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A bstract: This study investigates the effects of discretization errors on the analysis of microtremor vibrations
measured in a building located in Berovo, using the EQR120 accelerometer. The primary focus is on the impact of
discretization on Fourier spectral amplitudes and the accuracy of frequency domain analysis. The results show that with
increasing recording time (7), there are more pronounced peaks in the Fourier spectrum, especially for higher frequen-
cies. Despite variations in discrete levels of acceleration, the frequency domain response of the instrument remains
nearly constant over a wide range of frequencies, resembling white noise. The study highlights that microtremor am-
plitudes are generally small, and significant variations in spectral amplitudes were not observed over time in a 24 hour
measurement period. The findings suggest that external excitation with larger forces is needed to observe spectral peaks,
particularly in the ground floor movements. The analysis provides valuable insights into the behavior of microtremors
in built environments and emphasizes the challenges of capturing small-scale vibrations in densely populated areas.
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INTRODUCTION

Discretization error arises in numerical meth-
ods when continuous mathematical models are
approximated using discrete representations. This
error occurs in various fields such as computational
physics, engineering, and numerical simulations,
where differential equations are solved using finite
difference, finite element, or finite volume methods.
The primary sources of discretization error include
truncation errors from approximating derivatives
and interpolation errors due to the discretization of
continuous functions.

Understanding discretization error is essential
for ensuring the accuracy and stability of numerical
solutions. The error can be analyzed using methods
such as error estimation, grid refinement studies,
and convergence analysis. A key aspect of dis-
cretization error analysis is determining the order of
accuracy of a numerical method, which describes
how the error decreases as the grid resolution in-
creases.

The discretization error is a significant factor
in the measurement and analysis of weak vibrations,
such as microtremors. It arises due to the limited
resolution of measurement instruments and the

digitization processes of continuous signals. In this
context, measurements conducted in a house in
Berovo (Figure 16a) using the EQR120 instruments
indicate that the recording threshold level is 0.0024
cm/s?, meaning that all measured vibrations with
amplitudes close to this threshold may be affected
by discretization error (Gicev et al., 2021; Kokala-
nov et al., 2022).

The EQR120 accelerometers are highly sensi-
tive and capable of detecting ambient noise (Instru-
ments, C. S., 2019). To ensure accuracy, they were
first synchronized using GPS antennas connected
via the internet. For proper synchronization, the an-
tennas must be placed outdoors with a strong satel-
lite signal to accurately set the time on instruments.
By positioning the accelerometers near the edges of
the roof and recording ambient vibrations along the
building’s length and width, it is possible to deter-
mine the structure’s torsional periods (Rahmani &
Todorovska, 2014; Sawada, 2004).

These accelerometers are typically operated
continuously, with each unit synchronized to Coor-
dinated Universal Time (UTC) through its dedicat-
ed GPS receiver, achieving a time accuracy of 1


https://doi.org/10.46763/GEOL

48 M. Kocaleva Vitanova, V. Gicev

microsecond. The EQR120 is a triaxial accelerome-
ter equipped with a MEMS servo silicon sensor, of-
fering a dynamic range of 128 dB for frequencies
between 0.1 and 20 Hz. It supports a recording
range of +4 g, with a recording threshold level of 2.4
x 107¢ g (where g = 9.81 m/s?, the acceleration due
to gravity), equivalent to 2.4 x 107 gal (cm/s?). The
device maintains high precision, with an offset error
of less than £0.02%, a linearity error under =0.1%,
and a gain error below £0.08%, across an operating
temperature range of —10°C to +60°C (Kocaleva,
M., & Gicev, V., 2024).

As the data show, the amplitudes of the mea-
sured microtremor accelerations are only 3 to 5
times higher than the recording threshold, which can
lead to significant errors in the calculated Fourier
spectral amplitudes. These errors may affect the

accuracy of data analysis and interpretation, high-
lighting the need for a detailed examination of the
effects of discretization.

To investigate this issue, a numerical experi-
ment was conducted to quantify the errors caused by
discretization. This experiment focuses on analyz-
ing the spectral components of the signals and ex-
ploring ways to minimize the negative impact of
discretization errors on the results.

This study explores the nature of discretization
errors, their impact on numerical solutions, and
strategies for minimizing them. By analyzing these
errors, researchers and engineers can improve nu-
merical models, enhance computational efficiency,
and ensure reliable results in scientific and engi-
neering applications.

METHODOLOGY AND RESULTS

Our ambient vibrations measurements were
conducted in the house on Berovo Lake (Figure 1).
We use accelerometer EQR120 having a recording
threshold level 2.4 x 10°¢ g (g =9.81 m/s* = acceler-
ation due to gravity) or 2.4 x 107 gal = 0.0024
cm/s?.
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Fig. 1. a) Indoor measurements in a Berovo household
b) Positioning of measurement accelerographs

As shown in Figure 2 (top), the amplitudes of
the measured microtremor accelerations are only 3
to 5 times higher than this threshold (Kocaleva, M.,
2021).
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Fig. 2. Spectral amplitudes at the Berovo house

This introduces discretization errors in the
calculated Fourier spectral amplitudes, and their
effects need to be quantified. To achieve this, the
following numerical experiment was conducted.

First, a sine function with an amplitude of @ =
0.005 cm/s?, a frequency of =10 Hz, and a duration
of T seconds was generated:

git) =a-sin(2-m-f-t) (1)
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For this function, the Fourier amplitudes were The Fourier amplitudes for this function were
analytically computed. By substituting a and f, we then calculated using the Fourier transform G(w):
obtain: g(t) = 0.005 - sin(2 - - 10 - t).

T T T
G(w) =f g(e @tdt =f 0.005 - sin(2-3.14-10 - t) - e~ i@tdt = 0.005-[ sin(62.8t) - e~ @t dt =
0 0

0

0.005 [[62.8-cos(wt)-cos(Zzz.f-;lzsa;zin(mt)-sin(62.8-t) | 0] —i [62.8-cos(62.8-t)-si;lgf?g—‘t::‘li—n(ﬁz.&t)-cos((ut) | 'g” (2)
As seen in equation (2), the amplitudes G(w) T, we will compute and plot the Fourier amplitudes
depend on the duration of the sine function, i.e., the as expressed by equation (2).

upper limit of the integral, 7. For different values of

a) For 7= 5 minutes = 300 seconds:
62.8 - cos(300w) - (—0.991413) + w - sin(300w) - (0.13076799) —62.8
w? —3943.84
[62.8 - (—0.991413)- sin(300w) — - (0.13076799)- cos(300w)
: w? — 394384

G(w) = 0.005 “

b) For 7= 10 minutes = 600 seconds:
62.8 - cos(600w) - (0.96579947) + w - sin(600w) - (—0.25929016) —62.8]

w? — 3943.84
, [62.8 - (0.96579947)- sin(600w) — w - (—0.25929016)- cos(600w)”
—1

G(w) = 0.005 “

w? —3943.84

¢) For T'= 30 minutes = 1800 seconds:

62.8 - cos(1800w) - (0.70607131) + w - sin(1800w) - (—0.70814074) —62.8
wZ — 3943.84

, [62.8 - (0.70607131)- sin(1800w) — w - (—0.70814074)- cos(lBOOw)”
—1

G(w) = 0.005 “

w? —3943.84

d) For 7= 60 minutes = 3600 seconds:
62.8 - cos(3600w) - (—0.0029266) + w - sin(3600w) - (—0.99999572) —62.8]

G(w) = 0.005 “

w? — 3943.84
[62.8+(—0.0029266)- sin(3600w) — w * (—0.99999572)- cos(3600w)
' w? —3943.84
We also generate the same sine function: Fourier amplitudes for this function are analytically
gty =a-sin(2-m-f-t) 3) computed. o _
) ) By substituting a and f, we obtain:
with an amplitude of a = 0.005 cm/s?, a frequency _
of f= 2.5 Hz, and a duration of 7 seconds. The g() =0.005-sin(2-mw-2.5-¢t)

The Fourier amplitudes for this function are then calculated using the Fourier transform G(w).

T T T
G(w) = f g(e @tdt = J- 0.005 - sin(2 - 3.14 - 2.5 - t) - e~ tdt = 0.005 - f sin(15.7¢t) - e"@t gt
0 0 0

— 0.005 15.7 - cos(wt) - cos(15.7 - t) + w - sin(wt) - sin(15.7-t) T
e w? — 246.49 b
] [15.7 - cos(15.7 - t) - sin(wt) — w * sin(15.7 - t) - cos(wt) TH
—i

w? —246.49 | 0
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As seen in equation (3), the amplitudes G(w)
depend on the duration of the sine function, i.e., the

upper limit of the integral, 7. For different values of

a) For 7= 5 minutes = 300 seconds:

T, we will compute and plot the Fourier amplitudes
as expressed by equation (3).

15.7-cos(600w)-(0.0655248097) + w-sin(600w)-(0.99785094042) —15.7

G(w) = 0.005 [[

w?-246.49 ] B

i [15.7-(0.0655248097)-Sin(600w)— ®+(0.99785094042)-cos(600w)

b) For 7= 10 minutes = 600 seconds:

©2-246.49 ”

15.7-cos(600w)-(0.0655248097) + w'sin(600w)-(0.99785094042) —15.7

G(w) = 0.005 [[

w?-246.49 ] N

i [15.7'(0.0655248097)'Sin(600w)— ®+(0.99785094042)-cos(600w)

¢) For 7= 30 minutes = 1800 seconds:

w?%-246.49 ”

15.7-c0s(1800w)-(—0.19544910584) + w-sin(1800w)-(—0.98071384563) —15.7

G(w) = 0.005 [[

W2—246.49 ] N

i [15.7-(—0.19544910584)'Sin(1800w)— ®*(—0.98071384563)-cos(1800w)

d) For 7= 60 minutes = 3600 seconds:

w?-246.49 ]

15.7-c0s(3600w)-(—0.92359929405) + w-sin(3600w)-(0.38335928843) —15.7

G(w) = 0.005 [[

w2—246.49 ] N

i [15.7'(—0.92359929405)'Sin(3600w)— +(0.38335928843)-cos(3600w)

First, we represent the function for 10 Hz and
2.5 Hz on a time axis (Figure 3). We observe that
for 10 Hz, the period is 0.1 second, while for 2.5 Hz,
the period is 0.4 seconds.

The frequency domain response G(w) is plot-
ted using 1000 points (Figures 4 and 5). The ordi-
nate values G(w) are obtained for an angular fre-

it

Fig. 3. g(¢) for 10 Hz (blue color) and 2.5 Hz (red color)

w2-246.49 ”

quency interval o ranging from 0 to 100 rad/s with
an increment of 0.1 rad/s. We observe that the peak
for all sine wave durations 7 appears at © = 20w =
62.8 rad/s (Figure 4) and w = 5t = 15.71 rad/s
(Figure. 5), which correspond to = 10 Hz (Figure
6) and /= 2.5 Hz (Figure 7), respectively.
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Fig. 4. The peak for all sine wave durations for 7= 5, 10, 30
and 60 minutes for /=10 Hz
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Fig. 5. The peak for all sine wave durations for 7’=5, 10, 30,
and 60 minutes for f=2.5 Hz
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Fig. 7. Fourier spectral amplitudes for 7= 5, 10, 30,
and 60 minutes for f=2.5 Hz

With this, we have verified the analytical
solution (1). We observe that for different durations
T, the peak at = 10 Hz and /= 2.5 Hz varies in
magnitude and increases as T increases.

Next, we take the same sine function and
digitize it numerically by discretizing the time axis
at a sampling frequency of 100 Hz (i.e., 100 points
per second or a time interval of Az =0.01 s), while
varying the discrete levels on the amplitude axis.

Geologica Macedonica, 39, 1, 47— 55 (2025)

We will work with discrete amplitude levels of
0.0024 cm/s?, 0.001 cm/s?, 0.0001 cm/s2, and
0.00001 cm/s2.

For a discrete level of 0.0024 cm/s?, the func-
tion appears as shown in Figure 8.

Discretization with a discrete level of 0.001
cm/s? results in the following representation of the
function (Figure 9).

For a discrete level of 0.0001 cm/s?, the func-
tion appears as shown in Figure 10.

Fig. 8. Function g(¢) with discrete level 0.0024 cm/s?
(blue 10 Hz, red 2.5 Hz)

Fig. 9. Function g(¢) with discrete level 0.001 cm/s?
(blue 10 Hz, red 2.5 Hz)

P L L L L 4 L L L L
1] (1] (3] [ [1] [ [0 [0 1
Asec)

Fig. 10. Function g(¢) with discrete level 0.0001 cm/s?
(blue 10 Hz, red 2.5 Hz)
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Finally, for a discrete level of 0.00001 cm/s?,
the function appears as shown in Figure 11.

Fig. 11. Function g(t) with discrete level 0.00001 cm / s?
(blue 10 Hz, red 2.5 Hz)

From Figures 8 to 11, we observe that no
matter how fine the discretization in acceleration is,
if the time discretization remains coarse, the accu-
racy does not improve. This effect is particularly

Dt decrots vl
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Wy
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.12,

notice-able at higher frequencies (blue lines), where
the signal remains imprecise despite finer amplitude
discretization. However, for lower frequencies (red
lines), this limitation is less significant. For a fre-
quency of 2.5 Hz, we can see that increasing the
number of discretization levels results in a smoother
signal. Specifically, at the smallest discrete level of
0.00001 cm/s?, the graph appears the most accurate—
almost identical to Figure 3.

Next, using the FFT routine, we calculate the
spectral amplitudes for 7=15, 10, 30, and 60 minutes
and compare them with the spectra obtained from
analytical calculations.

In Figure 12 left and right, a grouped plot of
the four discretization levels for 7 = 5 minutes is
presented. In Figure 13, a grouped plot of the four
discretization levels for 7= 10 minutes is presented.
In Figure 14, a grouped plot of the four discreti-
zation levels for 7 = 30 minutes is presented. In
Figure 15, a grouped plot of the four discretization
levels for 7= 60 minutes is presented.
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Group graph of the four levels of discretization for 7= 5 minutes: a) for /= 10 Hz (left), b) for = 2.5 Hz (right)
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Fig. 13. Group graph of the four levels of discretization for 7= 10 minutes: a) for /= 10 Hz (left), b) for f=2.5 Hz (right)
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Fig. 15. Group graph of the four levels of discretization for 7= 60 minutes: a) for f= 10 Hz (left), b) for f=2.5 Hz (right)

The Table 1 presents a numerical solution to
the problem. As observed from the graphs, the
ampli-tude of the function varies for different 7" at
frequencies of 10 Hz and 2.5 Hz.

For 7= 300 seconds, the amplitude is approxi-
mately 0.29 — 0.32 cm/s. For 7 = 600 seconds, it
ranges from 0.73 to 0.79 cm/s. For T = 1800
seconds, it falls within 2.9 — 3.1 cm/s. For 7= 3600

For a frequency of 2.5 Hz, considering the
discretization levels, the numerical solution yields
similar amplitude values as for 10 Hz:

T'= 300 seconds — amplitude above 0.3 cm/s

T = 600 seconds — amplitude around 0.76 cm/s
T'=1800 seconds — amplitude between 3.04 —3.09 cm/s
T = 3600 seconds — amplitude around 4.9 — 5.013

seconds, it exceeds 4.74 cm/s. cns.
Table 1
Results from numerical solutions
Time Numerical solution Numerical solution
(s) (amplitude) (cm/s) 10 Hz (amplitude) (cm/s) 2/50 Hz
0.0024 0.001 0.0001 0,00001 0.0024 0.001 0.0001 0.00001
300 0.2984 0.3233 0.311 0.31 0.3075 0.3132 0.3095 0.3100
600 0.7327 0.7993 0.7689 0.7679 0.7603 0.7745 0.7654 0,7669
1800 2.931 3.1970 3.075 3.0679 3.0415 3.0983 3.0618 3.0678
3600 4.7423 5.1731 4.9755 4.964 4.9211 5.013 4.9539 4.9636
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In this part of the study, by reviewing the pre-
viously presented figures and Table 1, we can con-
Oclude that as the time 7T increases (from 300 to 600,
then to 1800, and finally to 3600 seconds), more pro-
nounced nounced peaks appear in the Fourier spec-
trum.

For = 10 Hz, the amplitude values at a dis-
crete level of 0.001 are the highest, while at 0.0024
are the lowest. For discrete levels of 0.0001 and
0.00001 the amplitudes are approximately equal

52
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with values between those of discrete levels 0.0024
and 0.001.

For lower frequency, f= 2.5 Hz, the amplitude
curves at different discrete levels are closer. All the
curves for different values of 7 exhibit the same
shape, as shown in Figure 16. Figure 16 provides a
graphical representation of the longest 60 minute
recording.

Points 1 to 4 represent the four discrete levels.
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Fig. 16. Numerical solution for peak spectral amplitudes for duration of sine function 7= 3600 seconds and for four different
discrete amplitude levels (1 —0.0024, 2 — 0.001, 3 — 0.0001, and 4 — 0.00001)
a) /=10 Hz (left), b) f'=2.5 Hz (right)

CONCLUSION AND SUMMARY

In densely populated areas, the amplitudes of
microtremors tend to be higher in the early after-
noon hours and lower during the night. We present-
ed the Fourier amplitude spectra of the recorded
microtremors in the basement of a building for
various periods throughout a 24 hour period (Figure
1b). We did not find variations in the spectral ampli-
tudes over time. We concluded that, at this location,
the contribution to the microtremors, with very
small amplitudes, is only a few times greater than
the lower threshold of the instrument's recording
capability.

Additionally, we observed that in the frequen-
cy domain, the response of the instrument is nearly
constant over a wide frequency range of interest,

from 1 Hz to 20 Hz, resembling white noise.
Because of the low excitation in this quiet environ-
ment, with our FFT routine we did not find peaks in
the transfer functions for the measurements in the
basement and the ground floor.

The ground floor movements at the building's
characteristic frequencies are not zero, but they are
small compared to the amplitudes of ground noise.
It will be necessary to excite the building with sig-
nificant external forces for spectral peaks to appear
in the ground floor motion. Movements in the base-
ment and garage are slightly smoothed microtremor
motions in the underlying bedrock near the building.
This smoothing occurs due to the large surfaces
covered with reinforced concrete.

Geologica Macedonica, 39, 1, 47— 55 (2025)
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Peszume
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Kiyanu 360poBu: IuckpeTH3anyja; MEKpoTpeMopr; Dypues crieKTap; TOYHOCT Ha Mepere; BUOPAINY Ha 3Tpaju

Ogaa cTyaWja TH HCTpaKyBa BiIMjaHHjaTa Ha AUCKPETH-
3aIMCKHUTE TPELIKH MPY aHaJIM3aTa Ha BUOPAIMK Ha MHUKPOTpe-
MOpH M3MEpPEeHHU BO 3rpaja jouupana Bo bepoBo, kopucrejkn
ro aknenepomerapotr EQR120. 'maBuuot dokyc e Ha Biuja-
HHUETO Ha JUCKpeTH3anujaTa Ha DypHeBHTE CIIEKTPaIHU aM-
IUTITY/IM ¥ TOYHOCTA Ha aHajn3a BO (PPEKBEHIIMCKUOT JIOMEH.
PesynTaTute mokaxyBaaT JIeKa Co 3roJIeMyBame Ha BpEeMETO Ha
cHnMame (7), ce ojaByBaaT OM3pa3eHU MIKOBU BO DypreBH-
OT CIIeKTap, 0COOEHO 3a MOBHCOKH (pekBeHuuH. be3 pasnuka
Ha BapHjal[MuTe BO JUCKPETHUTE HUBOA Ha 3a0p3yBame, OJro-
BOPOT Ha MHCTPYMEHTOT BO (PPEKBEHIIUCKUHOT JOMEH OCTaHy-
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Ba PEYHCH KOHCTAHTEH BO MIMPOK OTICET Ha (PPEKBEHIINH, IITO
HaJMKyBa Ha Oex mwyM. CTyaujata MCTakHyBa JieKa aMIUIUTY-
JIUTE Ha MUKPOTPEMOPHTE TeHEPATHO Ce MajH, U 3HAYUTEIHN
BapHjaliy BO CHEKTPAIHUTE aMIUIUTYIU He ce 3a0eNeKaHu BO
TEKOT Ha 24-4acOBHHOT MEpUOJ] Ha Mepewe. Haoaure cyre-
pHpaar niexa e IoTpeOHO HaABOPEIIHO BO30OYIyBame CO MOTro-
JIEMH CHJIM 3a Jia ce 3a0eexar CIeKTPaHH ITHKOBH, 0COOEHO
MU IBM)KEHaTa Ha TpU3eMjeTo. AHaM3aTa 1aBa BPEIHHU CO-
3HaHWja 32 OJHECYBAamETO HAa MUKPOTPEMOPHTE BO H3rpaje-
HHTE 00jEKTH U TY HarJlacyBa MPeU3BUIIMTE 32 IPEIO3HABAKE
Ha BUOpauuu o Maj 06eM BO TyCTO HaceleHHTe 00IacTH.
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