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GROUPS OF OPERATORS IN ℂ 2   DETERMINED  BY SOME 

COSINE OPERATOR FUNCTIONS IN ℂ 2  

 

RAMIZ VUGDALIĆ 

Department of Mathematics, University of Tuzla, Bosnia and Herzegovina 

 

ABSTRACT. In this paper we obtain all the groups of linear and bounded operators in ℂ 2  over the field ℂ of 

complex numbers, determined by some concretely cosine operator functions in ℂ 2 . 

 

2010 Mathematics Subject Classification. 47D03, 47D09. 

Key words and phrases. Group of linear and bounded operators, cosine operator function, matrix of an operator in 

Banach space ℂ 2 . 

 

1. INTRODUCTION AND SOME PRELIMINARIES 
 

Many mathematicians have investigated the theory of semigroups and groups of linear and 
bounded operators in Banach space, or the theory of cosine operator functions in Banach space. 
For examples, see some of the references below. There exists a close correlation  between the 
group of linear and bounded operators and the cosine operator function in the same Banach 
space.  

 

Definition 1.  The one-parameter family of linear and bounded operators ttT (  )( ℝ) defined 
from a Banach space X  into X , which satisfies IT =)0( , the identity operator on X , and 

)()()( sTtTstT =+  on X , for every st  , ℝ  is called the group of linear operators on X . 

 

Definition 2.  The one-parameter family of linear and bounded operators )(tC t( ℝ   defined 
from a Banach space X  into X , which satisfies IC =)0( , the identity operator on X , and 

)()(2)()( sCtCstCstC =−++  on X , for every st  , ℝ, is called the cosine operator function 
on X . 
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If in Definition 1 we have also xxtTs
t

=−
→

)(lim
0

 for every Xx , then ttT (  )( ℝ) is called 

strongly continuous or −0C group of linear operators on X .  Here lim−s  denotes the limit in 
strong operator topology in Banach space X . Analogously, if in Definition 2 we have also 

xxtCs
t

=−
→

)(lim
0

 for every Xx , then ttC (  )( ℝ) is called strongly continuous or −0C  

cosine operator function on X . The group of operators ttT (  )( ℝ) is the solution of the 
abstract Cauchy problem ITtATtT == )0(  ),()( . Here A  is a linear and closed operator 
defined as an infinitesimal generator of ttT (  )( ℝ) as follows: The domain of A  is the set  







 −
=

→
exists )(lim :)(

0 h
xxhTXxAD

h
, and for every )(ADx , 

h
xxhTAx

h

−
=

→

)(lim:
0

. 

Obviously, it holds )0(TA =  on )(AD . The cosine operator function ttC (  )( ℝ) is the 
solution of the abstract Cauchy problem 0)0( ,)0(  ),()( === CICtACtC . Here A  is a linear 
and closed operator defined as an infinitesimal generator of ttC (  )( ℝ) as follows: The domain 
of A  is the set  

( )






 −
=

→
exists )(2lim :)( 20 h

xxhCXxAD
h

, 

and for every )(ADx , 
( )

20

)(2lim:
h

xxhCAx
h

−
=

→
. 

Obviously, it holds )0(CA =  on )(AD . If A  is the infinitesimal generator of the cosine 
operator function ttC (  )( ℝ), then the square root of A  is the infinitesimal generator of group 

)( )(:)( tSAtCtT +=  t( ℝ). Operator A  is a linear and closed operator which satisfies

( ) AA =
2

, and )(tS  t( ℝ) is an associated sine operator function on X defined as 

=
t

duuCtS
0

)()(  t( ℝ). On the other hand, if operator A  is the infinitesimal generator of group 

)(tT t( ℝ), then  )()(
2
1:)( tTtTtC −+=  is a cosine operator function with infinitesimal 

generator 2A .  
       Every cosine operator function generates more groups of linear and bounded operators. We 
illustrate this in particular for the following cosine operator functions in ℂ 2 , 
 









=

at
at

tC
cos0

0cos
)(1   and 








=

at
at

tC
cosh0

0cosh
)(2  t( ℝ) a( ℝ; )0a  

 

 

 

 

Ramiz Vugdalić



65

2. RESULTS 
 

In this main section, by using the relation )( )()( tSAtCtT +=  t( ℝ), we want to obtain all 

the groups of linear operators in ℂ 2  from the appropriate cosine operator functions defined in 
ℂ 2 .  Every linear operator in ℂ 2  can be identified by using the matrix of that operator. We 

cannot always use the relation above. For example, 











= 1

2

01
)( 2ttC  t( ℝ) is a cosine operator 

function on 2C  with infinitesimal generator 







==

01
00

)0(CA . However, this matrix has no 

square root, so we cannot construct the group )( )()( tSAtCtT +=  t( ℝ). By using the group 









=

1
01

)(
t

tT  t( ℝ), we can obtain the cosine operator function 

  ItTtTtC =







=−+=

10
01

)()(
2
1)(  t( ℝ), and this is a trivial example of a cosine operator 

function on ℂ 2 . Also, ItT )(  is a trivial example of the group of linear operators on ℂ 2 .     

        Now, consider the following cosine operator functions in ℂ 2 : 









=

at
at

tC
cos0

0cos
)(1   and 








=

at
at

tC
cosh0

0cosh
)(2  t( ℝ) a( ℝ; )0a  

Their infinitesimal generators are  










−
−

== 2

2

11 0
0

)0(
a

a
CA   and  








== 2

2

22 0
0

)0(
a

a
CA . 

Now, we need to calculate all the square roots of these operators. 

 

Lemma 1.  All the square roots of 








−
−

= 2

2

1 0
0
a

a
A   a( ℝ; )0a have one of the forms: 












ai

ai
0

0
,  












− 0

0
2

B
a

B
 B( ℂ; )0B ,  













−
−− A

B
Aa

BA
22 , BA,( ℂ; )0, BA  












aiC

ai


0
C( ℂ)    and    











ai

Bai
0

 B( ℂ). 
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Proof.  Let 







==

DC
BA

AM 1 . From 








−
−

=







=

2

22
2

0
0

 
a

a
DC
BA

M  we obtain the system 

of equations:  

(4)            
(3)               0)(
(2)               0)(
(1)            

22

22

aBCD
DAC
DAB

aBCA

−=+

=+
=+
−=+

From (1) and (4) we conclude that 22 AD =

a) If we assume 0= AD , then from (2) and (3) we have 0== CB . Therefore,

aiAD == , i.e. 










=

ai
ai

M
0

0
. 

b) If 0== AD , then, from 2aBC −= , we have 











−= 0

0
2

B
a

B
M  B( ℂ; )0B . 

c) For 0−= AD  we get 22 AaBC −−= . Then, 













−
−−= A

B
Aa

BA
M 22   BA,( ℂ; )0, BA . 

d) If 0−= AD , 0=B  or 0=C , we get 












=

aiC
ai

M


0
 C( ℂ)   or  











=

ai
Bai

M
0

B( ℂ)  .  ■ 

 
 

Lemma 2.  All the square roots of 







= 2

2

2 0
0
a

a
A  a( ℝ; )0a  have one of the forms: 












a

a
0

0
,    













0

0
2

B
a

B
 B( ℂ; )0B ,   













−
− A
B

Aa
BA

22  BA,( ℂ; )0, BA , 









aC

a


0
 C( ℂ)    and    








a

Ba
0

 B( ℂ). 

 

Proof.  Let 







==

DC
BA

AM 2 . From 







=








= 2

22
2

0
0

 
a

a
DC
BA

M  we obtain the system of 

equations:  
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)(4'              
)(3'               0)(
)(2'               0)(
)(1'              

22

22

aBCD
DAC
DAB

aBCA

=+

=+
=+
=+

From (1') and (4') we conclude that 22 AD =

a) If we assume 0= AD , then from (2') and (3') we have 0== CB . Therefore,

aAD == , i.e. 










=

a
a

M
0

0
. 

b) If 0== AD , then, from 2aBC = , we have 











= 0

0
2

B
a

B
M  B( ℂ; )0B . 

c) For 0−= AD  we get 22 AaBC −= . Then, 













−
−= A
B

Aa
BA

M 22   BA,( ℂ; )0, BA . 

d) If 0−= AD , 0=B  or 0=C , we get 









=

aC
a

M


0
C( ℂ)  or  








=

a
Ba

M
0

B( ℂ).  ■ 

 
 

Theorem 1.  All the groups )(tT  t( ℝ) of linear and bounded operators in ℂ 2  determined by 
cosine operator function  









=

at
at

tC
cos0

0cos
)(  t( ℝ) a( ℝ; )0a  

 have one of the forms:  













ati

ati

e
e

0
0

,     
















− atat
B
a

at
a
Bat

cossin

sincos
B( ℂ; )0B , 

















−
−−

+

at
a
Aatat

aB
Aa

at
a
Bat

a
Aat

sincossin

sinsincos
22 BA,( ℂ; )0, BA , 
















ati

ati

eat
a
C

e
sin
0

C( ℂ)   and   


















ati

ati

e

at
a
Be

0

sin  B( ℂ). 
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Proof.  We use the square roots obtained in Lemma 1. Also, we use the formula 
)( )()( tSAtCtT +=  t( ℝ) and obtain: 

a)  







=



















+








=





ati

ati

e
e

at
at

aai
ai

at
at

tT
0

0
sin0

0sin1
0

0
cos0

0cos
)( . 

b)  
















−=




















−+








=

atat
B
a

at
a
Bat

at
at

aB
a

B

at
at

tT
cossin

sincos

sin0
0sin1

0

0

cos0
0cos

)( 2  

    B( ℂ; )0B . Specially, in ℝ 2 , for aB = , this group is the group of rotations. 

c)     




















−
−−+








=

at
at

aA
B

Aa
BA

at
at

tT
sin0

0sin1
cos0

0cos
)( 22  

                
















−
−−

+
=

at
a
Aatat

aB
Aa

at
a
Bat

a
Aat

sincossin

sinsincos
22  BA,( ℂ; )0, BA . 

d)  











=



















+








= 



ati

ati

eat
a
C

e

at
at

aaiC
ai

at
at

tT 
 sin

0

sin0
0sin10

cos0
0cos

)(  C( ℂ)   

  and 













=




















+








=





ati

ati

e

at
a
Be

at
at

aai
Bai

at
at

tT
 0

sin
sin0

0sin1
0cos0

0cos
)( B( ℂ). 

It is easy to prove that in all cases it holds IT =)0(  and )()()( sTtTstT =+  for all st,  ℝ. ■ 

 

Note that 







=

at
at

tC
cos0

0cos
)(  can be obtained now in all cases as  )()(

2
1)( tTtTtC −+=

t( ℝ). 

 

Theorem 2.  All the groups )(tT  t( ℝ) of linear and bounded operators in ℂ 2  determined by 
cosine operator function  
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=

at
at

tC
cosh0

0cosh
)(  t( ℝ) a( ℝ; )0a   

have one of the forms:   













at

at

e
e
0

0
,    

















atat
B
a

at
a
Bat

coshsinh

sinhcosh
 B( ℂ; )0B , 

















−
−

+

at
a
Aatat

aB
Aa

at
a
Bat

a
Aat

sinhcoshsinh

sinhsinhcosh
22 BA,( ℂ; )0, BA , 











 

at

at

eat
a
C

e
sinh
0

C( ℂ)  and   












 

at

at

e

at
a
Be

0

sinh
B( ℂ). 

 

Proof.  We use the square roots obtained in Lemma 2. Also, we use the formula 
)( )()( tSAtCtT +=  t( ℝ) and obtain: 

a)  







=



















+








=





at

at

e
e

at
at

aa
a

at
at

tT
0

0
sinh0

0sinh1
0

0
cosh0

0cosh
)( . 

b) 
















=




















+








=

atat
B
a

at
a
Bat

at
at

aB
a

B

at
at

tT
coshsinh

sinhcosh

sinh0
0sinh1

0

0

cosh0
0cosh

)( 2     

   B( ℂ; )0B . 

c)     




















−
−+








=

at
at

aA
B

Aa
BA

at
at

tT
sinh0

0sinh1
cosh0

0cosh
)( 22  

                 
















−
−

+
=

at
a
Aatat

aB
Aa

at
a
Bat

a
Aat

sinhcoshsinh

sinhsinhcosh
22  BA,( ℂ; )0, BA . 

d)  











=
















+








=



at

at

eat
a
C

e

at
at

aaC
a

at
at

tT 
 sinh

0

sinh0
0sinh10

cosh0
0cosh

)(  C( ℂ) 
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 and 













=
















+








=



at

at

e

at
a
Be

at
at

aa
Ba

at
at

tT
 0

sinh
sinh0

0sinh1
0cosh0

0cosh
)( B( ℂ). 

It is easy to prove that in all cases it holds IT =)0(  and )()()( sTtTstT =+  for all st, ℝ.■  

 

Note that 







=

at
at

tC
cosh0

0cosh
)(  can be obtained now in all cases as  )()(

2
1)( tTtTtC −+=  

t( ℝ). 
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