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STABILITY ANALYSIS OF ROCK WEDGES WITH MULTIPLE SLIDING SURFACES 

Deljo Karakašev1, Tena Šijakova-Ivanova1, Elizabeta Karakaševa1, Zoran Panov2 
1Faculty of Natural and Technical Sciences, Department of Hydrogeology and Ingineering Geology,  

"Goce Delčev" University,Goce Delčev 89, MK-2000, Štip, Republic of Macedonia  
2Mechanical Faculty, University,Goce Delčev 89, MK-2000, Štip, Republic of Macedonia 

deljo.karakasev@ugd.edu.mk  

A b s t r a c t: Although wedge and plane sliding stability analyses are well established in the geotcchnical lit-
erature, certain geologic environments produce blocks which cannot be adequately modelled as either wedges or 
plane slides. An example is blocks forming in cylindrically folded sedimentary rocks, where the surface of sliding is 
neither a single plane nor a double plane but is curved. This type of block may be idealized as a prismatic block with 
multiple sliding planes, all with parallel lines of intersection. If the sliding planes number three or more, the distribu-
tion of normal forces and hence the factor of safety is indeterminate. A new analytical model for sliding stability 
analysis is described in which the distribution of normal forces on the contact planes is chosen to minimize the poten-
tial energy of the system. The classic wedge and plane solutions are shown to be special cases of this more general 
model, which allows determination of the safely factor for any shape of prismatic contact surface. An example from 
block part of Bregalnica river with a curved sliding surface is described and the factor of safety compared with the 
standard wedge analysis. It is shown that with three or more contact planes, the safety factor may be significantly 
lower than that calculated from the wedge model, which provides an upper limit on stability. 

Key words: rock slope stability; wedge slides 

INTRODUCTION 

Stability analyses for wedge and plane fail-
ures are now well established in the geotechnical 
literature. Some of the early work on the subject is 
due to Londe et al. (1969,1970), John (1968), Wit-
tke (1965, 1990) and Goodman (1976, 1989). Other 
developments and useful summaries are given by 
Hoek and Bray (1981), Goodman and Shi (1985), 
Giani (1992), Warburton (1993), Einstein (1993) 
and Watts (1994), among others. The requirements 
for I sliding may be summarized as follows. Plane 
failures can occur when the strike of a discontinu-
ity plane such as bedding is approximately parallel 
to the strike of the slope face and the weak plane 
daylights in the free face at a dip angle greater than 
the friction angle. Wedge failures can occur for a 
block defined by two planes whose line of intersec-
tion daylights in the free face and plunges suffi-
ciently steeply that the destabilizing forces exceed 
the shear resistance. Typical geometries for wedge 
and plane failures are depicted in Fig. 1. 

The important factors in the solution of stabi-
lity problems are the shear strength, dip and dip 
direction of the discontinuity planes, the geometry 
of the slope and the loading conditions. 

 
Fig. 1. Typical geometries for rock slope translational failures: 

(a) plane failure; (b) wedge failure 

The system of forces governing plane slides is 
statically determined and the frictional shear resis-
tance can be determined by resolution of forces. 
Wedge slides are rendered statically determinate 
by making an assumption about shear stresses in 
the contact planes, namely that shear stresses van-
ish in the plane perpendicular to the potential slid-
ing direction. Although this assumption is rarely 
discussed in the literature (Chan and Einstein, 
1981), it is implicit in the classic wedge analysis 
(e.g., Hoek and Bray, 1981). With the above-
mentioned assumption, and if strengths and water 
pressures, etc., are known, the factor of safety for 
plane and wedge slides can be obtained directly by 
limiting equilibrium methods, either by direct cal-
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culation or by graphical methods based on stereo-
graphic projection. With three or more sliding 
planes, however (e.g., Fig. 2), the distribution of 
normal forces is statically indeterminate and the 
net frictional resistance to sliding, and hence the 
factor of safety, cannot be uniquely determined. In 
this paper (see also Ureta, 1994; Mauldon and 
Ureta, 1994, 1995) we describe an energy method 
for determination of the factor of safety against 
sliding failure for blocks with multiple sliding 
planes that form a cylindrical surface. Such a block 
is referred to as a prismatic block.  

Fig. 2. Prismatic rock block with three contact planes; 
coordinate system defined 

PRISMATIC BLOCKS 

A prismatic block is a rock block bounded by 
n contact planes, where the lines of intersection of 
the contact planes are all parallel. Fig. 2 shows a 
special case of a prismatic block with three planes 
of contact with the rock mass. Also, in Fig. 2, a 
Cartesian coordinate system is defined with the X 
axis parallel to the line of intersection (the poten-
tial sliding direction) and Y horizontal. The contact 
planes of a prismatic block are cozonal (to use 
crystallographic terminology, e.g., Bloss, 1961), 
with zone axis parallel to the line of intersection, 
so that the normals of the contact planes fall on a 
great circle when plotted in stereographic projec-
tion (Fig. 3). As the number of planes (n) ap-
proaches infinity ( ),n → ∞  the contact surface ap-
proaches a curved cylindrical shape. Thus a block 
defined by cylindrically folded bedding or foliation 
is a limiting case of a prismatic block. Plane and 
wedge failures, with one and two contact planes, 
and zero and one lines of intersection respectively, 
are special cases of prismatic blocks. 

 
Fig. 3. Stereographic projection showing geometry  

of a prismatic block. Contact plane normals fall on a great 
circle. The lines of intersection of contact planes are parallel  

to the zone axis I 

Statement of problem 

As discussed above, if 2n ≤  the distribution 
of normal forces on the contact plane(s) is stati-
cally determinate. If 3n ≥ , however, the normal 
forces on the planes of contact between a prismatic 
block and the rock mass are statically indetermi-
nate and the stability conditions cannot be deter-
mined directly by limiting equilibrium methods. In 
this paper we describe an energy method to deter-
mine the contact forces and to evaluate the factor 
of safety against sliding of prismatic rock blocks as 
a function of shear strength, block geometry, and 
loading conditions. The block is assumed to be 
supported at each face by a series of normal 
springs, each with stiffness ki and each spring sub-
ject to a “no tension” condition. The magnitude of 
the stiffness ki at each contact face is assumed to be 
proportional to the planar contact area per unit 
length. We assume an elastic, conservative system 
to obtain the distribution of normal forces that 
minimizes the potential energy of the system 

Assumptions 

The stability analysis is based on a simplified 
model of rock mass geometry and strength, with 
the following assumptions: 

– Contact faces of the prismatic block are 
planar. 

– The displacement of the block is purely 
translational. 

– Frictional shear stresses act parallel to the 
sliding direction only. Note that this assumption is 
standard in limiting equilibrium analysis of plane 
and wedge slides. 
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– The block is undeformable, except for elas-
tic contacts at the bounding faces. 

– The block is acted on by an active resultant 
R  which includes self-weight, and may in addition 
include hydraulic forces, seismic forces, or sup-
porting forces due to anchors or bolts. The effect of 
moments is not considered in the analysis. 

– The normal stiffness of each contact plane 
is proportional to its surface area. 

Analytical model 

The total potential energy of a system consist-
ing of a prismatic rock block supported by n con-
tact planes is given by: 

 
1=

= −∑
n

i r
i

V V W  (1) 

where Vi , is the elastic potential energy associated 
with each discontinuity surface i = 1, 2,..., n, and 
Wr is the work done by the active forces acting on 
the block. If self-weight is the only active force, 
the work done by the active forces is the negative 
of the change in gravitational potential energy. We 
assume that the block itself is undeformable, but 
that elastic deformation occurs at the contacts be-
tween the block and the rock mass. We assume that 
the block-rock mass contacts behave like linear 
springs, with stiffness proportional to surface area 
and we establish a datum for the gravitational po-
tential energy such that the contact springs initially 
have zero extension. 

The first task will be to find the equilibrium 
distribution of forces in the YZ plane (the plane 
perpendicular to the potential sliding direction), 
such that the total potential energy is a minimum. 
We assume that the equilibrium position in the YZ 
plane of the block results from a small translational 
displacement of the block in the YZ plane (i.e., 
perpendicular to the sliding direction) under the 
action of the active forces. Elastic strain energy in 
the spring contacts is stored as a result of this dis-
placement. We denote this small displacement by a 
vector s  at an angle θs  and with magnitude s (see 

Fig. 4). Then, for unit normal in  and stiffness ki 
corresponding to each contact plane, the elastic 
potential energy Vi  at each contact face is given by 

 
2ˆ ˆ1 / 2 ( ) if ( ) 0

ˆ0 if ( ) 0
i i i

i
i

k n s n sV
n s

⎧ ⋅ ⋅ >⎪= ⎨
⋅ ≤⎪⎩

 (2) 

 
Fig. 4. Prismatic block in the YZ plane showing unit normal 

vectors ni, normal component Rn of active resultant  
and displacement vector S 

The latter condition means that we do not 
admit tensile contact forces. In order to ensure no 
tension, it is convenient to introduce an index set 
A, denned for any displacement s by 

 ˆ( ) { : 0, 1,2,..., }
s iA i n s i nθ= = ⋅ > =  (3) 

This index set A is a function of the angle of 
displacement θs and is essentially a list of contact 
planes for which the block face maintains a posi-
tive normal contact force with the rock mass. Now 
the potential energy of the system can be written as 

 2ˆ1 / 2 ( )i i N
i A

V k n s R s
∈

= ⋅ − ⋅∑  (4) 

where NR  is the component of the active resultant 
force acting in the plane perpendicular to the po-
tential sliding direction (Fig. 5). Expanding the 
above, and noting that the ni are unit vectors, we 
obtain, 

2 21 / 2 cos ( ) cos( )i s i N s r
i A

V k s R sθ θ θ θ
∈

= − − ⋅ ⋅ −∑  

  (5) 
where RN and s are magnitudes. In the above ex-
pression, θi and θr give the direction of each unit 
normal ˆin  and the resultant force vector, respecti-
vely, measured clockwise from the positive Y axis. 

 
Fig. 5. Normal and tangentional components  

of active resultant 
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Equilibrium condition 

With the assumption of no rotation, the block 
displacement in the YZ plane has two degrees of 
freedom, θs and s. The equilibrium displacement is 
one for what the total potential energy V of the sys-
tem is stationary. Thus, for equilibrium we have 
the requirements: 

 0
s

V
θ

∂
=

∂
     and     0V

s
∂

=
∂

 (6) 

where we note that, although the set A changes 
with sθ , the function V is piecewise continuous. 
Differentiating, we obtain, 

2( ) cos( )sin(

sin( ) 0

i s i s i
s i A

N s r

V k s

R s

θ θ θ θ
θ

θ θ
∈

∂
= − − − +

∂

+ ⋅ − =

∑
 (7) 

and 

2cos ( ) cos( ) 0i s i N s r
i A

V k s R
s

θ θ θ θ
∈

∂
= ⋅ ⋅ − − − =

∂ ∑  

  (8) 

Assuming for the present that the stiffness kj 
is known for each contact plane, we now have two 
Equations (7 and 8), and two unknowns, θs and s. 
We let *

sθ  and *s  denote, respectively, the values 
of sθ , and s which satisfy Equations 7 and 8. 

Then, solving for *s , we obtain, 

 
*

*
* *

sin( )

sin( )cos( )

sN r

i s i s i
i A

R
s

k

θ θ

θ θ θ θ
∈

−
=

− −∑
 (9) 

and 

 
*

*
2 *

cos( )

cos ( )

sN r

i s ii A

R
s

k

θ θ

θ θ∈

−
=

−∑
 (10) 

Equating Equations 9 and 10, we obtain, 

 

*

* *

*

*

sin( )

sin( )cos( )

cos( )

cos( )

s

s

N r

i s i s ii A

N r

i s ii A

R

k

R

k

θ θ

θ θ θ θ

θ θ

θ θ

∈

∈

−
=

− −

−
=

−

∑

∑

 (11) 

which simplifies to 

* *
*

2 *

sin( )cos( )
tan( )

cos ( )
i s i s ii A

s r
i s ii A

k

k

θ θ θ θ
θ θ

θ θ
∈

∈

− −
− =

−

∑
∑

 

  (12) 

The value of *
sθ  which satisfies Equation 12 

is the direction of the small displacement of the 
block, perpendicular to the potential sliding direc-
tion, such that the potential energy of the system is 
minimized. However, the equation includes the 
unknown spring constants ki. 

Spring constant ki 

In the elastic model we assume that the spring 
constant ki for each contact plane is proportional to 
the contact area and therefore, due to the prismatic 
shape, to the length L of a planar contact in the YZ 
plane. This assumption is reasonable given the be-
haviour of springs in parallel: two parallel springs 
each with a stiffness k yield an effective stiffness 
of 2k. If the spring constants are replaced in Equa-
tion 12 by the product c, Li, where the constant c is 
the unknown constant of proportionality, and Li, is 
the length of plane i perpendicular to RT we obtain 
from which we obtain the value of θs

*. 
* *

*
2 *

sin( )cos( )
tan( )

cos ( )
i s i s ii A

s r
i s ii A

cL

cL

θ θ θ θ
θ θ

θ θ
∈

∈

− −
− =

−

∑
∑

 

  (13) 

Since the c is constant, it can be cancelled, 
yielding 

* *
*

2 *

sin( )cos( )
tan( )

cos ( )
i s i s ii A

s r
i s ii A

cL

L

θ θ θ θ
θ θ

θ θ
∈

∈

− −
− =

−

∑
∑

 

  (14) 

We then use a numerical routine to solve the 
equation 

* *
*

2 *

sin( )cos( )
tan( ) 0

cos ( )
i s i s ii A

s r
i s ii A

cL

L

θ θ θ θ
θ θ

θ θ
∈

∈

− −
− − =

−

∑
∑

  (15) 

The data required for determination of *
sθ  are 

the angles iθ , and lengths iL , of the n planes of 
discontinuity and the direction of the resultant 
force, rθ . 

With *
sθ  known, the magnitude of the dis-

placement, s*, for minimum potential energy can 
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be obtained by substituting the value of *
sθ  into 

Equation 9 or 10. For example, replacing ki, by (c) 
(Li) in Equation 10, we have, 

 
*

*
2 *

cos( )
cos ( )

N s r

i s ii A

Rs
c L

θ θ
θ θ∈

−
=

−∑
 (16) 

Distribution of normal forces 

The magnitude of the normal force for each 
discontinuous surface due to the small displace-
ment, s is computed as: 

 * *ˆ ˆ( ) ( )i i i i iN k n s cL n s= ⋅ = ⋅  (17) 
or 
 * *cos( )i i s iN cs L θ θ= −  (18) 

The friction force can be determined for each 
contact plane by 

 * *tan [ cos( )]i i i s iF cs Lφ θ θ= −  (19) 

where iφ  is the angle of friction on plane i. If we 
assume the friction angle is the same for each 

plane, noting that this assumption, although con-
venient, is by no means necessary, we arrive at 

 * *

1
tan cos( )

n
i i s i

i i A
F cs Lφ θ θ

= ∈
= −∑ ∑  (20) 

for the total frictional resistance. Substituting s* 
from Equation 16:      

*

2 *
1

*

cos( )
tan

cos ( )

cos( )

n
N s r

i
i s ii i A

i s i
i A

R
F

c L

L

θ θ
φ

θ θ

θ θ

= ∈

∈

⎡ ⎤−
⎢ ⎥= ⋅

−⎢ ⎥⎣ ⎦

⋅ −

∑ ∑
∑

 (21) 

which simplifies to 

*
*

2 *
1

cos( )
tan cos( )

cos ( )

n i s ii A
i N s r

i i s ii A

L
F R

L

θ θ
φ θ θ

θ θ
∈

= ∈

−
= −

−

∑∑
∑

  (22) 

where A is the index set defined previously. Equa-
tion 22 represents the total resisting force against 
sliding for the contact faces of a prismatic rock 
block. 

FACTOR OF SAFETY AGAINST SLIDING  

The safety factor is defined in the usual way 
as: 

 Resisting force
Driving force

FS =  (23) 

where the numerator is the summation of all fric-
tion forces, and the denominator is RT, the compo-
nent of the active resultant force acting parallel to 
the potential sliding direction. The safety factor is 
therefore given by: 
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  (24) 

Replacing RN and RT by (R sin δ) and (R cos δ), 
respectively, the magnitude of R cancels out, so 
that we obtain, 
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Applications 

Having developed an analytical model for the 
factor of safety against sliding of an arbitrary pris-
matic block, we now apply the model to some par-
ticular cases: a two-plane wedge, a three-plane 
wedge and an example from Bregalnica river in-
volving a block with a curved sliding surface. 

The two plane prismatic block is the classic 
wedge; we use this to verify the energy-based sta-
bility model. Figure 6 shows three wedges with 
dip/dip direction of the bounding planes as given. 

In each case the view is up the line of inter-
section of the two planes, i.e., opposite to the po-
tential sliding direction. Loading is gravitational 
and the friction angle in each case is assumed to be 
20°. On successive rows in the table (Fig. 6) are 
given the equilibrium angle of the displacement in 
the YZ plane (which is noticeably different for the 
three cases even though the loading is the same), 
the factor of safety as determined from the new 
energy-based model and the factor of safety deter-
mined from the well-known analytical solution for 
wedge slides. The good agreement between the 
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solutions lends credence to the model described in 
this paper. In fact, the agreement may be made ar-

bitrarily close by increasing the number of itera-
tions in the numerical solution to Equation 15. 

 
Fig. 6. Stability analysis of three wedges; comparison of results between energy-based model and analytical solution 

Plane 1: 40/235 Plane 1: 40/250 Plane 1: 20/255 
Plane 2: 50/85 Plane 2: 30/100 Plane 2: 50/125 

 Wedge 1 Wedge 2 Wedge 3 

 101.6° 67.7° 84.9° 
F.S. (model) 1.9495834 2.46302 1.18806 
F.S. (analytical) 1.9495835 2.46303 1.18807 

 
We now consider prismatic block with three 

contact planes. The distribution of contact forces 
for such a block is statically indeterminate and 
therefore the stability cannot be determined by 
standard limiting equilibrium methods. The model 
described in this paper determines the configura-
tion of contact forces corresponding to minimum 
potential energy of the system, from which the fac-
tor of safety may be calculated. The initial data are 
in Table 1, where f is the dip and a the dip direc-
tion of each discontinuity plane. 

T a b l e  1  

Data for analysis of three-plane prismatic block 

Plane 1 2 3 
 45° 23° 45° 
a" 120° 185° 250° 

 
The friction angle on each plane is 20°. Fig. 7 

graphs the factor of safety of the block against the 
length of the middle plane relative to the left and 
right planes. The main result is that there is a re-
duction in the factor of safety when the length ratio 
L2/L, increases. Upper and lower bounds for the 
factor of safety for the wedge (L2 = 0) and plane 
(L2 = °°), calculated from the equations in Hoek 
and Bray (1981), are shown as horizontal lines. 
The factor of safety for the three-plane prismatic 
block is shown to range between these limiting 
values depending on the length of the middle 
plane. Figure 8 shows the change in the factor of 
safety versus the length ratio for a range of friction 
angles 

 
Fig. 7. Factor of safety versus length ratio L2/L1 where L1  

and L2 are the lengths of the end and middle planes, 
respectively. Upper and lower bounds correspond  

to the wedge and plane cases 

 
Fig. 8. Reduction of the factor of safety with change in the 

length ratio L2/L, for a range of friction angles
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EXAMPLE FROM FLOW TO BREGALNICA RIVER 

The analytical model described above was 
used in a sliding stability investigation of a flow to 
the Bregalnica river (Bregalnica), in to the east part 
of Macedonia. We analyzed the rock block shown 
in Fig. 9, in which the horizontal dimension is ap-
proximately 4 m. A line drawing of the block and 
the potential sliding surface is shown in Fig. 10. 

The first step in the stability analysis is to dis-
cretize the sliding surface into a series of planar 
segments, as shown in Fig. 9. For each segment, 
the length L, and the angle 8, (measured clockwise 
from the Y direction) corresponding to each planar 
segment is measured. The discretized failure sur-
face must be a true profile, i.e. a profile in the 
plane perpendicular to the sliding direction (in this 
case, the fold axis). The plunge of the line of inter-
section was determined by standard structural geo-
logic methods (e.g., Ramsay, 1967), to be 32°. 

 
Fig. 9. Block bounded by curved sliding surface.  

Sevier Shale formation, Blount County, Bregalnica river. 
Horizontal dimension: 3 m 

 
Fig.10. Line drawing of block showing potential sliding 

surface 

A friction angle of 27° was used in the analy-
sis in accordance with friction angles for shale and 
siltstone reported by Hoek and Bray (1981). The 
applied load was assumed to include self-weight 
only and hydrostatic pressures on the sliding sur-
face were assumed to be zero. 

Two separate analyses were carried out, with 
the results presented in Table 2. For the Case 1 
analysis we treated the block as a standard wedge 
bounded by the limiting planes in Fig. 11 and de-
termined the factor of safety from the equation 
given by Hoek and Bray (1981). For Case 2 we 
analyzed the prismatic block with four contact 
planes and the geometry in Fig. 11 by the methods 
of this paper. As shown in Table 2, the factor of 
safety according to Case 1 was 1.14, whereas that 
determined from Case 2 was 1.0. Although there is 
evidence of previous translational failures in this 
particular road cut, we do not consider this an ac-
curate back analysis. The friction angle used in the 
analysis is an estimated value and several of the 
other parameters, in particular the water condi-
tions, are poorly known. What is clear, however, is 
that the factor of safety for the prismatic block 
with four sliding surfaces is significantly lower 
than that obtained from the wedge analysis. Thus 
treating this type of block as a wedge is, in general, 
unconservative. 

T a b l e  2  

Comparison of safety factor obtained from 
 the wedge analysis (FS = 1.14) with safety factor 

obtained from the prismatic block analysis  
(FS = 1.00) for the block shown in Fig. 9 

Fold axis: 32o, Trend 30o 
Plane No. L 

[cm] 
θ 

(o) 
φ 

(ο) 
FS 

Case 1: Wedge analysis     
1 240 37.5 27  
2 117 126 27 1.14 

Case 2: Prismatic block analysis     
1 193 37.5 27  
2 36 90 27  
3 36 106 27  
4 55 126 27 1.0 

 
Fig. 11. Discretization of curved failure surface  

into planar segments 
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CONCLUSIONS 

In this paper we have described an energy-
based approach to the determination of sliding sta-
bility of rock wedges with n cozonal sliding sur-
faces. Traditional methods of stability analysis of 
plane (n = l) and wedge (n = 2) systems are based 
on limiting equilibrium of statically determinate 
systems. If the number n of contact planes is three 
or more, the distribution of normal forces among 
these planes is statically indeterminate. 

 

We determine the distribution of normal 
forces corresponding to minimum potential energy 
of the system. Since we assume that effective nor-
mal stiffness is proportional to contact surface 
area, elastic moduli are not required. Thus we con-
struct a general model for sliding stability analysis 
of blocks with any number of cozonal sliding sur-
faces. Since this is a general model, it includes 
plane and wedge failures as special cases, and in-
deed our results agree with the standard formulae 
for plane and wedge slides. 

Field situations which give rise to n cozonal 
sliding surfaces with n > 3 include wedges 
bounded by joint planes and internally subdivided 
by a third plane such as bedding, yielding blocks 
with three potential sliding surfaces such as that of 
Fig. 10, and blocks bounded by cylindrical folds 
such as that of Fig. 11. One of the practical impli-
cations of this work is that there may be a signifi-
cant reduction of the factor of safety when three or 
more discontinuity planes form the sliding surface, 
as compared with the wedge case. This is impor-
tant because many practitioners would analyze 
such blocks as wedges, and in doing so would ar-
rive at an overly high factor of safety. 

Future research plans on this topic will be di-
rected towards development of a computer model 
for sliding stability analysis for digitized potential 
failure surfaces. This will open the way to rock 
slope stability analysis based on photogrammetric 
data and to a single coherent model which incorpo-
rates plane and wedge slides. 

APPENDIX 

Definition of terms 

(1) 5 is the magnitude of a small translation of 
the prismatic block, directed into the rock mass, in 
the direction perpendicular to the potential sliding 
direction. 

(2) 0^ is the angle defining the direction of 
the small translation. 

(3) kt is the normal stiffness of plane i. 
(4) ni is the unit normal vector for each con-

tact plane, directed out of the block. 
(5) 9 is the angle of each plane measured 

from the positive X axis. 
(6) L is the length of each contact plane in the 

YZ plane. 
(7) 0r is the angle defining the direction of the 

resultant force. 

(8) R is the resultant of the active forces act-
ing on the rock block. R has components RN and 
RT, perpendicular to and parallel to the sliding di-
rection respectively. 

(9) I is the line of intersection between the 
contact planes.  

(10) i is a unit vector in the direction of the 
line of intersection I. 

The terms defined in (3)...(10) are initially 
known from the loading conditions or the block 
geometry. 

The variables (1) and (2), which determine 
the displacement vectors s, are initially unknown; 
their values are determined such that the potential 
energy of the system is minimized. 

REFERENCES 

Bloss, F. D., 1961: An Introduction to the Methods of Optical 
Crystallography. Saunders College Publishing, Philadel-
phia.  

Chan, H. C., Einstein, H. H., 1981: Approach to complete 
limit equilibrium analysis for rock wedges – the method of 
'artificial supports'. Rock Mechanics, 14, 59–86.  



 Stability analysis of rock wedges with multiple sliding surfaces 71 

Geologica Macedonica, 23, 63–71 (2009) 

Einstein, H. H., 1993: Modern developments in discontinuity 
analysis – the persistence-connectivity problem, in Com-
prehensive Rock Engineering, Volume 3 (J. A. Hudson, 
ed.), Pergamon Press, Oxford, pp. 193–213. 

Giani, P. G., 1992: Rock Slope Stability Analysis, Balkema, 
Rotterdam.  

Goodman, R. E., 1976: Methods of Geological Engineering in 
Discontinuous  Rocks,  West Publishing, St. Paul, MN. 

Goodman, R. E., 1989: Introduction to Rock Mechanics. 2nd 
edn., Wiley, New York.  

Goodman, R. E., Shi, G. H., 1985: Block Theory and its Appli-
cation to Rock Engineering, Wiley, New York.  

Hoek, E., Bray, J., 1981: Rock Slope Engineering. The Insti-
tute of Mining and Metallurgy, London.  

John, K. W., 1968: Graphical stability analysis of slopes in 
jointed rock, Proceedings of the American Society of Civil 
Engineers, 94, SM2, 497–526.  

Londe, P., Vigier, G., Vormeringer, R., 1969: Stability of rock 
slopes, a three-dimensional study, Proceedings of the 
American Society of Civil Engineers, 9, SMI, 235–262.  

Londe, P., Vigier, G., Vormeringer R., 1970: Stability of rock 
slopes - graphical methods, Proceedings of the American 
Society of Civil Engineers, 96, SM4, 1411–34.  

Mauldon, M. and Ureta, J., 1994: Stability of rock wedges 
with multiple sliding surfaces, Association of Engineering 
Geologists Annual Meeting, Williamsburg.  

Mauldon, M., Ureta, J., 1995: Sliding stability of prismatic 
blocks, Proceedings, 35th U.S. Symposium on Rock Me-
chanics, Lake Tahoe [in press]. 

Ramsay, J. G., 1967: Folding and Fracturing of Rocks, 
McGraw-Hill, New York.  

Ureta, J. A., 1994: Stability Analysis of Prismatic Rock Blocks, 
Master's thesis, Dept. of Civil and Environmental Engi-
neering, University of Bregalnica river, Knoxville. 

Warburton, P. M., 1993: Some modern developments in block 
theory for rock engineering, in Comprehensive Rock Engi-
neering, Volume 2 (J. A. Hudson, ed.), Pergamon Press, 
Oxford, pp. 293–299. 

Watts, C. F., 1994: Rock Pack II User's Manual, C.F. Watts 
and Assoc, Radford, VA. 

Wittke, W., 1965: Methods to analyse the stability of a rock 
slope with and without additional loading (in German), in 
Rock Mechanics and Engineering Geology, Springer-
Verlag, Vienna, Suppl. II, p. 52.  

Wittke, W., 1990: Rock Mechanics, Springer-Verlag, Berlin. 

R e z i m e 
 

СТАБИЛНОСТ НА КАРПЕСТИТЕ МАСИ ПРОБИЕНИ СО ПОВЕЌЕКРАТНО ЛИЗГАЊЕ  
НА ПОВРШИНИ 

Дељо Каракашев1, Тена Шијакова-Иванова1, Елизабета Каракашева1, Зоран Панов2 

1Универзиtеt „Гоце Делчев“, Факулtеt за pриродни и tехнички науки, Инсtиtуt за gеолоgија,  
Гоце Делчев 89,МК-2000 Шtиp, Реpублика Македонија 

2Машински факулtеt, МК-Виница, Реpублика Македонија 
deljo.karakasev@ugd.edu.mk 

Клучни зборови: стабилност на падини; лизгави површини 

И покрај тоа што стабилноста на некои падини и 
лизгави површини е дефинирана во геотехниката и во 
струча литература, сепак во природата и во нашата окоина 
во која живееме секогаш не е можно лесно да се дефинира 
и моделира. Тие површини можат да создаваат цилинричи 
геоморфолошки седиментни структури во кои јасно мо-
жат да се издвојат базични делови од цилиндарот кои се 
дуплираат. Новите анализи и модели на ваквите структури 
се дадени во овој труд. Моделите се направени најпрвин 

како тие да се нормални со помош на пресметување на 
силите кои дејствуваат на системот и иницираната потен-
цијална енергија, за потоа преку овие параметри постепе-
но да се дефинира повеќекратното лизгање на структурите 
спомнати погоре, со што се дефинира и коефициентот на 
стабилност на истражуваниот терен. На пример, земен е 
профил по течението на река Брегалница и направени се 
анализи кои се прикажани во овој труд. 

 




