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A b s t r a c t: The content of major, minor and various trace elements in three manganese minerals from the 

Republic of Macedonia was determined. The studied minerals belong to the carbonate group [kutnohorite, Ca(Mn2+, 

Mg,Fe2+)(CO3)2, from Sasa mine] and to the inosilicate subgroup [carpholite, Mn2+Al2Si2O6(OH)4, from Vrbsko 

locality; rhodonite (Mn2+,Fe2+,Mg,Ca)SiO3, from Sasa mine]. Carousel facility of the 250 kW TRIGA reactor and 

multielement technique k0-instrumental neutron activation analysis (k0-INAA) were used for irradiation and for the 

determination of the elements content. Using intermediate/medium and long half-life radionuclides, in total, thirty-

eight elements in the investigated minerals were determined. The content of As, Co, Ga, K, Na, Sc and Zn in carpholite, 

of As, K, Na, Ta, W and Zn in rhodonite and of Hg, Sr, Ta and REEs in kutnohorite was found to be higher compared 

to the other investigated trace elements. It was also found that kutnohorite contains lower amounts of trace elements 

compared with their content in carpholite and rhodonite. 
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INTRODUCTION 

Minerals are naturally occurring, inorganic, 

solid substances with a definite (not necessarily 

fixed) chemical composition. Their inner structure 

exhibit regular three-dimensional arrangement of 

the building units (atoms, ions, molecules). Due to 

the natural process of mineral formation, traces of 

other elements that are not constituents of the 

chemical formula could be frequently incorporated, 

causing thereby changes in mineral physical charac-

teristics. In addition, varieties of minerals are quite 

easily interchangeable, enabling one mineral to 

grade into another and build a solid-solution series. 

One of the most important reasons to analyze 

the content of traces in various minerals is related to 

the potential economic value of the trace elements 

that justify the mineral excavations. It could later 

lead to eventual opening of new mining facilities. 

This finding could also provide very important 

information on the geology of the mineral locality 

and the wider area (Stafilov, 2000; Brugger & 

Gieré, 2000).  

Manganese is an alkaline earth element 

that occurs in various oxidation numbers from 

–3 to +7 with only one naturally occurring 

isotope. Manganese does not occur in the environ-

ment as a native element. However, it is an abundant 

naturally occurring element in more than 100 mine-

rals, including sulfides, oxides, carbonates, silicat-

es, phosphates and borates. Of more commercial 

importance are the secondary deposits of oxides and 

carbonates, including the minerals: pyrolusite 

(MnO2), which is the most common, hausmannite 

(Mn3O4) and rhodochrosite (MnCO3). Large quanti-

ties of manganese nodules found on the bottom of 

the oceans may also become a significant source of 

manganese (Chukhrov et al., 1980). The most signi-

ficant application of manganese minerals comprises 

the production of ferromanganese alloy or 
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improvement of hardness, stiffness and strength of 

steel. Due to the use of manganese minerals of 

relatively pure grade as a basic material for alloys 

with special electrical and thermal characteristics 

(Olsen et al., 2007), in general, they must contain 

impurities in the range of ppm levels or less. 

Therefore, the determination of microimpurities in 

manganese minerals is valuable and important 

analytical task. Widely used method for manganese 

tracking in either high or low-level concentration is 

direct electrothermal atomic absorption spectro-

metry (ETAAS), which permits determination of 

some microelements with high accuracy (Stafilov, 

2000). However, matrix interferences from one side 

and the strong contamination of the graphite furnace 

with manganese as a matrix element hamper appli-

cation of direct ETAAS in the trace elements eva-

luation in minerals. In such cases, preliminary sepa-

ration and preconcentration of trace elements is 

appropriate and useful method (Minczewski et al, 

1982; Mizuike, 1983; Zolotov & Kuzmin, 1990). 

The liquid-liquid extraction of Mn(DTC)2 complex 

in different organic solvents is used for manganese 

separation before FAAS or ETAAS measurement of 

trace elements is carried out (Boucher et al., 1990; 

Marczenko & Balcerzak, 2000; Taseska et al., 

2008).  

Different separation and preconcentration 

methods have been suggested including solvent 

extraction, column solid phase extraction and cloud 

point extraction (Pawliszyn, 1997; Dulski, 1999). 

Methods for the removal of manganese(II) from 

aqueous solutions are based mainly on coprecipita-

tion of manganese(II) as sulfide with iron(III) or 

lanthanum(III) or liquid/liquid extraction of dithio-

carbamate, oxinate, or thiooxinate complexes using 

various anion-exchangers (Rane, 1971; Claassen et 

al., 1977; Zendelovska et al., 2000; Stafilov & 

Zendelovska, 2002; Filiz, 2007).  

Instrumental methods (INAA, XRF, PIXE) are 

rarely used to determine trace elements due to mat-

rix and inter-element interferences and background 

effects (Frantz et al., 1994; Jaćimović et al., 2002, 

2008, 2015; Nečemer et al., 2003; Makreski et al., 

2008; Taseska et al., 2012, 2014). In this work, a k0-

method of instrumental neutron activation analysis 

(k0-INAA) was used for direct determination of 

major and trace elements in three manganese 

minerals from the Republic of Macedonia 

[kutnohorite, Ca(Mn2+
, Mg,Fe2+)(CO3)2; carpholite, 

Mn2+Al2Si2O6 (OH)4 and rhodonite, (Mn2+, Fe2+, 

Mg, Ca)SiO3] without preliminary digestion of the 

sample. The number of elements determined simul-

taneously in the studied minerals was thirty eight.

EXPERIMENTAL 

Samples 

Kutnohorite, Ca(Mn2+
,Mg,Fe2+)(CO3)2, and 

rhodonite, (Mn2+,Fe2+,Mg,Ca)SiO3, minerals were 

collected from Sasa mine, whereas carpholite, 

Mn2+Al2Si2O6(OH)4, was sampled from Vrbsko lo-

cality, Republic of Macedonia (Figure 1). Mineral 

single crystals were carefully hand-picked under an 

optical microscope from the ore sample and ground 

to powder. 

k0-Instrumental neutron activation analysis 

About 100 mg of powder was sealed into a 

pure polyethylene ampoule. For determination of 

short-lived radionuclides, a sample and a standard 

(Al with 0.1% Au (IRMM-530R) disc of 7 mm in 

diameter and 0.1 mm high) were stacked together 

and fixed in the polyethylene ampoule in sandwich 

form and irradiated for 15 s in the carousel facility 

(CF) of the 250 kW TRIGA Mark II reactor of the 

Jožef Stefan Institute with a thermal neutron flux of 

1.11012 cm–2 s–1. For determination of intermediate/ 

medium and long-lived radionuclides an aliquot and 

standard Al with 0.1% Au were prepared on the 

same way as above and irradiated for 12 hours in the 

CF of the TRIGA reactor. 

After short irradiation (15 s) the aliquot was 

measured after 3–4 hours cooling time on an 

absolutely calibrated HPGe detector with 45% 

relative efficiency. After long irradiation (12 hours) 

the aliquot was measured after 2, 8 and 25 days 

cooling time on the same HPGe detector (Smodiš et 

al., 1988). Measurements were performed at such 

distances that the dead time was kept below 10 % 

with negligible random coincidences. 

For peak area evaluation, the HyperLab 

(HyperLab 2002 System, 2002) program was used. 

For determination of f (thermal to epithermal flux 

ratio) and  (parameter which measures the epither-

mal flux deviation from the ideal 1/E distribution), 

the "Cd-ratio" method for multimonitor is applied 

(Jaćimović et al., 2003). The f = 28.74 and  = –

0.0023 values were used to calculate the element 
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concentrations. For elemental concentrations and 

effective solid angle calculations a software 
package called KayWin User’s Manual [Kayzero 

for Windows (KayWin®), 2011].

 

 

 
Fig. 1. Kutnohorite from Sasa (top), rhodonite from Sasa (middle) and carpholite from Vrbsko (bottom) 

RESULTS AND DISCUSSION 

The results of the chemical composition of the 

investigated manganese minerals kutnohorite,  

Ca(Mn2+
,Mg,Fe2+)(CO3)2, which belongs to the car-

bonate group of minerals, and carpholite, 

Mn2+Al2Si2O6(OH)4, and rhodonite,  (Mn2+,Fe2+, 

Mg,Ca)SiO3, which belong to the inosilicate sub-

group of minerals, obtained by k0-INAA are given 

in Table 1, together with their combined standard 

uncertainty (net peak area, nuclear data for parti-

cular nuclide, neutron flux parameters, full-energy 

peak detection efficiency, etc.).  

It was found that the major metal constituents 

in carpholite are manganese (11.75%) and Fe 

(0.7035%), whereas the second inosilicate rhodo-

nite contains 31.71% Mn, 5.458% Ca and 0.4122% 

Fe (Table 1). According to the obtained major ele-

ments, the chemical formulae of the minerals should 

be (Mn,Fe)Al2Si2O6(OH)4 for carpholite and 

(Mn,Ca,Fe)SiO3 for rhodonite. Unfortunately, the 

determination of magnesium content was not pos-

sible, because it was decayed before the measure-

ment took place after 2.579 hours being the half-life 
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for 56Mn (27Mg disintegrates very fast because its 

half-life is 9.462 min). The major metal constituents 

of kutnohorite sample were Ca (27.9543%), Mn 

(11.20%) and Fe (0.2205%) (Table 1), deriving the 

following chemical formula Ca(Mn,Fe)(CO3)2. 

The contents of As, Co, Ga, K, Na, Sc and Zn 

in carpholite, of As, K, Na, Ta, W and Zn in 

rhodonite and of Hg, Sr, Ta and rare-earth elements 

(REEs) in kutnohorite were found to be higher 

compared to the other investigated trace elements 

(Table 1). 

The results obtained from the k0-INAA reve-

aled that the Mn content is very close to the avera-

ged results obtained from the X-ray microprobe 

analysis conducted on three different spots (Jova-

novski et al., 2012) (Table 2). The minerals are very 

suitable candidates for further studies aimed to 

method development towards elimination of the Mn 

and determination of the following elements due to 

the very strong matrix interferences (Ag, Ba, Cr, Cs, 

Cu, Eu, Hf, In, Nd, Rb, Sb, Se, Tb and Zr). These 

investigations are in progress.

T a b l e  1 

Element content for the studied manganese minerals (mg/kg) obtained by k0-INAA 

Element 

Minerals 

Carpholite Rhodonite Kutnohorite 

Content Uncertainty Content Uncertainty Content Uncertainty 

Ag <1.47 <0.34 <0.42 

As 10.0 0.4 14.9 0.5 0.349 0.013 

Au 0.00634 0.00040 0.00147 0.00013 <0.00047 

Ba <15 <8.8 <10 

Br 0.919 0.037 <0.065 <0.031 

Ca <2064 54580 1964 279543 9828 

Cd <1.48 <0.75 <0.42 

Ce <0.63 0.50 0.059 1.99 0.10 

Co 58.2 2.0 0.15 0.021 <0.050 

Cr <1.6 <0.47 <0.53 

Cs <0.30 <0.07 <0.086 

Cu <38 <3.1 <8 

Eu <0.21 <0.011 0.285 0.011 

Fe 7035 248 4122 146 2205 79 

Ga 38.7 1.4 1.84 0.07 <0.1 

Hf <0.14 1.15 0.04 <0.058 

Hg <0.17 <0.16 1.37 0.06 

In <2.1 <0.8 <1.0 

K 66.0 4.2 15.1 1.9 16.3 0.8 

La 0.166 0.007 0.344 0.013 0.833 0.029 

Mn 117500 4117 317100 11110 112000 3923 

Mo 1.97 0.11 <0.51 <0.38 

Na 114 4 16.9 0.6 7.51 0.26 

Nd <1.4 <0.7 <0.99 

Rb <4.2 <1.7 <2.4 

Sb <0.050 0.629 0.023 0.0232 0.0017 

Sc 40.6 1.4 <0.005 <0.007 

Se <1.0 <0.49 <0.62 

Sm 0.0479 0.0018 0.0758 0.0027 0.783 0.027 

Sr <105 <27 99.5 4.7 

Ta 5.37 0.19 12.6 0.4 90.0 3.2 

Tb <0.077 <0.018 0.431 0.019 

Th 0.185 0.013 0.0630 0.0066 <0.043 

U <0.031 0.0601 0.0062 0.0701 0.0045 

W 0.178 0.034 16.9 0.6 0.583 0.021 

Yb 0.0848 0.0089 0.0526 0.0043 1.17 0.04 

Zn 727 26 167 6 <3.7 

Zr <101 <21 <21 
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T a b l e  2 

The content of Mn (in %) obtained by X-ray microprobe analysis (XRMA) (Jovanovski et al., 2012)  

and k0-INAA (this work, see Table 1) 

Mineral 
XRMA 

k0-INAA 
Spot 1 Spot 2 Spot 3 Average 

Carpholite   9.87 10.92 10.80 10.53 11.75 

Rhodonite 32.01 34.44 30.22 32.22 31.71 

Kutnohorite 11.48 12.53 11.44 11.82 11.20 

CONCLUSION 

The k0-method of instrumental neutron acti-

vation analysis (k0-INAA) was successfully applied 

for the determination of 38 elements in three man-

ganese minerals (kutnohorite, carpholite and rhodo-

nite) from the Republic of Macedonia. The contents 

of As, Co, Ga, K, Na, Sc and Zn in carpholite, of 

As, K, Na, Ta, W and Zn in rhodonite and of Hg, Sr, 

Ta and REEs in kutnohorite were found to be higher  

 

compared to the other investigated trace elements. 

It was determined that kutnohorite contains lower 

amounts of trace elements. 
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Во три мангански минерали по потекло од Република 

Македонија беше определена содржината на матричните, 

спoредните и елементите во траги. Испитуваните минерали 

ѝ припаѓаат на карбонатната група [кутнoхорит, Ca(Mn2+
, 

Mg,Fe2+)(CO3)2, од Саса] и на иносиликатната подгрупа 

[карфолит, Mn2+Al2Si2O6(OH)4, од локалитетот Врбско; 

родонит (Mn2+,Fe2+,Mg, Ca)SiO3, од Саса]. За озрачување и 

определување на содржината на елементите беа користени 

ротациониот систем на реактор TRIGA од 250 kW и мулти-

елементната техника k0-инструменталната неутронска 

активациона анализа (k0-ИНАА). Вкупно беа определени 

38 елементи со користење на радионуклиди со средно и 

долго време на полураспад. Утврдено е дека содржината на 

As, Co, Ga, K, Na, Sc и Zn во карфолитот, на As, K, Na, Ta, 

W и Zn во родонитот, како и на Hg, Sr, Ta и REEs во кутнo-

хоритот е повисока во споредба со содржината на другите 

елементи во траги. Исто така е најдено дека кај кутнохо-

ритот содржината на елементите во траги е помала во 

споредба со нивната содржина во карфолитот и родонитот. 
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