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ADbstract: Although wedge and plane sliding stability analyses are well established in the geotcchnical lit-
erature, certain geologic environments produce blocks which cannot be adequately modelled as either wedges or
plane slides. An example is blocks forming in cylindrically folded sedimentary rocks, where the surface of sliding is
neither a single plane nor a double plane but is curved. This type of block may be idealized as a prismatic block with
multiple sliding planes, all with parallel lines of intersection. If the sliding planes number three or more, the distribu-
tion of normal forces and hence the factor of safety is indeterminate. A new analytical model for sliding stability
analysis is described in which the distribution of normal forces on the contact planes is chosen to minimize the poten-
tial energy of the system. The classic wedge and plane solutions are shown to be special cases of this more general
model, which allows determination of the safely factor for any shape of prismatic contact surface. An example from
block part of Bregalnica river with a curved sliding surface is described and the factor of safety compared with the
standard wedge analysis. It is shown that with three or more contact planes, the safety factor may be significantly
lower than that calculated from the wedge model, which provides an upper limit on stability.

Key words: rock slope stability; wedge slides

INTRODUCTION

Stability analyses for wedge and plane fail-
ures are now well established in the geotechnical
literature. Some of the early work on the subject is
due to Londe et al. (1969,1970), John (1968), Wit-
tke (1965, 1990) and Goodman (1976, 1989). Other
developments and useful summaries are given by
Hoek and Bray (1981), Goodman and Shi (1985),
Giani (1992), Warburton (1993), Einstein (1993)
and Watts (1994), among others. The requirements
for / sliding may be summarized as follows. Plane
failures can occur when the strike of a discontinu-
ity plane such as bedding is approximately parallel
to the strike of the slope face and the weak plane
daylights in the free face at a dip angle greater than
the friction angle. Wedge failures can occur for a
block defined by two planes whose line of intersec-
tion daylights in the free face and plunges suffi-
ciently steeply that the destabilizing forces exceed
the shear resistance. Typical geometries for wedge
and plane failures are depicted in Fig. 1.

The important factors in the solution of stabi-
lity problems are the shear strength, dip and dip
direction of the discontinuity planes, the geometry
of the slope and the loading conditions.

Fig. 1. Typical geometries for rock slope translational failures:
(a) plane failure; (b) wedge failure

The system of forces governing plane slides is
statically determined and the frictional shear resis-
tance can be determined by resolution of forces.
Wedge slides are rendered statically determinate
by making an assumption about shear stresses in
the contact planes, namely that shear stresses van-
ish in the plane perpendicular to the potential slid-
ing direction. Although this assumption is rarely
discussed in the literature (Chan and Einstein,
1981), it is implicit in the classic wedge analysis
(e.g., Hoek and Bray, 1981). With the above-
mentioned assumption, and if strengths and water
pressures, etc., are known, the factor of safety for
plane and wedge slides can be obtained directly by
limiting equilibrium methods, either by direct cal-



64 D. Karakasev, T. §ijakova—1vanova, E. Karakaseva, Z. Panov

culation or by graphical methods based on stereo-
graphic projection. With three or more sliding
planes, however (e.g., Fig. 2), the distribution of
normal forces is statically indeterminate and the
net frictional resistance to sliding, and hence the
factor of safety, cannot be uniquely determined. In
this paper (see also Ureta, 1994; Mauldon and
Ureta, 1994, 1995) we describe an energy method
for determination of the factor of safety against
sliding failure for blocks with multiple sliding
planes that form a cylindrical surface. Such a block
is referred to as a prismatic block.

Fig. 2. Prismatic rock block with three contact planes;
coordinate system defined

PRISMATIC BLOCKS

A prismatic block is a rock block bounded by
n contact planes, where the lines of intersection of
the contact planes are all parallel. Fig. 2 shows a
special case of a prismatic block with three planes
of contact with the rock mass. Also, in Fig. 2, a
Cartesian coordinate system is defined with the X
axis parallel to the line of intersection (the poten-
tial sliding direction) and Y horizontal. The contact
planes of a prismatic block are cozonal (to use
crystallographic terminology, e.g., Bloss, 1961),
with zone axis parallel to the line of intersection,
so that the normals of the contact planes fall on a
great circle when plotted in stereographic projec-
tion (Fig. 3). As the number of planes (n) ap-
proaches infinity (n — o), the contact surface ap-

proaches a curved cylindrical shape. Thus a block
defined by cylindrically folded bedding or foliation
is a limiting case of a prismatic block. Plane and
wedge failures, with one and two contact planes,
and zero and one lines of intersection respectively,
are special cases of prismatic blocks.

Fig. 3. Stereographic projection showing geometry
of a prismatic block. Contact plane normals fall on a great
circle. The lines of intersection of contact planes are parallel
to the zone axis I

Statement of problem

As discussed above, if n <2 the distribution
of normal forces on the contact plane(s) is stati-
cally determinate. If n>3, however, the normal
forces on the planes of contact between a prismatic
block and the rock mass are statically indetermi-
nate and the stability conditions cannot be deter-
mined directly by limiting equilibrium methods. In
this paper we describe an energy method to deter-
mine the contact forces and to evaluate the factor
of safety against sliding of prismatic rock blocks as
a function of shear strength, block geometry, and
loading conditions. The block is assumed to be
supported at each face by a series of normal
springs, each with stiffness k; and each spring sub-
ject to a “no tension” condition. The magnitude of
the stiffness k; at each contact face is assumed to be
proportional to the planar contact area per unit
length. We assume an elastic, conservative system
to obtain the distribution of normal forces that
minimizes the potential energy of the system

Assumptions

The stability analysis is based on a simplified
model of rock mass geometry and strength, with
the following assumptions:

— Contact faces of the prismatic block are
planar.

— The displacement of the block is purely
translational.

— Frictional shear stresses act parallel to the
sliding direction only. Note that this assumption is
standard in limiting equilibrium analysis of plane
and wedge slides.

Geologica Macedonica, 23, 63—71 (2009)
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— The block is undeformable, except for elas-
tic contacts at the bounding faces.

— The block is acted on by an active resultant

R which includes self-weight, and may in addition
include hydraulic forces, seismic forces, or sup-
porting forces due to anchors or bolts. The effect of
moments is not considered in the analysis.

— The normal stiffness of each contact plane
is proportional to its surface area.

Analytical model

The total potential energy of a system consist-
ing of a prismatic rock block supported by n con-
tact planes is given by:

v=2Vi-W, (1)

where V; , is the elastic potential energy associated
with each discontinuity surface i = 1, 2,..., n, and
W, is the work done by the active forces acting on
the block. If self-weight is the only active force,
the work done by the active forces is the negative
of the change in gravitational potential energy. We
assume that the block itself is undeformable, but
that elastic deformation occurs at the contacts be-
tween the block and the rock mass. We assume that
the block-rock mass contacts behave like linear
springs, with stiffness proportional to surface area
and we establish a datum for the gravitational po-
tential energy such that the contact springs initially
have zero extension.

The first task will be to find the equilibrium
distribution of forces in the YZ plane (the plane
perpendicular to the potential sliding direction),
such that the total potential energy is a minimum.
We assume that the equilibrium position in the YZ
plane of the block results from a small translational
displacement of the block in the YZ plane (i.e.,
perpendicular to the sliding direction) under the
action of the active forces. Elastic strain energy in
the spring contacts is stored as a result of this dis-
placement. We denote this small displacement by a
vector s at an angle 6, and with magnitude s (see

Fig. 4). Then, for unit normal ’71 and stiffness k;

corresponding to each contact plane, the elastic
potential energy V; at each contact face is given by

V:1/2kl-(ﬁl~§)2 it (A;-5)>0
’ 0 it (7;-5)<0

<t

2)

Geologica Macedonica, 23, 63—71 (2009)

Fig. 4. Prismatic block in the YZ plane showing unit normal
vectors n;, normal component R, of active resultant
and displacement vector S

The latter condition means that we do not
admit tensile contact forces. In order to ensure no
tension, it is convenient to introduce an index set
A, denned for any displacement s by

A=(0)={i1h;5>0, =121 (3)

This index set 4 is a function of the angle of
displacement 6, and is essentially a list of contact
planes for which the block face maintains a posi-
tive normal contact force with the rock mass. Now
the potential energy of the system can be written as

V=>"1/2k(h;-5)* — Ry -5 4)
icA

where R, is the component of the active resultant
force acting in the plane perpendicular to the po-
tential sliding direction (Fig. 5). Expanding the
above, and noting that the n; are unit vectors, we
obtain,

V=>"1/2ks*cos*(6; —6,)~ Ry -5~ cos(b; —6,)
ieA

(5)

where Ry and s are magnitudes. In the above ex-

pression, 6. and 6. give the direction of each unit

normal 7; and the resultant force vector, respecti-

vely, measured clockwise from the positive Y axis.

Fig. 5. Normal and tangentional components
of active resultant
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Equilibrium condition

With the assumption of no rotation, the block
displacement in the YZ plane has two degrees of
freedom, 6, and 5. The equilibrium displacement is
one for what the total potential energy V of the sys-
tem is stationary. Thus, for equilibrium we have
the requirements:

Y o amd Lo ©)
00, 0os
where we note that, although the set A changes
with 6, the function V' is piecewise continuous.

Differentiating, we obtain,

oV 2 .

—= —k;)s“ cos(@, — 6:)sin(0, — 0: +

og, = Z ks’ eos@—O)sin6 ~0
+Rys-sin(f —6,.)=0

and

‘Z—Vz > k; -5 -cos® (0, — ;) —Ry cos(6; —6,) =0
S ied
(8)
Assuming for the present that the stiffness 4;
is known for each contact plane, we now have two
Equations (7 and 8), and two unknowns, 6, and s.
We let 6’: and s denote, respectively, the values

of 6, and s which satisfy Equations 7 and 8.

Then, solving for s , We obtain,

Ry sin(6; —6,)

*

s = 3k 3k
D k;sin(@; —6;)cos(6; — )
ied

)

and

. Rycos(d; —6,)
s = — (10)
ZieAki cos (es _91)

Equating Equations 9 and 10, we obtain,

Ry sin(6; —6,)
i ki sin(6; = 6;)cos(6; - 6;)
Ry cos(6; —6,)

3. Kicos(6; - 6,)

(11)

which simplifies to

Y. kisin(g - 6;)cos(6; —6)

> kicos®(6; —6)

tan(6; —6,) =

(12)

The value of 6’: which satisfies Equation 12

is the direction of the small displacement of the
block, perpendicular to the potential sliding direc-
tion, such that the potential energy of the system is
minimized. However, the equation includes the
unknown spring constants &;.

Spring constant k;

In the elastic model we assume that the spring
constant &; for each contact plane is proportional to
the contact area and therefore, due to the prismatic
shape, to the length L of a planar contact in the YZ
plane. This assumption is reasonable given the be-
haviour of springs in parallel: two parallel springs
each with a stiffness k yield an effective stiffness
of 2k. If the spring constants are replaced in Equa-
tion 12 by the product ¢, L;, where the constant ¢ is
the unknown constant of proportionality, and L, is
the length of plane i perpendicular to Ry we obtain
from which we obtain the value of 6,

D CLisin(d; —6;)cos(; —6;)
> jcLicos” (6 - 6)

tan(6, —6,) =

(13)

Since the ¢ is constant, it can be cancelled,
yielding

> CLisin(8; - 6;)cos(d - 6;)
>y Licos* (6 - 6))

tan(ﬁ: -6.)=

(14)

We then use a numerical routine to solve the
equation

3. cLisin(6; — 6,)cos(6; —6;)

—tan(6; —6,)=0
> Licos* (& - 6))

(15)

The data required for determination of 6’: are
the angles &, and lengths L;, of the n planes of

discontinuity and the direction of the resultant
force, 6, .

With 19: known, the magnitude of the dis-
placement, 5", for minimum potential energy can

Geologica Macedonica, 23, 63—71 (2009)
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be obtained by substituting the value of 0: into
Equation 9 or 10. For example, replacing k;, by (¢)

(L;) in Equation 10, we have,
cos(d; —6,)

* Ry
_ 3
¢ > Licos (6, -6)

s (16)

Distribution of normal forces

The magnitude of the normal force for each
discontinuous surface due to the small displace-
ment, s is computed as:

~ % ~ %
N;=ki(n; -5 )=cLi(n;-5") (17)
or
N; =cs L;cos(6; —6)) (18)

The friction force can be determined for each
contact plane by

F, =tang [CS*Li COS(Q;k -0,)] (19)

where ¢, is the angle of friction on plane i. If we
assume the friction angle is the same for each

plane, noting that this assumption, although con-
venient, is by no means necessary, we arrive at

n
ZE = tan ¢cs* Z L; COS(@;k -0, (20)
i=1 icd

for the total frictional resistance. Substituting s*
from Equation 16:

1 R cos(d, -0

ZE:tan¢ _N (Sz r*) .

P ¢ > Licos“ (6, =6, 21
-3 L cos(6; ~ )
i€eA

which simplifies to

n . ~ L;cos(0; — 0.

D F; =Ry tangcos(6; —6,) Z’GA l 5 e

P > Licos? (6, - )
(22)

where A is the index set defined previously. Equa-
tion 22 represents the total resisting force against
sliding for the contact faces of a prismatic rock
block.

FACTOR OF SAFETY AGAINST SLIDING

The safety factor is defined in the usual way
as:

_ Resisting force

FS (23)

Driving force

where the numerator is the summation of all fric-
tion forces, and the denominator is Ry, the compo-
nent of the active resultant force acting parallel to
the potential sliding direction. The safety factor is
therefore given by:

. _ L.cos(6, —6))
FS =R—Ntan¢cos(t9s -6,) Z’GA : 5 S
Ry D Licos™ (0, - 6;)
(24)
Replacing Ry and Ry by (R sin 6) and (R cos 9),

respectively, the magnitude of R cancels out, so
that we obtain,

> Licos(d; —6,)

FS =tan@tano cos P
_ Licos’ (6] - 6,)

(25)

Geologica Macedonica, 23, 63—71 (2009)

Applications

Having developed an analytical model for the
factor of safety against sliding of an arbitrary pris-
matic block, we now apply the model to some par-
ticular cases: a two-plane wedge, a three-plane
wedge and an example from Bregalnica river in-
volving a block with a curved sliding surface.

The two plane prismatic block is the classic
wedge; we use this to verify the energy-based sta-
bility model. Figure 6 shows three wedges with
dip/dip direction of the bounding planes as given.

In each case the view is up the line of inter-
section of the two planes, i.e., opposite to the po-
tential sliding direction. Loading is gravitational
and the friction angle in each case is assumed to be
20°. On successive rows in the table (Fig. 6) are
given the equilibrium angle of the displacement in
the YZ plane (which is noticeably different for the
three cases even though the loading is the same),
the factor of safety as determined from the new
energy-based model and the factor of safety deter-
mined from the well-known analytical solution for
wedge slides. The good agreement between the
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solutions lends credence to the model described in bitrarily close by increasing the number of itera-
this paper. In fact, the agreement may be made ar- tions in the numerical solution to Equation 15.
Wedge 1 Wedge 2 Wedge 3

N N—

Fig. 6. Stability analysis of three wedges; comparison of results between energy-based model and analytical solution

Plane 1: 40/235 Plane 1: 40/250  Plane 1: 20/255
Plane 2: 50/85 Plane 2: 30/100  Plane 2: 50/125
Wedge 1 Wedge 2 Wedge 3

e; 101.6° 67.7° 84.9°
F.S. (model) 1.9495834 2.46302 1.18806

F.S. (analytical) 1.9495835 2.46303 1.18807

We now consider prismatic block with three 14— S —
contact planes. The distribution of contact forces . YV ——~
for such a block is statically indeterminate and . Wedge Failwre . i
therefore the stability cannot be determined by % 12 :
standard limiting equilibrium methods. The model < | "
described in this paper determines the configura- g 5
tion of contact forces corresponding to minimum 5 L1 P :
potential energy of the system, from which the fac- “ ool by ———
tor of safety may be calculated. The initial data are 0sl : P
in Table 1, where fis the dip and a the dip direc- ' 0 1 2 3 4 5 6
tion of each discontinuity plane. Length Ratio - L2/L
Table 1 Fig. 7. Factor of safety versus length ratio L,/L; where L,

and L, are the lengths of the end and middle planes,

Data for analysis of three-plane prismatic block respectively. Upper and lower bounds correspond
to the wedge and plane cases

Plane 1 2 3
45° 23° 45°
a” 120° 185° 250° 3 — i
\45° 459
| LS\F/.1
The friction angle on each plane is 20°. Fig. 7 \ 5 L2
graphs the factor of safety of the block against the —____phi=40
length of the middle plane relative to the left and ) '.
right planes. The main result is that there is a re- \
duction in the factor of safety when the length ratio 3 — phi =30
L,/L, increases. Upper and lower bounds for the 3 .
factor of safety for the wedge (L, = 0) and plane S B phi =20
(L, = °°), calculated from the equations in Hoek 8 5
and Bray (1981), are shown as horizontal lines. i N phi =10 =
The factor of safety for the three-plane prismatic
block is shown to range between these limiting o
values depending on the length of the middle ° b o > &
plane. Figure 8 shows the change in the factor of Length Ratio L2/L1
safety versus the length ratio for a range of friction Fig. 8. Reduction of the factor of safety with change in the
angles length ratio L,/L, for a range of friction angles
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EXAMPLE FROM FLOW TO BREGALNICA RIVER

The analytical model described above was
used in a sliding stability investigation of a flow to
the Bregalnica river (Bregalnica), in to the east part
of Macedonia. We analyzed the rock block shown
in Fig. 9, in which the horizontal dimension is ap-
proximately 4 m. A line drawing of the block and
the potential sliding surface is shown in Fig. 10.

The first step in the stability analysis is to dis-
cretize the sliding surface into a series of planar
segments, as shown in Fig. 9. For each segment,
the length L, and the angle 8, (measured clockwise
from the Y direction) corresponding to each planar
segment is measured. The discretized failure sur-
face must be a true profile, i.e. a profile in the
plane perpendicular to the sliding direction (in this
case, the fold axis). The plunge of the line of inter-
section was determined by standard structural geo-
logic methods (e.g., Ramsay, 1967), to be 32°.

Fig. 9. Block bounded by curved sliding surface.
Sevier Shale formation, Blount County, Bregalnica river.
Horizontal dimension: 3 m

e rock wedge

| failure surface

AN Y
w7/

P /
el j /
=N W\ Jh

/7,/

%’E 5

I

Fig.10. Line drawing of block showing potential sliding
surface

A friction angle of 27° was used in the analy-
sis in accordance with friction angles for shale and
siltstone reported by Hoek and Bray (1981). The
applied load was assumed to include self-weight
only and hydrostatic pressures on the sliding sur-
face were assumed to be zero.
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Two separate analyses were carried out, with
the results presented in Table 2. For the Case 1
analysis we treated the block as a standard wedge
bounded by the limiting planes in Fig. 11 and de-
termined the factor of safety from the equation
given by Hoek and Bray (1981). For Case 2 we
analyzed the prismatic block with four contact
planes and the geometry in Fig. 11 by the methods
of this paper. As shown in Table 2, the factor of
safety according to Case 1 was 1.14, whereas that
determined from Case 2 was 1.0. Although there is
evidence of previous translational failures in this
particular road cut, we do not consider this an ac-
curate back analysis. The friction angle used in the
analysis is an estimated value and several of the
other parameters, in particular the water condi-
tions, are poorly known. What is clear, however, is
that the factor of safety for the prismatic block
with four sliding surfaces is significantly lower
than that obtained from the wedge analysis. Thus
treating this type of block as a wedge is, in general,
unconservative.

Table 2

Comparison of safety factor obtained from
the wedge analysis (FS = 1.14) with safety factor

obtained from the prismatic block analysis

(FS = 1.00) for the block shown in Fig. 9

Fold axis: 32°, Trend 30°
Plane No. L 9 ¢ FS
[cm] © ©)

Case 1: Wedge analysis

1 240 375 27

2 117 126 27 1.14
Case 2: Prismatic block analysis

1 193 375 27

2 36 90 27

3 36 106 27

4 55 126 27 1.0

Fig. 11. Discretization of curved failure surface
into planar segments
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CONCLUSIONS

In this paper we have described an energy-
based approach to the determination of sliding sta-
bility of rock wedges with n cozonal sliding sur-
faces. Traditional methods of stability analysis of
plane (n = 1) and wedge (n = 2) systems are based
on limiting equilibrium of statically determinate
systems. If the number n of contact planes is three
or more, the distribution of normal forces among
these planes is statically indeterminate.

We determine the distribution of normal
forces corresponding to minimum potential energy
of the system. Since we assume that effective nor-
mal stiffness is proportional to contact surface
area, elastic moduli are not required. Thus we con-
struct a general model for sliding stability analysis
of blocks with any number of cozonal sliding sur-
faces. Since this is a general model, it includes
plane and wedge failures as special cases, and in-
deed our results agree with the standard formulae
for plane and wedge slides.

Field situations which give rise to n cozonal
sliding surfaces with » > 3 include wedges
bounded by joint planes and internally subdivided
by a third plane such as bedding, yielding blocks
with three potential sliding surfaces such as that of
Fig. 10, and blocks bounded by cylindrical folds
such as that of Fig. 11. One of the practical impli-
cations of this work is that there may be a signifi-
cant reduction of the factor of safety when three or
more discontinuity planes form the sliding surface,
as compared with the wedge case. This is impor-
tant because many practitioners would analyze
such blocks as wedges, and in doing so would ar-
rive at an overly high factor of safety.

Future research plans on this topic will be di-
rected towards development of a computer model
for sliding stability analysis for digitized potential
failure surfaces. This will open the way to rock
slope stability analysis based on photogrammetric
data and to a single coherent model which incorpo-
rates plane and wedge slides.

APPENDIX

Definition of terms

(1) 5 is the magnitude of a small translation of
the prismatic block, directed into the rock mass, in
the direction perpendicular to the potential sliding
direction.

(2) 0" is the angle defining the direction of
the small translation.

(3) k; is the normal stiffness of plane i.

(4) n; is the unit normal vector for each con-
tact plane, directed out of the block.

(5) 9 is the angle of each plane measured
from the positive X axis.

(6) L is the length of each contact plane in the
YZ plane.

(7) 0, is the angle defining the direction of the
resultant force.

(8) R is the resultant of the active forces act-
ing on the rock block. R has components RN and
RT, perpendicular to and parallel to the sliding di-
rection respectively.

(9) I is the line of intersection between the
contact planes.

(10) i is a unit vector in the direction of the
line of intersection /.

The terms defined in (3)...(10) are initially
known from the loading conditions or the block
geometry.

The variables (1) and (2), which determine
the displacement vectors s, are initially unknown;
their values are determined such that the potential
energy of the system is minimized.
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Pesume

CTABHJIHOCT HA KAPIIECTUTE MACHU IPOBUEHU CO HOBEKEKPATHO JIM3T'ABBE
HA MIOBPIINHU
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Kiyunu 300poBH: CTaOMIHOCT Ha MAJAWHM; JIU3TaBU HOBPLIMHU

U mokpaj Toa ImTO CTabMIHOCTa HAa HEKOM MaAWHHA W
JIM3raBM IMOBPIIMHU ¢ JeHHHpaHa BO IEOTEXHHMKaTta U BO
CTpy4a JIUTepaTypa, cernak BO IPUpPOJaTa U BO HAlllaTa OKOMHA
BO KOja )KUBEEMe CEKOralll He € MOYKHO JIECHO Jia ce JedrHupa
U Mozenupa. Tre MOBPIIMHE MOKAT Jia CO3/1aBaatr HMIHHPHYN
reoMopQOJIOIKA CEIMMEHTHH CTPYKTYPH BO KOH jaCHO MO-
)KaT [a ce W3[BOjaT Oa3WYHHM HENIOBH O LMIMHIAPOT KOU Ce
nymiupaar. HoBuTe aHamn3u ¥ MOJEIH Ha BAKBUTE CTPYKTYPH
ce JaJieHH BO OBOj TPyA. MoJenuTe ce HApaBeHH HajIpPBHH

Geologica Macedonica, 23, 63—71 (2009)

KaKo THE Jia c€ HOPMAJIHU CO IOMOII Ha IIPEeCMETYBambe Ha
CHJIUTE KOH JICjCTBYBAaT Ha CHCTEMOT U MHHIMPaHATa [OTCH-
[UjaHa CHeprHuja, 3a M0T0a NPEKy OBHE NapaMeTpH IOCTerIe-
HO 712 ce JeuHrpa ITOBEKEKPATHOTO JIU3Tahe HA CTPYKTYPUTE
CIIOMHATH MOTOpE, CO HITO ce AeGUHUPA U KOSHHUIHEHTOT Ha
CTabMJIHOCT Ha MCTPa)KyBaHHMOT TepeH. Ha mpumep, 3eMeH e
npoduil M0 TEYEHUEeTO Ha peka bperanHuia u HampaBeHU ce
AHAJIM3HU KOU C€ IIPUKaXKaHHU BO OBOj TPY/L.





