets 50% of L_{1} (45% population), then $\mathrm{I}_{32}=60(0.20)+50(0.45)=37.5 \%$
If V3 gets 60% of L_{3} (20% population) and V_{3} gets 20% of L_{1} (45% population), then $\mathrm{I}_{33}=60(0.20)+20(0.45)=21 \%$
Now I_{ij} can be written in matrix form and use the minmax and maxmin rule in order to get the desired results.

Table 6 (3×3 Matrices) Game representation

L_{3}	$\mathrm{~L}_{1}$			
		$\mathrm{a}_{1=\mathrm{V} 1}$	$\mathrm{a}_{2=\mathrm{V} 2}$	$\mathrm{a}_{3=\mathrm{V} 3}$
	$\mathrm{c}_{1=\mathrm{V} 1}$	$\mathrm{I}_{11=17.5}$	$\mathrm{I}_{12=26.5}$	$\mathrm{I}_{13=13}$
	$\mathrm{c}_{2=\mathrm{V} 2}$	$\mathrm{I}_{21=17.5}$	$\mathrm{I}_{22=26.5}$	$\mathrm{I}_{23=13}$
	$\mathrm{c}_{3=\mathrm{V} 3}$	$\mathrm{I}_{31=25.5}$	$\mathrm{I}_{32=37.5}$	$\mathrm{I}_{33=21}$

$\min (17.5,26.5,13)=13$
$\min (17.5,26.5,13)=13$
$\min (25.5,37.5,21)=21$
$\max (13,13,21)=21$
Saddle Point of $L_{3} \& L_{1}$ is 21 .
By minmax and maxmin rules, we get 21\% payoff for V3 in L_{3} and for V_{3} in L_{1}

Conclusion:

From the above analysis, we conclude that the better optimal strategy for variety V_{3} is to locate its branch in locality $L_{3}(24.5 \%)$ than in $L_{1}(21 \%)$ where it gains 3.5% more profit. The same strategy for V_{2} is to locate its branch in $L_{2}(32 \%)$ rather than in $L_{3}(24.5 \%)$, where it gets 8.5% more business.

If we launch both varieties V_{2} and V_{3} in L_{3}, then variety $V_{2}(32 \%)$ will get 8.5% more business than variety $V_{3}(24.5 \%)$. Similarly, if we launch both varieties $\left(V_{1} \& V_{3}\right)$ in L_{1}, then variety $V_{2}(32 \%)$ will get 11% more than variety $\mathrm{V}_{1}(21 \%)$.

From the last paragraph, we conclude that variety V_{1} takes place of the business of variety V_{3}. Moreover, it will get 11% additional business as well (variety V_{3} will have less business).

Thus, the optimal strategy is to launch variety V_{3} in localities L_{1} and L_{3}, and variety V_{2} in locality L_{2}.

References:

1. Rao S. S., Optimization Theory and Application, Second Edition, Willey Eastern Limited, 1984.
2. Shehu D. M, Optimal Analysis and Application of Discrete Games in Decision Making Environment, In proceedings of SSCE Conference, Minna, Nigeria, 2006
3. Jack M., Introduction to Optimal Control, MIR Publishers, Moscow, 1977.
4. Raifla L. Games and Decisions, Princeton University Press, N.J., 1957.
5. Straffin Philips D., Game Theory and Strategy, MIT Press Cambridge, 1993.
6. Emilio O. R, Modern Optimal Control, Books/Cole Publishing Company, California, 1989
7. Hanson Y., Applied Optimal Control, Wiley-Inter Science, New York, 1969.
