GEOLOGICA MACEDONICA
Published by: The "Goce Delčev" University, Faculty of Natural and Technical Sciences, Štip, Republic of Macedonia

ADVISORY BOARD
David Alderton (UK), Tadej Dolenec (R. Slovenia), Ivan Zagorchev (R. Bulgaria), acad. Stevan Karamata (Serbia), Dragoljub Stefanović (Serbia), Todor Serafimovski (R. Macedonia), Wolfgang Todt (Germany), acad. Nikolay S. Bortnikov (Russia), Clark Burchfiel (USA), Thierry Auge (France) and Vlado Bermanec (Croatia)

İZDАВАЧКИ СОВЕТ
Дејвид Олдертон (В. Британија), Таџеј Доленец (Р. Словенија), Иван Загорчев (Р. Бугарија), акад. Стефан Карамата (Србија), Драгољуб Стефановић (Србија), Тодор Серафимовски (Р. Македонија), Волфганг Тод (Германија), Николай С. Бортинков (Русија),克拉克·伯奇菲尔德 (САД), Thierry Auge (Франција) и Владо Берманец (Хрватска)

EDITORIAL BOARD
Editor in Chief
Prof. Todor Serafimovski, Ph. D.
Editor
Prof. Blažo Boev, Ph. D.
Members of the Editorial Board
Prof. Nikola Dumurdžanov, Ph. D.
Prof. Vančo Čifliganec, Ph. D.
Prof. Risto Stojanov, Ph. D.
Prof. Todor Delipetrov, Ph. D.

Language editor
Marijana Kroteva (English)
Georgi Georgievski, Ph. D. (Macedonian)

Technical editor
Blagoja Bogatinoski
Proof-reader
Alena Georgievska

Address
GEOLOGICA MACEDONICA
Faculty of Natural and Technical Sciences
P. O. Box 96
MK-2000 Štip, Republic of Macedonia
E-mail: todor.serafimovski@ugd.edu.mk

Published yearly
Printed by: P. O. Box 96
Price: 500 den.
The edition was published in December 2009

Photo on the Cover:
Artesian well, Medzitlija Village, Bitola, Republic of Macedonia,
СОДРЖИНА

Орце Спасовски
Хемиски и геохемиски карактеристики на главните минерали од наоѓалиштето Митрашинци (источна Македонија) ... 1–7

Тена Шијакова-Иванова, Блажо Боев, Зоран Панов, Дејан Павлов
Минералошко хемиски карактеристики на мермерот од наоѓалиштето Бела Пола .. 9–16

Горан Тасев, Тодор Серафимовски
REE во некои терциерни вулкански комплекси во Република Македонија 17–25

Милихате Алиу, Роберт, Шај, Трајче Стафилов
Дистрибуција на кадмиум во почвите во регионот на К. Митровица, Косово 27–34

Биљана Балабанова, Трајче Стафилов, Катерина Бачева, Роберт Шај
Загадување на воздухот со бакар во околината на рудникот и флотацијата за бакар „Бучим“, Република Македонија, со примена на биомониторинг со мовови и лишаи....... 35–41

Трајче Стафилов, Роберт Шајн, Блажо Боев, Јулијана Цветковиќ, Душко Мукаетов, Марјан Андреевски, Соња Лепиткова
Дистрибуција на кобалт во почвите во Кавадарци и неговата околина............................... 43–53

Настја Роган, Тодор Серафимовски, Горан Тасев, Тадеј Доленец, Матеј Доленец
Дистрибуција на Pb и Zn и нивната форма на изразители на ионските почви во Кочанското Поле (Македонија)... 55–62

Дељо Каракашев, Тена Шијакова-Иванова, Елизабета Каракашева, Зоран Панов
Стабилност на карпестите маси пробени со повеќекратно лизгање на површини 63–72

Војо Мирчовски, Александар Кекин, Орце Спасовски, Владо Мирчовски
Карсинот воедноносник на планината Галичица и можност за водоснабдување на Охрид со подземна вода ... 73–77

Упатство за авторите ... 79–80
TABLE OF CONTENTS

Orce Spasovski
Chemical and geochemical characteristics of the major minerals in the ore deposit Mitrašinci (Eastern Macedonia) ... 1–7

Tena Šijakova-Ivanova, Blažo Boev, Zoran Panov, Dejan Pavlov
Mineralogical and chemical characteristics of marble of Bela Pola deposite 9–15

Goran Tasev, Todor Serafimovski,
REE in some tertiary volcanic complexes in the Republic of Macedonia.................... 17–25

Milihate Aliu, Robert, Šajn, Trajče Stafilov
Distribution of cadmium in surface soils in K. Mitrovica region, Kosovo 27–34

Biljana Balabanova, Trajče Stafilov, Katerina Bačeva, Robert Šajn
Atmospheric pollution with copper around the copper mine and flotation, Bučim, Republic of Macedonia, using biomonitoring moss and lichen technique 35–41

Trajče Stafilov, Robert Šajn, Blažo Boev, Julijana Cvetković, Duško Mukaetov, Marjan Andreevski, Sonja Lepitkova
Distribution of cobalt in soil from Kavadarci and the environs .. 43–53

Nastja Rogan, Todor Serafimovski, Goran Tasev, Tadej Dolenec, Matej Dolenec
Distribution of Pb and Zn and their chemical speciations in the paddy soils from the Kočani field (Macedonia) ... 55–62

Deljo Karakašev, Tena Šijakova-Ivanova, Elizabeta Karakaševa, Zoran Panov
Stability analysis of rock wedges with multiple sliding surfaces 63–72

Vojo Mirčovski, Aleksandar Kekić, Orce Spasovski, Vlado Mirčovski
Karst aquifer in Mt Galicica and possibilities for water supply to Ohrid with ground water ... 73–77

Instructions to authors ... 79–80
ATMOSPHERIC POLLUTION WITH COPPER AROUND THE COPPER MINE AND FLOTATION, "BUČIM", REPUBLIC OF MACEDONIA, USING BIOMONITORING MOSS AND LICHEN TECHNIQUE

Biljana Balabanova¹, Trajče Stafilov², Katerina Bačeva², Robert Šajn³

Faculty of Agriculture, "Goce Delčev" University, POB 201, MK-2001, Štip, Republic of Macedonia
²Institute of Chemistry, Faculty of Science, Sts. Cyril and Methodius University in Skopje, POB 162, MK-1001 Skopje, Republic of Macedonia
³Geological Survey of Slovenia, Dimičeva ulica 14, 1000 Ljubljana, Slovenia

trajcest@pmf.ukim.mk

Abstract: This paper has studied the atmospheric pollution with copper due to copper mining and flotation "Bučim" near Radoviš, Republic of Macedonia. The copper ore and ore tailings continually are exposed to open air, which occurs winds carry out the fine particles in to atmosphere. Moss (Hyloconium splendens and Pleurozium schreberi) and lichen (Hypogymnia physodes and Parmelia sulcata) samples were used for biomonitoring the possible atmospheric pollution with copper in the mine vicinity. Moss and lichen samples were digested by using of microwave digestion system and copper was analyzed by atomic emission spectrometry with inductively coupled plasma (ICP-AES). The obtained values for the content of copper in moss and lichen samples were statistically processed using the nonparametric and parametric analysis. Maps of areal deposition of copper show an increase content of copper in the vicinity of mine, but long distance distribution of this element is not established yet.

Key words: air pollution; copper; copper mine; biomonitoring; Bučim; Macedonia

INTRODUCTION

Mine and flotation activities lead to large amounts of waste material (Salomons, 1995; Dudka et al., 1997). Most serious consequence in atmospheric terms is acid deposition, which removes other pollutants in contact within chemical reactions (Replay et al., 1996; Sengupta, 1993). Copper founds in environment as an essential element, but increase content lead to its toxicity (Flemming and Trevors, 1989).

Very useful technique for determining atmospheric pollution with copper and other heavy metals, in different geographical areas, has proved biomonitoring with different bioindicators (Buse et al., 2003; Stamnsof, 2002; Frontasyeva, 2004; Coşkun, 2005; Culikov, 2000; Ermakova, 2004; Harmens et al., 2008; Markert et al., 2003). Mosses and lichen despite of all disadvantages represent suitable bioindicators, due to their occurrence in almost all terrestrial ecosystems and ability to tolerate long periods of extreme environmental condition (Gjengedal and Steinnes, 1990; Aceto et al., 2003; Bargagli, et al., 2002; Loppi and Bonini, 2000). In addition, moss and lichen elemental content can be converted into atmospheric deposition values, provided metal uptake efficiency had been previously estimated in the species used as a bioindicators (Čeburnis et al., 1999; Wolterbeek, 2002).

In the Republic of Macedonia the first systematic study for atmospheric pollution with heavy metals using moss technique was undertaken in order to assess the general situation regarding heavy metal pollution and to jointly report these results to the European Atlas of Heavy Metal Atmospheric Deposition issued by UNECE ICP Vegetation (Barandovski et al., 2006, 2008). In the eastern part of the country the appearance of increase content of copper in air is related to a presence of copper mine and flotation “Bučim” near...
the city of Radoviš. In this area there has been determined also an influence from the former iron mine, Damjan (Serafimovski et al., 2005).

The Bučim mine is in operation from 1980 and process about 4 million tons of ore annually. The deposit is a porphyry copper type deposit and mineralization is related to Tertiary sub-volcanic intrusions of andesite and latite in a host of Pre-Cambrian gneisses and amphibolites (Serafimovski et al., 1995). The open ore body is approximately 500 m in diameter and 250 m in vertical extent, which actually allows direct exposure of ore particles to the atmosphere. The content of copper in ore is at on the average of 0.3 % Cu. Characteristic metallic minerals are chalcopyrite, pyrite, and bornite, with small amounts of galena, sphalerite, magnetite, hematite, and cubanite (Serafimovski et al., 1996; Alderton et al., 2005). Ore is concentrating by flotation on site and tailings are disposed to a dam in an adjacent valley near village Topolnica. Therefore, it was found that it is important to investigate the atmospheric pollution with copper due to copper mining and flotation “Bučim”. For that purpose, moss and lichen biomonitoring was applied. Moss and lichen samples were digested by using of microwave digestion system and copper was analyzed by atomic emission spectrometry with inductively coupled plasma (ICP-AES).

STUDY AREA

The study area is located in eastern part of the Republic of Macedonia (Fig. 1), with largeness of 20 km (W-E) × 20 km (S-N), total 400 km², which is limited with coordinates N: 41°32’ – 41°44’ and E: 22°15’ – 22°30’. The copper mine Bučim is located in the centre of the study area, concerning 10 km air line north-west from town Radoviš and 16 km air line south-east from town Štip. The region is characterized by moderate continental climate. Most frequent winds in the region are wind from west with frequency 199 ‰ and 2.7 m s⁻¹ speed wind from the east to the 124 ‰ frequency and 2.0 m s⁻¹ speed, which is important for the distribution of atmospheric dust with copper contained.
EXPERIMENTAL

Sampling

The collection of moss samples was performed according to the protocol adopted within the European Heavy Metal Survey. The networks for moss and lichen species collection are given in Figs. 2 and 3. In the study area the dominant moss species were *Hyloconium splendens* (Hedw.) and *Pleurozium schrebery* (Brid.). As dominant lichen species were *Hypogymnia physodes* (Nyl.) and *Parmelia sulcata* (Tayl.). Moss samples were collected at 52 localities, alongside with lichen species, collected at 50 localities in period of November 2008 to March 2009. The sampling protocol was in this order: one sampling spot is formed by collecting five sub-spots in area of 50 × 50 m². Every spot of sampling network was in a distance of minimum 300 m from main roads, 100 m from local roads, and 200 m from villages. Collected material was stored in paper bags and air dried. After drying the moss species were cleaned from other plant species and soil. In this way prepared, moss species were ready for digestion.

![Fig. 2. Moss sampling network](image1)

![Fig. 3. Lichen sampling network](image2)

Sample preparation

For digestion of moss and lichen samples microwave digestion system was applied. Precisely measured mass of samples (0.5 g) were placed in teflon digestion vessels, 5 ml concentrated nitric acid, HNO₃ and 2 ml hydrogen peroxide, H₂O₂ (30%, m V⁻¹) were added and the vessels were closed, tightened and placed in the rotor of a microwave digestion system (Mars, CEM, USA). The digestion was carried out with two steps program: 1 step (ramp) and 2 step (hold): temperature 180 °C, 5 min ramp time, with power of 500 W and 20 bar pressure. Finally the vessels were cooled, carefully opened, and digests quantitatively transferred to 25 ml calibrated flasks.

Reagents and standards

For this study reagents with analytical grade or better were used for preparation of all solutions: nitric acid, trace pure (Merck, Germany), hydrogen peroxide, p.a. (Merck, Germany), and redistilled water. Standard solutions of metals were prepared by dilution of 1000 mg l⁻¹ solutions (11355-ICP multi Element Standard).

Instrumentation

The content of copper in moss and lichen samples was analyzed by atomic emission spectrometer with inductively coupled plasma, ICP-AES (Varian, 715ES). The operating instrumental conditions are given in Table 1.
Table 1

Instrumentation and operating conditions for ICP-AES system

<table>
<thead>
<tr>
<th>RF generator</th>
<th>40.68 MHz free-running, air-cooled RF generator.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating frequency</td>
<td>700–1700 W in 50 W increments</td>
</tr>
<tr>
<td>Power output stability</td>
<td>Better than 0.1 %</td>
</tr>
</tbody>
</table>

Introduction area

- Sample nebulizer: V- groove
- Spray chamber: Double-pass cyclone
- Peristaltic pump: 0–50 rpm
- Plasma configuration: Radially viewed

Spectrometer

- Optical arrangement: Echelle optical design
- Polychromator: 400 mm focal length
- Echelle grating: 94.74 lines/mm
- Polychromator purge: 0.5 l min⁻¹
- Megapixel CCD detector: 1.12 million pixels
- Wavelength coverage: 177 nm to 785 nm
- Wavelength for Cu measurement: 324.754 nm

Conditions for program

<table>
<thead>
<tr>
<th>RFG power</th>
<th>1.0 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump speed</td>
<td>25 rpm</td>
</tr>
<tr>
<td>Plasma Ar flow rate</td>
<td>15 l min⁻¹</td>
</tr>
<tr>
<td>Stabilization time</td>
<td>30 s</td>
</tr>
<tr>
<td>Auxiliary Ar flow rate</td>
<td>1.5 l min⁻¹</td>
</tr>
<tr>
<td>Rinse time</td>
<td>30 s</td>
</tr>
<tr>
<td>Nebulizer Ar flow rate</td>
<td>0.75 l min⁻¹</td>
</tr>
<tr>
<td>Sample delay</td>
<td>30 s</td>
</tr>
<tr>
<td>Background correction</td>
<td>Fitted</td>
</tr>
<tr>
<td>Number of replicates</td>
<td>3</td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSION

The descriptive statistic of analyzed element is shown in Table 2. Normality tests were compared with histograms of distribution for the content of copper in moss and lichen samples, the normality was assumed on the bases of the logarithms of contents in moss and lichen samples. Median values for copper contents were compared with the median values for the same element for the entire territory of Republic of Macedonia.

Table 2

Descriptive statistic of measurements for Cu content in moss and lichen samples

<table>
<thead>
<tr>
<th>Biomonitor</th>
<th>n</th>
<th>Dis</th>
<th>Xₐ</th>
<th>Xₙ</th>
<th>Md</th>
<th>min</th>
<th>max</th>
<th>P₁₀</th>
<th>P₉₀</th>
<th>Var</th>
<th>s</th>
<th>CV</th>
<th>A</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moss</td>
<td>52</td>
<td>log</td>
<td>20.7</td>
<td>11.5</td>
<td>9.95</td>
<td>2.14</td>
<td>198</td>
<td>3.75</td>
<td>54.0</td>
<td>1141</td>
<td>33.8</td>
<td>163</td>
<td>3.69</td>
<td>15.6</td>
</tr>
<tr>
<td>Lichen</td>
<td>50</td>
<td>log</td>
<td>12.1</td>
<td>7.8</td>
<td>6.85</td>
<td>1.50</td>
<td>134</td>
<td>3.55</td>
<td>23.5</td>
<td>369</td>
<td>19.2</td>
<td>159</td>
<td>5.47</td>
<td>34.3</td>
</tr>
</tbody>
</table>

Dis – distribution (log – lognormal); Xₐ – arithmetical mean; Xₙ – geometrical mean; Md – median; min – minimum; max – maximum; P₁₀ – 10 percentile; P₉₀ – 90 percentile; Var – variance; s – standard deviation; CV – coefficient of variance; A – skewness; E – kurtosis

From descriptive statistic, median values for copper show deviation, compared with medians for this element for whole territory of Macedonia 22 mg kg⁻¹ for Cu (Barandovski et al., 2008), Table 3. Smaller median for Cu was not expected in this area, because of the influence of copper mine. However, the range of values shows much higher copper content in the moss and lichen samples.

Geologica Macedonica, 23, 35–41 (2009)
Table 3

<table>
<thead>
<tr>
<th>Biomonitor</th>
<th>Study area (present work)</th>
<th></th>
<th>Republic of Macedonia (Barandovski et al., 2008)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Whole area</td>
<td>Mine and flotation area</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>Range</td>
<td>Median</td>
</tr>
<tr>
<td>Moss</td>
<td>10</td>
<td>2.1–198</td>
<td>91.0</td>
</tr>
<tr>
<td>Lichen</td>
<td>7.0</td>
<td>1.5–134</td>
<td>24.5</td>
</tr>
</tbody>
</table>

The logarithmic values were used for normalization, because of the curved distribution, and the big difference of the median and arithmetical mean.

The obtained values for copper content in lichen, compared with appropriate values from moss samples, show lichen less uptake retention of copper (Table 3). This is probably because the particle absorption in lichen is influenced by acid precipitation which is characteristic for this study area, due to present acid mine drainage (Conti and Cecchetti, 2001; Pandey et al., 2007). Comparative analysis of median values for copper content in moss samples obtained from the present work with median values of copper content for whole territory of Republic of Macedonia (22 mg kg\(^{-1}\)), confirms that the atmospheric dust distribution is of short range (Table 3). Concerning the median value for copper content from moss samples collected near mine and flotation plant, it can be seen (Table 3) that the atmospheric pollution with copper is 4 times higher (91 mg kg\(^{-1}\)), in terms of median value for the country and for the whole study area (10 mg kg\(^{-1}\)). Distribution of copper in the study area was present using Google Earth program software. From the obtained maps (Figs. 4 and 5) it can be seen that the copper content in moss and lichen samples collected in the close vicinity of the mine are much higher than in the samples from the surrounding (more than 9 times). From the obtained results it can be concluded that the pollution of the atmosphere with copper is only present in the very close vicinity of the copper mine and flotation plant and flotation tailings deposit. Higher content of copper in moss and lichen samples was found near the villages Bučim and Topolnica, which could be assumed as most polluted settlements, from aspect of risk for human health.

Fig. 4. Map of areal deposition of copper from moss samples

Fig. 5. Map of areal deposition of copper from lichen samples
CONCLUSION

The mining and flotation plant activities, as well as the flotation tailings from Bucim mine, near Radoviš, Republic of Macedonia, was investigated by using moss and lichen biomonitoring. It was found that the copper content in moss and lichen samples collected in the close vicinity of the mine are much higher than in the samples from the surrounding (more than 9 times). The highest values for copper content in moss and lichen samples were found near the villages Bucim and Topolnica, because of appearance of adverse effects on human health and environment.

REFERENCES

Harmens, H., D. Noris (Eds.), 2008: Spatial and temporal trends in heavy metal accumulation in mosses in Europe (1990–2005); Programme Coordinating Centre for the ICP Vegetation, Centre for Ecology & Hydrology, Natural Environment Research Council, Bangor, UK.

Loppi, S., Binini, I., 2000: Lichens and mosses as biomonitors of trace elements in area with termal springs and fumarole-activity (Mt. Amiata, Central Italy), Chemosphere, 41, 1333–1336.

Стефановски, Ј., Јовчев, В., Геоволов, Е., Юрковска, Е., Юрков, А., Срентц, А., Вранков, З., Батов, И., Данов, К., Маринова, Е., Фронтасева, М.В., Павлов, С.С., Стрејковка, Л.П., 2002: Нов резултати од извршени изпитувања на атмосферското загадување в околината на рудникот "Бучим". Република Македонија, Со преимена на биомониторинг со мовови и лишаи.

Билиана Балабанова1, Трајче Стафилов2, Катерина Бачева3, Роберт Шајн4
1Земјоделски факултети, Универзитети „Гоце Делчев“, Ј., фах 201, MK-2000 Штип, Република Македонија
2Институт за хемија, Природно-математички факултети, Универзитети „Св. Кирил и Методиј“ во Скопје, Ј., фах 162, MK-1000 Скопје, Република Македонија
3Геолошки завод на Словенија, Димичева 14, 1000 Лубљана, Словенија
trajcest@pmf.ukim.mk

Ключни зборови: загадување на воздухот; бакар; рудник за бакар; биомониторинг; Бучим; Македонија

Во третото се претставени резултатите од извршените испитувања на атмосферското загадување во околината на рудникот и флотацијата за бакар „Бучим“ близу Радовиш, Република Македонија. Изложената на рудничката и флотацијата јавлина на воздух и влага доведува до појава на повисоки своди на бакар во околината. Во студијата е применет биомониторинг со мовови и лишаи, а определувањето на бакарот е вршено со примена на атомската емисион на спектрометрија со индуктивно спрегнат плазма. Целта на испитувањето е да се утврди област на загадувањето на воздухот со бакар, кој може да се очекува како резултат на активностите на рудникот и флотацијата. За таа цел се земени примероци од 52 локации, како и примероци лишаи од 50 локации во испитуваниот регион. Добиените резултати покажуваат значително високи вредности на сводата на бакар во примероците од мов и лишај земени од поблизуока околина на рудникот „Бучим“. Вредностите на медијаната за сводата на Су во примероците од област од 10 mg kg–1 се пониски од онаа за целата територија на Република Македонија (22 mg kg–1), што укажува на таа дека пошироки регион не е засегнат од работата на рудникот. Ако се споредат, пак, вредностите на медијаната за сводата на бакар во мововите земени во непосредна околина на рудникот и флотацијата со медијаната за бакар за Македонија, се добива фактор на зголемување од 5 пати (91 mg kg–1). Изработените карти на депозиција го потврдуваат фактот за влијанието на активностите на рудникот врз загадувањето на воздухот во близката околина на рудникот.