GEOLOGICA MACEDONICA

Geologica Macedonica	Год.		Број		стр.		Штип	
		24		1		1–74		2010
Geologica Macedonica	Vol.		No	_	pp.	- , .	Štip	

Geologica Macedonica	Год.		Број		стр.		Штип	
Geologica Macedonica	Vol.	24	No	1	pp.	1–74	Štip	2010

GEOLOGICA MACEDONICA

Published by: – Издава:

The "Goce Delčev" University, Faculty of Natural and Technical Sciences, Štip, Republic of Macedonia Универзитет "Гоце Делчев", Факултет за природни и технички науки, Штип, Република Македонија

EDITORIAL BOARD

Todor Serafimovski (R. Macedonia, *Editor in Chief*), Prof. Blažo (R. Macedonia, *Editor*), David Alderton (UK), Tadej Dolenec (R. Slovenia), Ivan Zagorchev (R. Bulgaria), Wolfgang Todt (Germany), acad. Nikolay S. Bortnikov (Russia), Clark Burchfiel (USA), Thierry Augé (France), Todor Delipetrov (R. Macedonia), Vlado Bermanec (Croatia), Milorad Jovanovski (R. Macedonia), Spomenko Mihajlović (Serbia), Dragan Milovanović (Serbia), Dejan Prelević (Germany), Albrecht von Quadt (Switzerland)

УРЕДУВАЧКИ ОДБОР

Тодор Серафимовски (Р. Македонија, *Тлавен уредник*), Блажо Боев (Р. Македонија, *уредник*), Дејвид Олдертон (В. Британија), Тадеј Доленец (Р. Словенија), Иван Загорчев (Р. Бугарија), Волфганг Тод (Германија), акад. Николай С. Бортников (Русија), Кларк Барвфил (САД), Тиери Оже (Франција), Тодор Делипетров (Р. Македонија), Владо Берманец (Хрватска), Милорад Јовановски (Р. Македонија), Споменко Михајловиќ (Србија), Драган Миловановиќ (Србија), Дејан Прелевиќ (Германија), Албрехт вон Квад (Швајцарија)

Language editor Лектура

Marijana Kroteva Маријана Кротева

(English) (англиски)

Georgi Georgievski, Ph. D. д-р Георги Георгиевски

(Macedonian) (македонски)

Technical editor Технички уредник

Blagoja Bogatinoski Благоја Богатиноски

Proof-reader Коректор

Alena Georgievska Алена Георгиевска

Address Адреса

GEOLOGICA MACEDONICA GEOLOGICA MACEDONICA

EDITORIAL BOARD РЕДАКЦИЈА

P. O. Box 96 пошт. фах 96

MK-2000 Štip, Republic of Macedonia МК-2000 Штип, Република Македонија

Tel. ++ 389 032 550 575 Тел. 032 550 575

E-mail: todor.serafimovski@ugd.edu.mk

400 copies Тираж: 400

Published yearly Излегува еднаш годишно

Printed by: Печати:

 2^{ri} Avgust – Štip 2^{pu} Август – Штип

Price: 500 den Цена: 500 ден.

The edition was published in December 2010 Бројот е отпечатен во декември 2010

Photo on the cover: На корицата:

Argillitic alteration, Kadiica, Republic of Macedonia Аргилитска алтерација, Кадиица, Република Мекедонија

Geologica Macedonica	Год.		Број		стр.		Штип	
		24		1		1–74	L.	2010
Geologica Macedonica	Vol.		No	_	pp.		Štip	

СОДРЖИНА

Споменко Ј. Михајловиќ, Руди Чоп, Паоло Паланџио	
Структура на големите магнетни бури	1–12
Марјан Делипетрев, Жан Л. Расон, Благица Донева, Тодор Делипетров	
Мрежа на мерни станици и тектонска реонизација на Република Македонија	13–21
Милорад Јовановски, Азра Шпаго, Игор Пешевски	
Дијапазон на вредности на инженерско-геолошки карактеристики на некои	
карбонатни карпести комплекси од балканскиот полустров	23–30
Гоше Петров, Виолета Стојанова, Војо, Мирчовски, Андреј Шмуц, Ѓорѓи Димов	
Тектонска еволуција на палеогените басени во Република Македонија	31–37
Тодор Серафимовски, Горан Тасев, Крсто. Блажев, Александр Волков	
Главните Алписки структури и Си-порфирска минерализација	
во Српско-Македонскиот масив	39–48
Тена Шијакова-Иванова, Весна Амбаркова, Vassiliki Topitsogloy, Весна Панева-Зајкова	
Зависност помегу концентрацијата на флуор и останатите елементи во некои	
геотермални води во Република Македонија	49–52
Снежана Димовска, Трајче Стафилов, Роберт Шајн	
Определување на активноста на 40K и вкупната бета активност во почвата	
од Кавадарци и неговата околина	53–62
Сабина Стрмиќ Палинкаш, Сибила Боројевиќ Шоштариќ , Ладислав Палинкаш,	
Золтан Печкај, Блажо Боев, Владимир Берманец	
Гасно-течни инклузии и одредување на староста според методот K/Ar	
на Au-Sb-As-Tl наоѓалиштето Алшар, Македонија	63–71
Vпатетро за артопите	73_74

Geologica Macedonica	Год.		Број		стр.		Штип	
		24		1		1–74		2010
Geologica Macedonica	Vol.		No		pp.	_ ,	Štip	

TABLE OF CONTENTS

The structure of the big magnetic storms	1–12
Marjan Delipetrev, Jean L. Rasson, Blagica Doneva, Todor Delipetrov	
Net of repeat stations and tectonic regionalization of the Republic of Macedonia	13–21
Milorad Jovanovski, Azra Špago, Igor Peševski	
Range of engineering-geological properties for some carbonate rock complexes from Balkan Peninsula	23–30
Goše Petrov, Violeta Stojanova, Vojo Mirčovski, Andrej Šmuc, Đorđi Dimov	
Tectonics evolution of the paleogene basins in the Republic of Macedonia	31–37
Todor Serafimovski, Goran Tasev, Krsto Blažev, Aleksandr Volkov	
Major alpine structures and Cu-porphyry mineralization in the Serbo-Macedonian massif	39–48
Tena Šijakova-Ivanova, Vesna Ambarkova, Vassiliki Topitsogloy, Vesna Paneva-Zajkova	
Fluoride content and dependence on other elements in some geotermal waters in	
Republic of Macedonia	49–52
Snežana Dimovska, Trajče Stafilov, Robert Šajn	
Determination of activity concentration of ⁴⁰ K and gross beta activity in soil	
from Kavadarci and its environs	53–62
Sabina Strmić Palinkaš, Sibila Borojević Šoštarić, Ladislav Palinkaš, Zoltan Pecskay,	
Blažo Boev, Vladimir Bermanec	
Fluid inclusions and K/Ar dating of the Allšar Au-Sb-As-Tl mineral deposit, Macedonia	63–71
Instructions to authors	73–74

GEOME 2 Manuscript received: March 5, 2010 Accepted: September 7, 2010

Original scientific paper

DETERMINATION OF ACTIVITY CONCENTRATION OF ⁴⁰K AND GROSS BETA ACTIVITY IN SOIL FROM KAVADARCI AND ITS ENVIRONS

Snežana Dimovska¹, Trajče Stafilov², Robert Šajn³

¹Institute of Public Health, 50 Divizija 6, MK-1000 Skopje, Macedonia
²Institute of Chemistry, Faculty of Science, St. Cyril and Methodius University in Skopje,
POB 162, MK-1001 Skopje, Macedonia,
³Geological Survey of Slovenia, Dimičeva ul. 14, 1000 Ljubljana, Slovenia
trajcest@pmf.ukim.mk

A b s t r a c t: A survey was carried out to determine the activity concentration and distribution of ⁴⁰K and gross beta activity in the soil from the city of Kavadarci, Republic of Macedonia, and its environs. A total of 45 surface soil samples were collected from evenly distributed sampling sites over an area of 360 km². The activity concentrations of ⁴⁰K were measured using a high purity germanium (HPGe) gamma-ray detector, while the gross beta activity measurements were made using a low background gas-flow proportional counter. The obtained values for the activity concentrations of ⁴⁰K were found to be in the range of 286±6 and 801±12 Bq/kg with an average value of 545±118 Bq/kg. The gross beta activities varied between 438±21 and 1052±36 Bq/kg, with an average value of 681±146 Bq/kg. These values allowed the determination of the elemental concentrations of potassium as well as the air absorbed gamma dose rate, which were found to range from 0.92±0.02 to 2.56±0.04% and from 11.9±0.1 to 33.4±0.5 nGy/h, respectively. The mean values of these parameters were 1.74±0.37% and 22.8±4.9 nGy/h. All obtained values fall within the worldwide range as reported in the literature. A strong correlation between the content of potassium in the soils and their geological origin was observed.

Key words: potassium; soil; gamma spectrometry; gross beta activity, activity concentration; absorbed dose rate, lithological units

INTRODUCTION

External exposures outdoors arise from terrestrial radionuclides present at trace levels in all soils and the specific levels are related to the types of rock from which the soils originate. There have been many surveys to determine the background levels of radionuclides in soils, which can in turn be related to the absorbed dose rates in air. The spectrometric measurements indicate that the three components of the external radiation field, namely from the gamma-emitting radionuclides in the ²³⁸U and ²³²Th series and ⁴⁰K, make approximately equal contribution to the external gamma radiation dose to individuals (UNSCEAR, 2000).

Potassium is an essential element of human metabolism and can be found in all living cells, mainly in the muscular tissue. Natural potassium is composed of three isotopes: 39 K, 40 K and 41 K. Of these naturally occurring potassium isotopes only 40 K is unstable, having a half-life of 1.28×10^9

years. It occurs to an extent of 0.012 % in natural potassium, thereby imparting a specific activity of approximately 30 Bq/g potassium. ⁴⁰K is a beta and gamma emitter (89 % and 11 % of its radiation, respectively) with respective energies of 1.3 and 1.46 MeV (Bowen, 1979).

Because of its relative abundance and its energetic beta emission, ⁴⁰K is easily the predominant radioactive component in normal foods and human tissues. It is important to recognize that the potassium content of the body is under strict homeostatic control and is not influenced by variations in environmental levels (Eisenbud, 1987).

Radioactivity levels of the environment depend on geological aspects, mainly on rocks and soil, where the radionuclides are found in varying concentrations (Tzortzis and Tsertos, 2004). Representative values of the potassium content of rocks, as summarized by Kohman and Saito (1954)

indicate a wide range of values, from 0.1 % for limestones trough 1 % for sandstones and 3.5 % for granite. The potassium content of soils of arable lands is controlled by the use of fertilizers. It is estimated that about 1.11×10^{14} Bq is added annually to the soils of the United States in the form of fertilizer (Guimond, 1978).

The mean natural radionuclide contributions to gross beta activity in soil are ⁴⁰K and ²²⁶Ra beta emitting decay products (Kücükömeroglu et al., 2008).

The aim of the present study is to measure the beta activity levels in the surface soil over the Kavadarci region, to assess the radiation hazard to the population due to ⁴⁰K and to investigate the connection between the potassium content in the soils and the geology of the terrain. The importance of this work arises from the fact that there is no reference regarding this area concerning the ⁴⁰K activity concentrations in the soil.

MATERIAL AND METHODS

Study area

The city of Kavadarci is situated in Tikveš valley, about 100 km south of Skopje, the capital of The Republic of Macedonia (Fig. 1). The study area is limited with coordinates (Gauss Krueger zone 7) 7574000 (W) -7592000 (E) and 4582000 (S) – 4602000 (N).

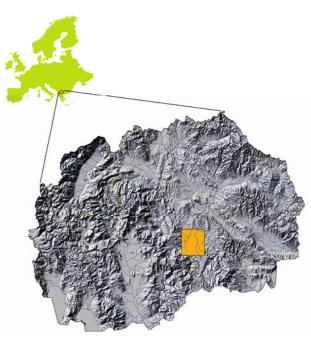


Fig. 1. Location of the study area

The urban area is surrounded by hills from east and south. Of the total 360 km² of the study area, rivers and lakes cover 6 km², cultivable land 221 km², non-cultivable area 120 km² and urbanized area 13 km² (Fig. 2). The Kavadarci region is the main center of vine production in Macedonia and south-eastern Europe and it is known for its ferro-nickel industrial activity (Stafilov et al., 2008; 2010).

The geological description of the study area (Fig. 3) was made according to Rakićević et al. (1965) and Hristov et al. (1965).

The region of Paleozoic and Mezozoic rocks (Pz-Mz) cover approximately 39 km² in the SW and W part of the investigated area and 7 soil samples were taken from this area. The Upper Eocene flisch sediments and yellow sandstones (E-Flis) are developed along Vardar, Crna Reka and Luda Mara valleys, they cover approximately 34 km², mainly in the north part of the investigated area, where 4 sampling sites are located. The Pliocene sediments (Pl-sand) fill the Tikveš basin, they cover the biggest part of the study area (about 182 km²) and from this region 23 soil samples were collected. The Quaternary pyroclastic vulcanites (Q) are found on the south-east from Kavadarci, they are spread over an area of around 25 km² and 5 soil samples were taken. Quaternary ages is represented with deluvial (12 km²), terrace (23 km²) and aluvial sediments (40 km²). On this lityhological units 6 sampling sites are located.

Sampling

The soil samples from the city of Kavadarci and its environs were collected for preparing a geochemical atlas of this region and according to the European guidelines for soil pollution studies (Teocharopulos et al., 2001; Šajn, 2004). The investigated region was covered by a sampling grid of 4×4 km² (Fig. 4) and a total of 45 soil samples were taken. The samples were collected from the upper 5 cm layer. Each sample represents a composite material collected at the central sample point and four points within the radius of 10 m around it towards N, E, S and W. The mass of such sample was about 1 kg.

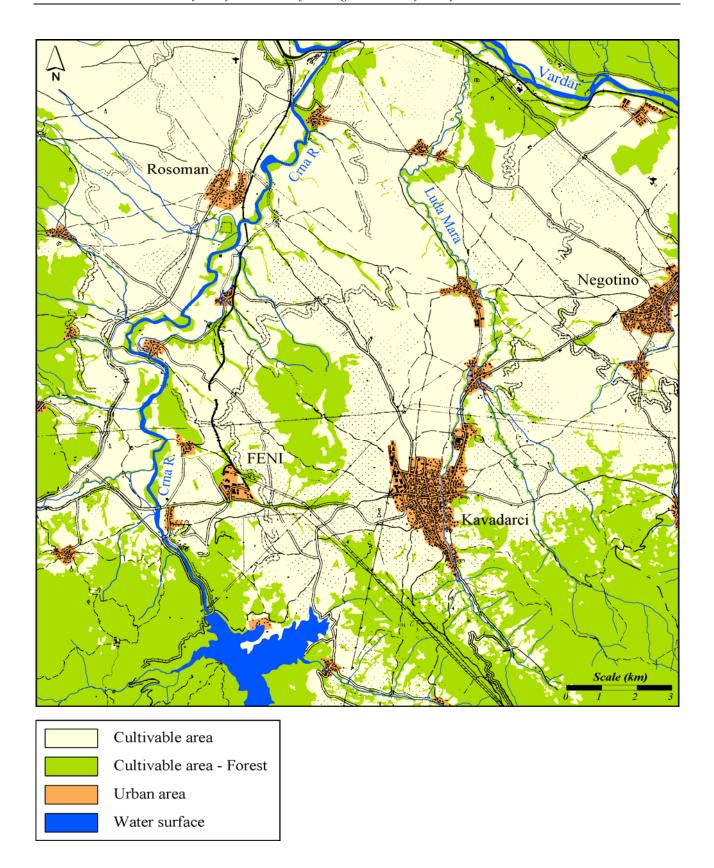


Fig. 2. Land use map of the study area

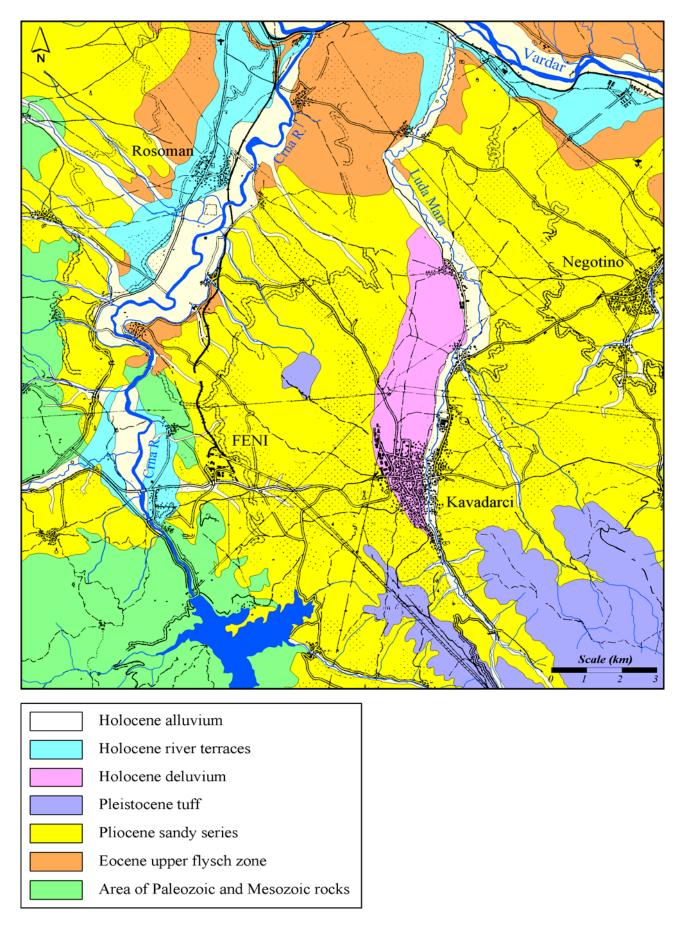


Fig. 3. Lithological map of the study area

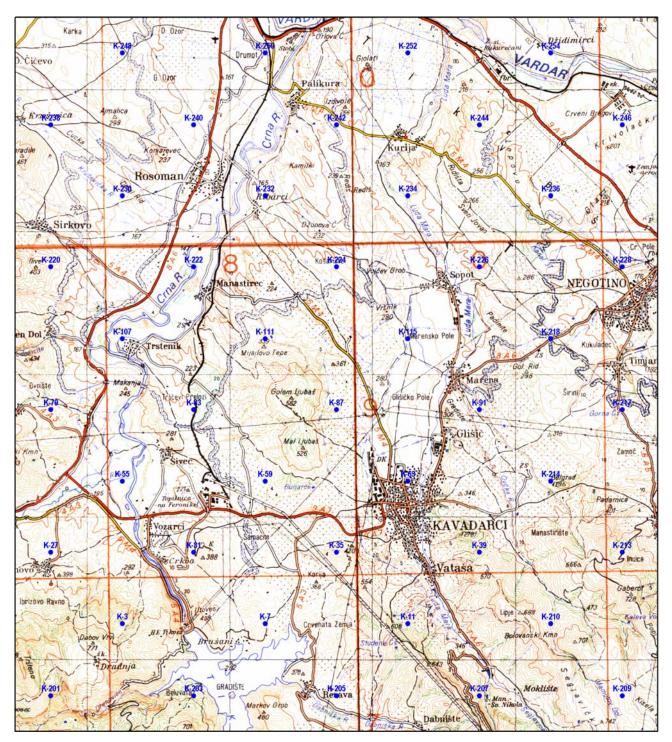


Fig. 4. Soil samples locations in the Kavadarci area

Sample preparation

The samples were mixed thoroughly, collected in plastic bags and labeled properly. In the laboratory, after removing the roots and stones, the samples were air dried for about two weeks, grounded, sieved and homogenized. The fraction below 2 mm was used for the analyses. The data have been expressed on dry weight basis.

About 200 mg of each soil sample were taken for measurement of the gross beta activity, transferred into a 2-in. diameter stainless steel planchete, evenly spread, fixed with acetone and dried under infrared lamp.

For gamma spectrometric analyses of ⁴⁰K prepared soil samples of about 150 g each were stored in standardized cylindrical plastic containers.

Radiological analyses

The measurement of gross beta activity in all soil samples was performed using MINI 20 Very low background multiple detector counting system for low alpha/beta activities, Eurysis Measures. The detectors used were gas flow proportional counters. The system was calibrated with prepared standard samples which contain known concentration of ⁴⁰K. The counting time was 60 minutes, by four independent detectors in the system, simultaneously. Each sample was counted for three times in a row and the results were given as an arithmetic mean with the statistical error.

For the measurement of activity concentrations of ⁴⁰K in the soil samples a high resolution gammaray spectrometer consisting of a coaxial P-type HPGe detector with a relative efficiency of 27.1 % was used. The detector was coupled to a Canberra multi-channel analyzer (MCA). The resolution was 2 keV at 1.33 MeV of ⁶⁰Co. The detector was shielded in an 8 cm lead chamber with an inner lining of 2 cm thick copper plate to reduce the background. The results were analyzed by Genie-2000 software (Canberra). A reference sample (Soil-375) provided by the International Atomic Energy

Agency was used for the efficiency calibration of the system. Each sample was counted for 60 000 s.

The activity concentration of ⁴⁰K was determined using its single 1460.8 keV gamma-ray line and converted to total elemental concentration of potassium, reported in %, using the following equation (Tzortzis and Tsertos, 2004):

$$F_E = \frac{M_E \cdot C \cdot A_E}{\lambda_E \cdot N_A \cdot f_{A,E}}$$

where $F_{\rm E}$ is the fraction of element E in the sample, $M_{\rm E}$, $\lambda_{\rm E}$, $f_{\rm A,E}$ and $A_{\rm E}$ are the atomic mass (kg/mol), the radioacivity decay constant (s⁻¹), the fraction atomic abundance in nature and measured activity concentration (Bq/kg) of the corresponding radionuclide, respectively, $N_{\rm A}$ is Avogadro's $(6.023 \times 10^{23} \ {\rm atoms/mol})$ and C is a constant with a value of 100 for potassium.

The absorbed gamma dose rate in air 1 m above the ground ($D_{\rm K}$), proceeding from the gamma emissions of $^{40}{\rm K}$, in nGy/h, was calculated on the basis of guidelines provided by UNSCEAR, 2000:

$$D_K = 0.0417 \cdot A_K$$

where $A_{\rm K}$ is the activity concentration of $^{40}{\rm K}$ (Bq/kg).

RESULTS AND DISCUSSION

The obtained results for the minimum, maximum and average values of gross beta activity and the activity contrations of ⁴⁰K in Bq/kg of dry soil, the calculated content of potassium (in %) and the absorbed gamma dose rate (in nGy/h) are presented in Table 1.

Table 1

The minimum, maximum and average values of gross beta activity, activity concentration of ⁴⁰K, elemental concentration of potassium and the absorbed gamma dose rate

	Minimum	Maximum	Average
Gross beta activity			
(Bq/kg)	438±21	1052±36	681±146
⁴⁰ K (Bq/kg)	286±6	801±12	545±118
K (%)	0.92±0.02	2.56±0.04	1.74±0.37
$D_{\rm K}$ (nGy/h)	11.9±0.1	33.4±0.5	22.8±4.9

The gross beta activity of the soils varied between 438±21 and 1052±36 Bq/kg, with an average of 681±146 Bq/kg. The map of the distribution of the gross beta activity in the studied area is shown in Fig. 5.

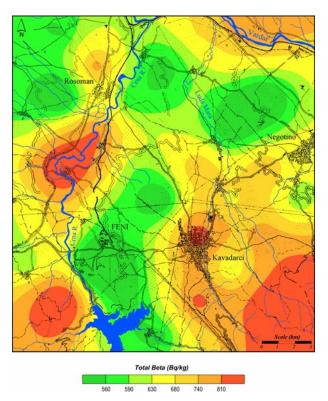
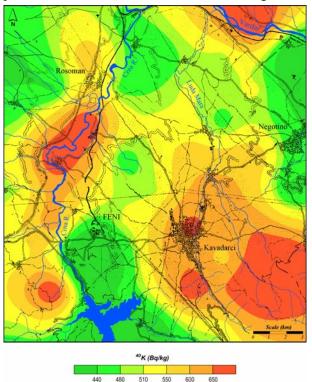



Fig. 5. Map of the distribution of gross beta activity

The activity concentration of potassium in the soil samples was found to be in the range from 286±6 to 801±12 Bq/kg, with an average of 545±118 Bq/kg. The elemental concentration of potassium ranged from 0.92±0.02 to 2.56±0.04%, with an average of 1.73±0.37%. The distribution of potassium in the studied area is shown in Fig. 6.

Fig. 6. Map of the distribution of 40 K

The measured activity concentration of ⁴⁰K were compared with the values reported worldwide as shown in Table 2.

Table 2

Activity concentrations of ⁴⁰K (Bq/kg) measured worldwide

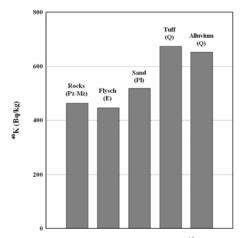
Region	References	40 K
Pernambuco, Brazil	Santos Jr., et al. 2005	1827
Thanjavur, India	Senthilkumar et al., 2010	149.5±3.1
Riyadh, Saudi Arabia	Alaamer, 2008	225±63
Ontario, Canada	Vanden Bygaart et al., 1999	461.5±168.4
Marmara Region, Turkey	Kilic et al., 2007	442.5±189.9
West Bank, Palestina	Dabayneh et al., 2008	630
Ptolemais, Greece	Psichoudaki and Papaefthymiou, 2008	496±56
Punjab, Pakistan	Tahir et al., 2005	307±101
Vojvodina, Serbia	Bikit et al., 2005	554±92
Nigeria	Ajayi, 2009	286.5±308.5
Turkey	Kücükömeroglu et al., 2008	51-1605
Veles region, Macedonia	Dimovska et al., 2010	585.7 ± 86.4
Worldwide average	UNSCEAR, 2000	400 (140-850)
This work		545±118

The calculated air absorbed gamma dose rate values varied from 11.9 ± 0.1 to 33.4 ± 0.5 nGy/h, with a mean of 22.8 ± 4.9 nGy/h.


The statistical data for gross beta activity and the activity concentration of ⁴⁰K, according to the basic lithological units, are given in Table 3.

Table 3

The minimum, maximum and average values of gross beta activity and activity concentration of 40 K according to the basic lithological units


	Lithological unit	Minimum	Maximum	Average
Gross beta activity (Bq/kg)	Pz-Mz	438±21	1052±36	681±146
	E-Flis	494±25	688 ± 28	591±91
	Pl-sand	490±27	868±33	625±91
	Q-Tuf	744±29	1030±34	880±102
	Q-Al	612±26	1012±33	790±136
40 K (Bq/kg)	Pz-Mz	286±6	756±11	481±144
	E-Flis	374±6	541±7	450±69
	Pl-sand	400±6	754±11	523±77
	Q-Tuf	588±8	780±11	677±73
	Q-Al	469±7	801±12	662±121

The highest average values for the activity concentration of ⁴⁰K and gross beta activity (677±73 Bq/kg and 880±102 Bq/kg, respectively) are found in the regions of Pleistocene tuff (Q-

Fig. 7. Average gross beta activity according to the basic lithological units

Tuf), whereas the lowest average values (450±69 Bq/kg and 591±91 Bq/kg, respectively) occur in the areas of the Eocene upper flysch zone (E-Flis) (Figs. 7 and 8).

Fig. 8. Average activity concentration of ⁴⁰K according to the basic lithological units

CONCLUSION

The calculated average value for the gross beta activity in the analyzed soil samples is 681 ± 146 Bq/kg. The common values range from several hundreds to 1000 Bq/kg (ISO 18589-3, 2007). The gross beta activity in environmental samples derives mainly from the presence of 40 K and also the other natural beta emitting radionuclides. The high obtained value for the linear coefficient of correlation r (0.82) between the gross beta activity and the activity of 40 K is in an agreement with the literature data.

The average activity concentration of ⁴⁰K measured in the soil samples from the region of Kavadarci and its environs (545±118 Bq/kg) is

comparable with the values for the activity concentration of ⁴⁰K in the soils from other region in Macedonia and the neighboring countries (Serbia, Greece). It is slightly higher than the worldwide average, but still in the range of UNSCEAR 2000 report, which is 140-850 Bg/kg.

The highest average values for the investtigated parameters are found in the regions of Pleistocene tuff and Holocene alluvium of the rivers Vardar, Crna Reka and Luda Mara, whereas the lowest average values occur in the areas of the Eocene upper flysch zone, which proves the relation between the content of potassium in soils and their geological origin.

REFERENCES

Ajayi O. S., 2009: Measurement of activity concentrations of ⁴⁰K, ²²⁶Ra and ²³²Th for assessment of radiation hazards from soils of the southwestern region of Nigeria, *Radiation and Environmental Biophysics*, **48**, 323-332.

Alaamer A. S., 2008: Assessment of human exposures to natural sources of radiation in soil of Riyadh, Saudi Arabia, Turkish Journal of Engineering and Environmental Sciences, 32, 229-234.

Bikit I., Slivka J., Čonkić Lj., Krmar M., Vesković M., Žikić – Todorović N., Varga E., Ćurčić S., Mrdja D., 2005: Radioactivity of the soil in Vojvodina (northern province of Serbia and Montenegro), *Journal of Environmental Ra*dioactivity, 78, 11-19. Bowen H. J. M., 1979: Environmental Chemistry of the Elements, Academic Press, New York.

Dabayneh K. M., Mashal L. A., Hasan F. I., 2008: Radioactivity concentration in soil samples in the southern part of the West Bank, Palestina, *Radiation Protection Dosimetry*, **131**, 265-271.

Dimovska, S., Stafilov, T., Šajn, R., Frontasyeva, M. V., 2010:
 Distribution of some natural and man-made radionuclides in soil from the city of Veles (Republic of Macedonia) and its environs, *Radiation Protection Dosimetry*, 138, 144–157

Eisenbud M., 1987: *Environmental Radioactivity*, Academic Press, New York.

- Guimond R. J., 1987: The radiological aspects of fertilizer utilization in radioactivity in consumers products. USNRC Rep. NUREG/CP0003, p. 381-393. NTIS, Springfield, Virginia.
- Hristov C., Karajovanović M., Stračkov M., Basic Geological Map of SFRJ, Sheet Kavadarci, M 1:100,000 (map & interpreter), Federal Geological Survey, Beograd, 1965, 62 pp.
- ISO International Organization for Standardization, 18589-3, 2007: Measurement of radioactivity in the environment -Soil, Part 3: Measurement of gamma-emmitting radionuclides.
- O. Kilic O., Belivermis M., Topcuoglu S., Cotuk Y., Coskun M., Cayir A., Kucer R., 2007: Radioactivity concentrations and dose assessment in surface soil samples from east and south of Marmara region, Turkey, *Radiation Protection Dosimetry*, 128, 324-330.
- Kohman T., Saito N., 1954: Radioactivity in geology and cosmology, Annual Review of Nuclear Science, 4, 401-462.
- Kücükömeroglu B., Kurnaz A., Keser R., Korkmaz F., Okumusoglu N. T., Karahan G., Sen C., Cevik U., 2008: Radioactivity in sediments and gross alpha-beta activities in surface water of Firtina River, Turkey, *Environmental Geology*, 55, 1483-1491.
- Psichoudaki M., Papaefthymiou, H., 2008: Natural radioactivity measurements in the city of Ptolemais (Northern Greece), Journal of Environmental Radioactivity, 99, 1011-1017.
- Rakićević T., Stojanov S., Arsovski M., Basic Geological Map of SFRJ, Sheet Prilep, M 1:100,000 (map & interpreter), Federal Geological Survey, Beograd, 1965, 62 pp.
- Šajn R., 2004: Distribution of mercury in surface dust and topsoil in Slovenian rural and urban areas, *RZM-Materials and Geoenvironment*, **51**, 1800-1803.
- Santos Jr. J. A., Cardoso J. J. R. F., Silva C. M., Silveira S. V., Amaral R. dos S., 2005: Analysis of the ⁴⁰K Levels in Soil

- using Gamma Spectrometry, Brazilian Archives of Biology and Technology, 48, 221-228.
- Senthilkumar B., Dhavamani V., Ramkumar S., Philominathan P., 2010: Measurement of gamma radiation levels in soil samples from Thanjavur using γ-ray spectrometry and estimation of population exposure, *Journal of Medical Physics*, **35**, 48-53.
- Stafilov T., Šajn R., Boev B., Cvetković J., Mukaetov D., Andreevski M., 2008: Geochemical Atlas of Kavadarci and the Environs, Faculty of Natural Sciences and Mathematics, Skopje.
- Stafilov T., Šajn R., Boev B., Cvetković J., Mukaetov D., Andreevski M., Lepitkova, S., 2010: Distribution of some elements in surface soil over the Kavadarci Region, Republic of Macedonia, *Environmental Earth Sciences*, 61, 1515–1530..
- Tahir S. N. A., Jamil K., Zaidi J. H., Arif M., Ahmed N., Ahmad S. A., 2005: Measurement of activity concentrations of naturally occuring radionuclides in soil samples from Punjab province of Pakistan and assessment of radiological hazard, *Radiation Protection Dosimetry*, 113, 421-427.
- Theocharopulos S. P., Wagner G., Sprengart, Mohr M-E., Desaules A., Muntau H., Christou M., Quevauviller P., 2001: European soil sampling guidelines for soil pollution studies, *The Science of the Total Environment*, 264, 51-62.
- Tzortzis M., Tsertos H., 2004: Determination of thorium, uranium and potassium elemental concentrations in surface soils in Cyprus, *Journal of Environmental Radioactivity*, 77, 325-338.
- UNSCEAR United Nation Scientific Committee on the Effects of Atomic Radiation, 2000: Sources, effects and risks of ionizing radiation. Report to general assembly, with scientific annexes, United Nations, New York.
- Vanden Bygaart A. J., Protz R., McCabe D. C., 1999: Distribution of natural radionuclides and ¹³⁷Cs in soils of southwestern Ontario, *Canadian Journal of Soil Science*, **79**, 161-171.

Резиме

ОПРЕДЕЛУВАЊЕ НА АКТИВНОСТА НА 40 К И ВКУПНАТА БЕТА АКТИВНОСТ ВО ПОЧВАТА ОД КАВАДАРЦИ И НЕГОВАТА ОКОЛИНА

Снежана Димовска¹, Трајче Стафилов², Роберт Шајн³

¹Инстиштут за јавно здравје, 50 Дивизија 6, МК-1000 Скойје, Македонија
²Институт за хемија, Природно-математички факултет, Универзитет, Св. Кирил и Методиј" во Скорје, т. фах 162, МК-1001, Скойје, Рерублика Македонија
³Геолошки завод на Словенија, Димичева 14, 1000 Љубљана, Словенија trajcest@ pmf.ukim.mk

Клучни зборови: калиум; почва; гама спектрометрија; вкупна бета активност, специфична активност, брзина на гама доза, литолошки единици.

Испитување беше извршено со цел да се определи активноста и дистрибуцијата на ⁴⁰К и вкупната бета активност во почвата од Кавадарци, Република Македонија, и неговата околина. Земени се вкупно 45 примероци од по-

вршински почви од рамномерно распоредени локации, на површина од $360~{\rm km}^2$. Специфичните активности на $^{40}{\rm K}$ беа мерени со помош на Π -тип коаксијален гама детектор од германиум со висока чистота, додека мерењата на

вкупната бета активност беа извршени со користење на нискофонов гасно-проточен пропорционален бројач. Добиените вредности за специфичната активност на 40 K се движат од 286 \pm 6 до 801 \pm 12 Bq/kg, со средна вредност од 545 \pm 118 Bq/kg. Вкупната бета активност варира помеѓу 438 \pm 21 и 1030 \pm 36 Bq/kg, со средна вредност од 681 \pm 146 Bq/kg. Овие податоци овозможија да се пресмета концентрацијата на калиум, како и брзината на гама дозата на

зрачење, кои изнесуваа од 0.92 ± 0.02 до 2.56 ± 0.04 % и од 11.9 ± 0.1 до 33.4 ± 0.5 nGy/h, соодветно. Средните вредности на овие параметри беа 1.74 ± 0.37 % и 22.8 ± 4.9 nGy/h. Сите добиени вредности се споредливи со просечните во светски рамки, објавени во литературата. Резултатите од анализата укажуваат на силна поврзаност помеѓу застапеноста на калиумот во почвите и нивното геолошко потекло.