GOCE DELCEV UNIVERSITY - STIP FACULTY OF COMPUTER SCIENCE

ISSN 2545-4803 on line

BALKAN JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS (BJAMI)

GOCE DELCEV UNIVERSITY - STIP, REPUBLIC OF NORTH MACEDONIA FACULTY OF COMPUTER SCIENCE

BALKAN JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

(BJAMI)

AIMS AND SCOPE:

BJAMI publishes original research articles in the areas of applied mathematics and informatics.

Topics:

1. Computer science;
2. Computer and software engineering;
3. Information technology;
4. Computer security;
5. Electrical engineering;
6. Telecommunication;
7. Mathematics and its applications;
8. Articles of interdisciplinary of computer and information sciences with education, economics, environmental, health, and engineering.

Managing editor
 Biljana Zlatanovska Ph.D.

Editor in chief

Zoran Zdravev Ph.D.

Lectoure
 Snezana Kirova

Technical editor
 Slave Dimitrov

Address of the editorial office
Goce Delcev University - Stip
Faculty of philology
Krste Misirkov 10-A
PO box 201, 2000 Štip,
Republic of North Macedonia

EDITORIAL BOARD

Adelina Plamenova Aleksieva-Petrova, Technical University - Sofia,
Faculty of Computer Systems and Control, Sofia, Bulgaria
Lyudmila Stoyanova, Technical University - Sofia , Faculty of computer systems and control, Department - Programming and computer technologies, Bulgaria Zlatko Georgiev Varbanov, Department of Mathematics and Informatics, Veliko Tarnovo University, Bulgaria
Snezana Scepanovic, Faculty for Information Technology,
University "Mediterranean", Podgorica, Montenegro
Daniela Veleva Minkovska, Faculty of Computer Systems and Technologies, Technical University, Sofia, Bulgaria
Stefka Hristova Bouyuklieva, Department of Algebra and Geometry, Faculty of Mathematics and Informatics, Veliko Tarnovo University, Bulgaria
Vesselin Velichkov, University of Luxembourg, Faculty of Sciences, Technology and Communication (FSTC), Luxembourg
Isabel Maria Baltazar Simões de Carvalho, Instituto Superior Técnico, Technical University of Lisbon, Portugal
Predrag S. Stanimirović, University of Niš, Faculty of Sciences and Mathematics, Department of Mathematics and Informatics, Niš, Serbia
Shcherbacov Victor, Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, Moldova
Pedro Ricardo Morais Inácio, Department of Computer Science, Universidade da Beira Interior, Portugal
Sanja Panovska, GFZ German Research Centre for Geosciences, Germany Georgi Tuparov, Technical University of Sofia Bulgaria
Dijana Karuovic, Tehnical Faculty "Mihajlo Pupin", Zrenjanin, Serbia Ivanka Georgieva, South-West University, Blagoevgrad, Bulgaria
Georgi Stojanov, Computer Science, Mathematics, and Environmental Science Department The American University of Paris, France
Iliya Guerguiev Bouyukliev, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria
Riste Škrekovski, FAMNIT, University of Primorska, Koper, Slovenia
Stela Zhelezova, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria
Katerina Taskova, Computational Biology and Data Mining Group,
Faculty of Biology, Johannes Gutenberg-Universität Mainz (JGU), Mainz, Germany. Dragana Glušac, Tehnical Faculty "Mihajlo Pupin", Zrenjanin, Serbia
Cveta Martinovska-Bande, Faculty of Computer Science, UGD, Republic of North Macedonia
Blagoj Delipetrov, Faculty of Computer Science, UGD, Republic of North Macedonia Zoran Zdravev, Faculty of Computer Science, UGD, Republic of North Macedonia Aleksandra Mileva, Faculty of Computer Science, UGD, Republic of North Macedonia Igor Stojanovik, Faculty of Computer Science, UGD, Republic of North Macedonia Saso Koceski, Faculty of Computer Science, UGD, Republic of North Macedonia Natasa Koceska, Faculty of Computer Science, UGD, Republic of North Macedonia Aleksandar Krstev, Faculty of Computer Science, UGD, Republic of North Macedonia Biljana Zlatanovska, Faculty of Computer Science, UGD, Republic of North Macedonia Natasa Stojkovik, Faculty of Computer Science, UGD, Republic of North Macedonia Done Stojanov, Faculty of Computer Science, UGD, Republic of North Macedonia
Limonka Koceva Lazarova, Faculty of Computer Science, UGD, Republic of North Macedonia
Tatjana Atanasova Pacemska, Faculty of Electrical Engineering, UGD, Republic of North Macedonia

CONTENT

DISTANCE BASED TOPOLOGICAL INDICES ON MULTIWALL CARBON NANOTUBES SAMPLES OBTAINED BY ELECTROLYSIS IN MOLTEN SALTS 7
Beti Andonovic, Vesna Andova, Tatjana Atanasova Pacemska, Perica Paunovic, Viktor Andonovic, Jasmina Djordjevic and Aleksandar T. Dimitrov
CALCULATION FOR PHASE ANGLE AT RL CIRCUIT SUPPLIED WITH SQUARE VOLTAGE PULSE 13
Goce Stefanov, Vasilija Sarac, Maja Kukuseva Paneva
APPLICATION OF THE FOUR-COLOR THEOREM FOR COLORING A CITY MAP 25
Natasha Stojkovikj, Mirjana Kocaleva, Cveta Martinovska Bande, Aleksandra Stojanova and Biljana Zlatanovska
DECISION MAKING FOR THE OPTIMUM PROFIT BY USING THE PRINCIPLE OF GAME THEORY 37
Shakoor Muhammad, Nekmat Ullah, Muhammad Tahir, Noor Zeb Khan
EIGENVALUES AND EIGENVECTORS OF A BUILDING MODEL AS A ONE-DIMENSIONAL ELEMENT 43
Mirjana Kocaleva and Vlado Gicev
EXAMPLES OF GROUP $\exp (\mathrm{t} \quad \mathrm{A}),(\mathrm{t} \in \mathrm{R})$ OF 2×2 REAL MATRICES IN CASE MATRIX A DEPENDS ON SOME REAL PARAMETERS
Ramiz Vugdalic 55
GROUPS OF OPERATORS IN C² DETERMINED BY SOME COSINE OPERATOR FUNCTIONS IN C² 63
Ramiz Vugdalić
COMPARISON OF CLUSTERING ALGORITHMS FOR THYROID DATABASE 73Anastasija Samardziska and Cveta Martinovska Bande
MEASUREMENT AND VISUALIZATION OF ANALOG SIGNALS WITH A MICROCOMPUTER CONNECTION 85
Goce Stefanov, Vasilija Sarac, Biljana Chitkusheva Dimitrovska
GAUSSIAN METHOD FOR COMPUTING THE EARTH'S MAGNETIC FIELD 95
Blagica Doneva

GROUPS OF OPERATORS IN \mathbb{C}^{2} DETERMINED BY SOME COSINE OPERATOR FUNCTIONS IN \mathbb{C}^{2}

RAMIZ VUGDALIĆ
Department of Mathematics, University of Tuzla, Bosnia and Herzegovina

Abstract

In this paper we obtain all the groups of linear and bounded operators in \mathbb{C}^{2} over the field \mathbb{C} of complex numbers, determined by some concretely cosine operator functions in \mathbb{C}^{2}.

2010 Mathematics Subject Classification. 47D03, 47D09.
Key words and phrases. Group of linear and bounded operators, cosine operator function, matrix of an operator in Banach space \mathbb{C}^{2}.

1. INTRODUCTION AND SOME PRELIMINARIES

Many mathematicians have investigated the theory of semigroups and groups of linear and bounded operators in Banach space, or the theory of cosine operator functions in Banach space. For examples, see some of the references below. There exists a close correlation between the group of linear and bounded operators and the cosine operator function in the same Banach space.

Definition 1. The one-parameter family of linear and bounded operators $T(t)(t \in \mathbb{R})$ defined from a Banach space X into X, which satisfies $T(0)=I$, the identity operator on X, and $T(t+s)=T(t) T(s)$ on X, for every $t, s \in \mathbb{R}$ is called the group of linear operators on X.

Definition 2. The one-parameter family of linear and bounded operators $C(t)(t \in \mathbb{R})$ defined from a Banach space X into X, which satisfies $C(0)=I$, the identity operator on X, and $C(t+s)+C(t-s)=2 C(t) C(s)$ on X, for every $t, s \in \mathbb{R}$, is called the cosine operator function on X.

If in Definition 1 we have also $s-\lim _{t \rightarrow 0} T(t) x=x$ for every $x \in X$, then $T(t)(t \in \mathbb{R})$ is called strongly continuous or C_{0} - group of linear operators on X. Here s - lim denotes the limit in strong operator topology in Banach space X. Analogously, if in Definition 2 we have also $s-\lim _{t \rightarrow 0} C(t) x=x$ for every $x \in X$, then $C(t)(t \in \mathbb{R})$ is called strongly continuous or $C_{0}-$ cosine operator function on X. The group of operators $T(t)(t \in \mathbb{R})$ is the solution of the abstract Cauchy problem $T^{\prime}(t)=A T(t), T(0)=I$. Here A is a linear and closed operator defined as an infinitesimal generator of $T(t)(t \in \mathbb{R})$ as follows: The domain of A is the set

$$
D(A)=\left\{x \in X: \lim _{h \rightarrow 0} \frac{T(h) x-x}{h} \text { exists }\right\}, \text { and for every } x \in D(A), A x:=\lim _{h \rightarrow 0} \frac{T(h) x-x}{h}
$$

Obviously, it holds $A=T^{\prime}(0)$ on $D(A)$. The cosine operator function $C(t)(t \in \mathbb{R})$ is the solution of the abstract Cauchy problem $C^{\prime \prime}(t)=A C(t), C(0)=I, C^{\prime}(0)=0$. Here A is a linear and closed operator defined as an infinitesimal generator of $C(t)(t \in \mathbb{R})$ as follows: The domain of A is the set

$$
D(A)=\left\{x \in X: \lim _{h \rightarrow 0} \frac{2(C(h) x-x)}{h^{2}} \text { exists }\right\},
$$

and for every $x \in D(A)$,

$$
A x:=\lim _{h \rightarrow 0} \frac{2(C(h) x-x)}{h^{2}}
$$

Obviously, it holds $A=C^{\prime \prime}(0)$ on $D(A)$. If A is the infinitesimal generator of the cosine operator function $C(t)(t \in \mathbb{R})$, then the square root of A is the infinitesimal generator of group $T(t):=C(t)+\sqrt{A} S(t) \quad(t \in \mathbb{R})$. Operator \sqrt{A} is a linear and closed operator which satisfies $(\sqrt{A})^{2}=A$, and $S(t) \quad(t \in \mathbb{R})$ is an associated sine operator function on X defined as $S(t)=\int_{0}^{t} C(u) d u(t \in \mathbb{R})$. On the other hand, if operator A is the infinitesimal generator of group $T(t)(t \in \mathbb{R})$, then $C(t):=\frac{1}{2}[T(t)+T(-t)]$ is a cosine operator function with infinitesimal generator A^{2}.

Every cosine operator function generates more groups of linear and bounded operators. We illustrate this in particular for the following cosine operator functions in \mathbb{C}^{2},

$$
C_{1}(t)=\left[\begin{array}{cc}
\cos a t & 0 \\
0 & \cos a t
\end{array}\right] \text { and } C_{2}(t)=\left[\begin{array}{cc}
\cosh a t & 0 \\
0 & \cosh a t
\end{array}\right](t \in \mathbb{R})(a \in \mathbb{R} ; a \neq 0)
$$

2. RESULTS

In this main section, by using the relation $T(t)=C(t)+\sqrt{A} S(t)(t \in \mathbb{R})$, we want to obtain all the groups of linear operators in \mathbb{C}^{2} from the appropriate cosine operator functions defined in \mathbb{C}^{2}. Every linear operator in \mathbb{C}^{2} can be identified by using the matrix of that operator. We cannot always use the relation above. For example, $C(t)=\left[\begin{array}{cc}1 & 0 \\ \frac{t^{2}}{2} & 1\end{array}\right](t \in \mathbb{R})$ is a cosine operator function on C^{2} with infinitesimal generator $A=C^{\prime \prime}(0)=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$. However, this matrix has no square root, so we cannot construct the group $T(t)=C(t)+\sqrt{A} S(t)(t \in \mathbb{R})$. By using the group $T(t)=\left[\begin{array}{ll}1 & 0 \\ t & 1\end{array}\right] \quad(t \in \mathbb{R}), \quad$ we can obtain the cosine operator function $C(t)=\frac{1}{2}[T(t)+T(-t)]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I \quad(t \in \mathbb{R})$, and this is a trivial example of a cosine operator function on \mathbb{C}^{2}. Also, $T(t) \equiv I$ is a trivial example of the group of linear operators on \mathbb{C}^{2}.

Now, consider the following cosine operator functions in \mathbb{C}^{2} :

$$
C_{1}(t)=\left[\begin{array}{cc}
\cos a t & 0 \\
0 & \cos a t
\end{array}\right] \text { and } C_{2}(t)=\left[\begin{array}{cc}
\cosh a t & 0 \\
0 & \cosh a t
\end{array}\right](t \in \mathbb{R})(a \in \mathbb{R} ; a \neq 0)
$$

Their infinitesimal generators are

$$
A_{1}=C_{1}^{\prime \prime}(0)=\left[\begin{array}{cc}
-a^{2} & 0 \\
0 & -a^{2}
\end{array}\right] \text { and } A_{2}=C_{2}^{\prime \prime}(0)=\left[\begin{array}{cc}
a^{2} & 0 \\
0 & a^{2}
\end{array}\right] .
$$

Now, we need to calculate all the square roots of these operators.

Lemma 1. All the square roots of $A_{1}=\left[\begin{array}{cc}-a^{2} & 0 \\ 0 & -a^{2}\end{array}\right](a \in \mathbb{R} ; a \neq 0)$ have one of the forms:

$$
\begin{gathered}
{\left[\begin{array}{cc}
\pm i \cdot a & 0 \\
0 & \pm i \cdot a
\end{array}\right],\left[\begin{array}{cc}
0 & B \\
\frac{-a^{2}}{B} & 0
\end{array}\right](B \in \mathbb{C} ; B \neq 0),\left[\begin{array}{cc}
A & B \\
\frac{-a^{2}-A^{2}}{B} & -A
\end{array}\right],(A, B \in \mathbb{C} ; A, B \neq 0)} \\
{\left[\begin{array}{cc}
\pm i \cdot a & 0 \\
C & \mp i \cdot a
\end{array}\right](C \in \mathbb{C}) \text { and }\left[\begin{array}{cc}
\pm i \cdot a & B \\
0 & \mp i \cdot a
\end{array}\right](B \in \mathbb{C}) .}
\end{gathered}
$$

Proof. Let $M=\sqrt{A_{1}}=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$. From $M^{2}=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]^{2}=\left[\begin{array}{cc}-a^{2} & 0 \\ 0 & -a^{2}\end{array}\right]$ we obtain the system of equations:

$$
\begin{align*}
& A^{2}+B C=-a^{2} \tag{1}\\
& B(A+D)=0 \tag{2}\\
& C(A+D)=0 \tag{3}\\
& D^{2}+B C=-a^{2} \tag{4}
\end{align*}
$$

From (1) and (4) we conclude that $D^{2}=A^{2}$.
a) If we assume $D=A \neq 0$, then from (2) and (3) we have $B=C=0$. Therefore, $D=A= \pm i \cdot a$, i.e. $M=\left[\begin{array}{cc} \pm i \cdot a & 0 \\ 0 & \pm i \cdot a\end{array}\right]$.
b) If $D=A=0$, then, from $B C=-a^{2}$, we have $M=\left[\begin{array}{cc}0 & B \\ \frac{-a^{2}}{B} & 0\end{array}\right] \quad(B \in \mathbb{C} ; B \neq 0)$.
c) For $D=-A \neq 0$ we get $B C=-a^{2}-A^{2}$. Then,

$$
M=\left[\begin{array}{cc}
A & B \\
\frac{-a^{2}-A^{2}}{B} & -A
\end{array}\right] \quad(A, B \in \mathbb{C} ; A, B \neq 0)
$$

d) If $D=-A \neq 0, B=0$ or $C=0$, we get

$$
M=\left[\begin{array}{cc}
\pm i \cdot a & 0 \\
C & \mp i \cdot a
\end{array}\right](C \in \mathbb{C}) \quad \text { or } M=\left[\begin{array}{cc}
\pm i \cdot a & B \\
0 & \mp i \cdot a
\end{array}\right](B \in \mathbb{C})
$$

Lemma 2. All the square roots of $A_{2}=\left[\begin{array}{cc}a^{2} & 0 \\ 0 & a^{2}\end{array}\right](a \in \mathbb{R} ; a \neq 0)$ have one of the forms:

$$
\begin{aligned}
{\left[\begin{array}{cc}
\pm a & 0 \\
0 & \pm a
\end{array}\right], } & {\left[\begin{array}{cc}
0 & B \\
\frac{a^{2}}{B} & 0
\end{array}\right](B \in \mathbb{C} ; B \neq 0),\left[\begin{array}{cc}
A & B \\
\frac{a^{2}-A^{2}}{B} & -A
\end{array}\right](A, B \in \mathbb{C} ; A, B \neq 0) } \\
& {\left[\begin{array}{cc}
\pm a & 0 \\
C & \mp a
\end{array}\right](C \in \mathbb{C}) \text { and }\left[\begin{array}{cc}
\pm a & B \\
0 & \mp a
\end{array}\right](B \in \mathbb{C}) }
\end{aligned}
$$

Proof. Let $M=\sqrt{A_{2}}=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$. From $M^{2}=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]^{2}=\left[\begin{array}{cc}a^{2} & 0 \\ 0 & a^{2}\end{array}\right]$ we obtain the system of equations:

$$
\begin{align*}
& A^{2}+B C=a^{2} \tag{1'}\\
& B(A+D)=0 \tag{2'}\\
& C(A+D)=0 \tag{3'}\\
& D^{2}+B C=a^{2} \tag{4'}
\end{align*}
$$

From (1^{\prime}) and (4^{\prime}) we conclude that $D^{2}=A^{2}$.
a) If we assume $D=A \neq 0$, then from (2') and (3') we have $B=C=0$. Therefore, $D=A= \pm a$, i.e. $M=\left[\begin{array}{cc} \pm a & 0 \\ 0 & \pm a\end{array}\right]$.
b) If $D=A=0$, then, from $B C=a^{2}$, we have $M=\left[\begin{array}{cc}0 & B \\ \frac{a^{2}}{B} & 0\end{array}\right] \quad(B \in \mathbb{C} ; B \neq 0)$.
c) For $D=-A \neq 0$ we get $B C=a^{2}-A^{2}$. Then,

$$
M=\left[\begin{array}{cc}
A & B \\
\frac{a^{2}-A^{2}}{B} & -A
\end{array}\right] \quad(A, B \in \mathbb{C} ; A, B \neq 0) .
$$

d) If $D=-A \neq 0, B=0$ or $C=0$, we get

$$
M=\left[\begin{array}{cc}
\pm a & 0 \\
C & \mp a
\end{array}\right](C \in \mathbb{C}) \text { or } M=\left[\begin{array}{cc}
\pm a & B \\
0 & \mp a
\end{array}\right] \quad(B \in \mathbb{C}) .
$$

Theorem 1. All the groups $T(t)(t \in \mathbb{R})$ of linear and bounded operators in \mathbb{C}^{2} determined by cosine operator function

$$
C(t)=\left[\begin{array}{cc}
\cos a t & 0 \\
0 & \cos a t
\end{array}\right](t \in \mathbb{R})(a \in \mathbb{R} ; a \neq 0)
$$

have one of the forms:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
e^{ \pm i \cdot a t} & 0 \\
0 & e^{ \pm i a t}
\end{array}\right],\left[\begin{array}{cc}
\cos a t & \frac{B}{a} \sin a t \\
\frac{-a}{B} \sin a t & \cos a t
\end{array}\right](B \in \mathbb{C} ; B \neq 0),} \\
& {\left[\begin{array}{cc}
\cos a t+\frac{A}{a} \sin a t & \frac{B}{a} \sin a t \\
\frac{-a^{2}-A^{2}}{a B} \sin a t & \cos a t-\frac{A}{a} \sin a t
\end{array}\right](A, B \in \mathbb{C} ; A, B \neq 0),} \\
& {\left[\begin{array}{cc}
e^{ \pm i a t} & 0 \\
\frac{C}{a} \sin a t & e^{\mp i a t}
\end{array}\right](C \in \mathbb{C}) \text { and }\left[\begin{array}{cc}
e^{ \pm i a t} & \frac{B}{a} \sin a t \\
0 & e^{\mp i \cdot a t}
\end{array}\right](B \in \mathbb{C}) .}
\end{aligned}
$$

Proof. We use the square roots obtained in Lemma 1. Also, we use the formula $T(t)=C(t)+\sqrt{A} S(t) \quad(t \in \mathbb{R})$ and obtain:
a) $T(t)=\left[\begin{array}{cc}\cos a t & 0 \\ 0 & \cos a t\end{array}\right]+\left[\begin{array}{cc} \pm i \cdot a & 0 \\ 0 & \pm i \cdot a\end{array}\right] \cdot \frac{1}{a}\left[\begin{array}{cc}\sin a t & 0 \\ 0 & \sin a t\end{array}\right]=\left[\begin{array}{cc}e^{ \pm i \cdot a t} & 0 \\ 0 & e^{ \pm i a t}\end{array}\right]$.
b) $T(t)=\left[\begin{array}{cc}\cos a t & 0 \\ 0 & \cos a t\end{array}\right]+\left[\begin{array}{cc}0 & B \\ \frac{-a^{2}}{B} & 0\end{array}\right] \cdot \frac{1}{a}\left[\begin{array}{cc}\sin a t & 0 \\ 0 & \sin a t\end{array}\right]=\left[\begin{array}{cc}\cos a t & \frac{B}{a} \sin a t \\ \frac{-a}{B} \sin a t & \cos a t\end{array}\right]$
$(B \in \mathbb{C} ; B \neq 0)$. Specially, in \mathbb{R}^{2}, for $B= \pm a$, this group is the group of rotations.
c) $\quad T(t)=\left[\begin{array}{cc}\cos a t & 0 \\ 0 & \cos a t\end{array}\right]+\left[\begin{array}{cc}A & B \\ \frac{-a^{2}-A^{2}}{B} & -A\end{array}\right] \cdot \frac{1}{a}\left[\begin{array}{cc}\sin a t & 0 \\ 0 & \sin a t\end{array}\right]$

$$
=\left[\begin{array}{cc}
\cos a t+\frac{A}{a} \sin a t & \frac{B}{a} \sin a t \\
\frac{-a^{2}-A^{2}}{a B} \sin a t & \cos a t-\frac{A}{a} \sin a t
\end{array}\right] \quad(A, B \in \mathbb{C} ; A, B \neq 0) .
$$

d) $T(t)=\left[\begin{array}{cc}\cos a t & 0 \\ 0 & \cos a t\end{array}\right]+\left[\begin{array}{cc} \pm i \cdot a & 0 \\ C & \mp i \cdot a\end{array}\right] \cdot \frac{1}{a}\left[\begin{array}{cc}\sin a t & 0 \\ 0 & \sin a t\end{array}\right]=\left[\begin{array}{cc}e^{ \pm i \cdot a t} & 0 \\ \frac{C}{a} \sin a t & e^{\mp i a t}\end{array}\right] \quad(C \in \mathbb{C})$ and $T(t)=\left[\begin{array}{cc}\cos a t & 0 \\ 0 & \cos a t\end{array}\right]+\left[\begin{array}{cc} \pm i \cdot a & B \\ 0 & \mp i \cdot a\end{array}\right] \cdot \frac{1}{a}\left[\begin{array}{cc}\sin a t & 0 \\ 0 & \sin a t\end{array}\right]=\left[\begin{array}{cc}e^{ \pm i a t} & \frac{B}{a} \sin a t \\ 0 & e^{\mp i \cdot a t}\end{array}\right] \quad(B \in \mathbb{C})$.

It is easy to prove that in all cases it holds $T(0)=I$ and $T(t+s)=T(t) T(s)$ for all $t, s \in \mathbb{R}$.

Note that $C(t)=\left[\begin{array}{cc}\cos a t & 0 \\ 0 & \cos a t\end{array}\right]$ can be obtained now in all cases as $C(t)=\frac{1}{2}[T(t)+T(-t)]$ $(t \in \mathbb{R})$.

Theorem 2. All the groups $T(t)(t \in \mathbb{R})$ of linear and bounded operators in \mathbb{C}^{2} determined by cosine operator function

$$
C(t)=\left[\begin{array}{cc}
\cosh a t & 0 \\
0 & \cosh a t
\end{array}\right](t \in \mathbb{R})(a \in \mathbb{R} ; a \neq 0)
$$

have one of the forms:

$$
\begin{gathered}
{\left[\begin{array}{cc}
e^{ \pm a t} & 0 \\
0 & e^{ \pm a t}
\end{array}\right],\left[\begin{array}{cc}
\cosh a t & \frac{B}{a} \sinh a t \\
\frac{a}{B} \sinh a t & \cosh a t
\end{array}\right](B \in \mathbb{C} ; B \neq 0),} \\
{\left[\begin{array}{cc}
\cosh a t+\frac{A}{a} \sinh a t & \frac{B}{a} \sinh a t \\
\frac{a^{2}-A^{2}}{a B} \sinh a t & \cosh a t-\frac{A}{a} \sinh a t
\end{array}\right](A, B \in \mathbb{C} ; A, B \neq 0),} \\
{\left[\begin{array}{cc}
e^{ \pm a t} & 0 \\
\frac{C}{a} \sinh a t & e^{\mp a t}
\end{array}\right](C \in \mathbb{C}) \text { and }\left[\begin{array}{cc}
e^{ \pm a t} & \frac{B}{a} \sinh a t \\
0 & e^{\mp a t}
\end{array}\right](B \in \mathbb{C}) .}
\end{gathered}
$$

Proof. We use the square roots obtained in Lemma 2. Also, we use the formula $T(t)=C(t)+\sqrt{A} S(t)(t \in \mathbb{R})$ and obtain:
a) $T(t)=\left[\begin{array}{cc}\cosh a t & 0 \\ 0 & \cosh a t\end{array}\right]+\left[\begin{array}{cc} \pm a & 0 \\ 0 & \pm a\end{array}\right] \cdot \frac{1}{a}\left[\begin{array}{cc}\sinh a t & 0 \\ 0 & \sinh a t\end{array}\right]=\left[\begin{array}{cc}e^{ \pm a t} & 0 \\ 0 & e^{ \pm a t}\end{array}\right]$.
b) $T(t)=\left[\begin{array}{cc}\cosh a t & 0 \\ 0 & \cosh a t\end{array}\right]+\left[\begin{array}{cc}0 & B \\ \frac{a^{2}}{B} & 0\end{array}\right] \cdot \frac{1}{a}\left[\begin{array}{cc}\sinh a t & 0 \\ 0 & \sinh a t\end{array}\right]=\left[\begin{array}{cc}\cosh a t & \frac{B}{a} \sinh a t \\ \frac{a}{B} \sinh a t & \cosh a t\end{array}\right]$ $(B \in \mathbb{C} ; B \neq 0)$.
c) $\quad T(t)=\left[\begin{array}{cc}\cosh a t & 0 \\ 0 & \cosh a t\end{array}\right]+\left[\begin{array}{cc}A & B \\ \frac{a^{2}-A^{2}}{B} & -A\end{array}\right] \cdot \frac{1}{a}\left[\begin{array}{cc}\sinh a t & 0 \\ 0 & \sinh a t\end{array}\right]$

$$
=\left[\begin{array}{cc}
\cosh a t+\frac{A}{a} \sinh a t & \frac{B}{a} \sinh a t \\
\frac{a^{2}-A^{2}}{a B} \sinh \text { at } & \cosh a t-\frac{A}{a} \sinh a t
\end{array}\right] \quad(A, B \in \mathbb{C} ; A, B \neq 0) .
$$

d) $T(t)=\left[\begin{array}{cc}\cosh a t & 0 \\ 0 & \cosh a t\end{array}\right]+\left[\begin{array}{cc} \pm a & 0 \\ C & \mp a\end{array}\right] \cdot \frac{1}{a}\left[\begin{array}{cc}\sinh a t & 0 \\ 0 & \sinh a t\end{array}\right]=\left[\begin{array}{cc}e^{ \pm a t} & 0 \\ \frac{C}{a} \sinh a t & e^{\mp a t}\end{array}\right] \quad(C \in \mathbb{C})$
and $T(t)=\left[\begin{array}{cc}\cosh a t & 0 \\ 0 & \cosh a t\end{array}\right]+\left[\begin{array}{cc} \pm a & B \\ 0 & \mp a\end{array}\right] \cdot \frac{1}{a}\left[\begin{array}{cc}\sinh a t & 0 \\ 0 & \sinh a t\end{array}\right]=\left[\begin{array}{cc}e^{ \pm a t} & \frac{B}{a} \sinh a t \\ 0 & e^{\mp a t}\end{array}\right] \quad(B \in \mathbb{C})$.
It is easy to prove that in all cases it holds $T(0)=I$ and $T(t+s)=T(t) T(s)$ for all $t, s \in \mathbb{R}$.

Note that $C(t)=\left[\begin{array}{cc}\cosh a t & 0 \\ 0 & \cosh a t\end{array}\right]$ can be obtained now in all cases as $C(t)=\frac{1}{2}[T(t)+T(-t)]$ ($t \in \mathbb{R}$).

REFERENCES

[1] W. Arendt, Resolvent positive operators and integrated semigroups, Semesterbericht Functional-analysis, Univ. Tuebingen (1984), 73-101.
[2] P. L. Butzer, H. Berens, Semi-Groups of Operators and Approximation, Springer-Verlag Berlin, 1967.
[3] H. O. Fattorini, Ordinary differential equations in linear topological spaces I, J. Differential Eq. 5 (1968), 72-105.
[4] E. Hille, R. S. Phillips, Functional analysis and Semigroups, Amer. Math. Soc. Providence, Rhode Island, 1957.
[5] S. Kurepa, A cosine functional equation in Banach algebras, Acta Scientiarum Mathemati carim (Szeged) 23 (1962), 255-267.
[6] M. Mijatović, F. Vajzović, S. Pilipović, α-times integrated semigroups, Journal of Mathematical analysis and applications 210, 790-803 (1997).
[7] F. Neubrander, Integrated semigroups and their applications to the abstract Cauchy problem, Pac. J. Math., 135 (1998), 111-155.
[8] A. Pazy, Semigroups of Linear Operators and Applications to Partial Diferential Equations, Springer, New York, 1983.
[9] S. Piskarev and S. Y. Shaw, On certain operator families related to cosine operator func tions, Taiwanese Journal of Mathematics, vol. 1 (1997), no. 4, 527-546.
[10] M. Radić, F. Vajzović, On the cosine operator function, Glasnik Matematički, Zagreb, Vol. 22. (42), 381-406 (1987).
[11] M. Sova, Cosine operator functions, Rozprawy Mathematyczne 49 (1966), 1-47.
[12] F. Vajzović, R, Vugdalić, Two exponential formulas for α-times integrated semigroups $\left(\alpha \in R^{+}\right)$, Sarajevo J. Math., Vol. 1 (13), No. 1 (2005), 93-115.
[13] R. Vugdalić, Representation theorems for integrated semigroups, Sarajevo Journal of Mathematics, 1 (14), (2005), 243-250.
[14] R. Vugdalić, F. Vajzović, The method of stationary phase for once integrated group, Publications de'l Institut Matematique, Nouvelle serie, 79 (93) (2006), 73-93.
[15] R. Vugdalić, A formula for n-times integrated semigroups ($n \in N$), Sarajevo Journal of Mathematics, 4 (16), (2008), 125-132.
[16] R. Vugdalić, Integrated semigroups and once integrated group of rotation in the complex plane, Advances in Mathematics: Scientific Journal 5 (2016), no. 2, 123-129.
[17] R. Vugdalić, S. Halilović, A formula for n-times integrated C_{0} group of operators $(n \in N)$, Advances in Mathematics: Scientific Journal 5 (2016), no.2, 161-166.

