ISOTOPIC COMPOSITION OF SULFUR IN THE BOROV DOL DEPOSIT, NORTH MACEDONIA

Authors

  • Lazar Gjorgiev Goce Delcev University, Faculty of Natural and Technical Sciences
  • Goran Tasev Goce Delcev University, Faculty of Natural and Technical Sciences
  • Dalibor Serafimovski Goce Delcev University, Faculty of Electrical Engineering

DOI:

https://doi.org/10.46763/GEOL2539277gj

Keywords:

sulfur isotopes; ore minerals; composition; fractionation; Borov Dol deposit

Abstract

The study of the isotopic composition of sulfur is essential for the development of genetic models of porphyry copper deposits. In order to determine the origin of metals and sulfur in the Borov Dol porphyry copper deposit, a series of research and analyses of sulfur isotopes (32S, 34S) and their isotopic ratio (d³⁴S) were conducted. Samples were taken at the Borov Dol deposit, mainly of pyrite (from the hydrothermal temperature range of 250–350ºC), then chalcopyrite, galena, sphalerite, and chalcocite. At the Borov Dol deposit, the values show a wide range starting from –7.25‰ to +5.40‰ d³⁴S, with an average of –0.38‰ d³⁴S. Accordingly, the source of the sulfur is mag­matic, associated with the deep parts of the Earth's crust or with the boundary zone between the continental crust and the upper mantle, with intrusive fractionation and partial enrichment with the light sulfur isotope, which is reflected in the negative value in the higher levels of the deposit, or in the slight enrichment of the heavy sulfur isotope, which is reflected in the positive value in the lower levels of the deposit. The sulfide parageneses in the Borov Dol porphyry system were most likely deposited from oxidized hydrothermal ore-bearing solutions, whereby there is no equilibrium in the system during the crystallization of the early-stage paragenesis. The equilibrium in the system is established during the crystallization of the paragenesis in the middle and late stages.

Downloads

Download data is not yet available.

References

[1] Akira, I. (2000): Mineral paragenesis, fluid inclusions and sulfur isotope systematics of the Lepanto Far Southeast Porphyry Cu–Au deposit, Mankayan, Philippines. Resource Geology, Vol. 50(3), pp. 151–168. https://doi.org/10.1111/j.1751-3928.2000.tb00065.x

[2] Andrew, A., Heinrich, C., Wilkins, R., Patterson, D. (1989): Sulfur isotope systematics of copper ore formation at mount Isa, Australia. Econ. Geol. 84/6, 1614–1627. https://doi.org/10.2113/gsecongeo.84.6.1614

[3] Baker, T., Thompson, J. F. H. (1998): Fluid evolution at the Red Chris Porphyry Cu-Au deposit, Northwest British Columbia. Geological Society of America Abstracts with Programs 30: 367.

[4] Bente, K., Nielsen, H. (1982): Experimental S isotope fractionation studies between coexisting bismuthinite (Bi2S3) and sulfur (S°). Earth and Planetary Science Letters, Vol. 60, Issue 2, pp. 208–214. https://doi.org/10.1016/0012-821X(82)90113-3

[5] Bi, X., Hu, R., Cornell, D. H. (2004): The alkaline porphyry associated Yao’an gold deposit, Yunnan, China: rare earth element and stable isotope evidence for magmatic-hydro-thermal ore formation. Mineralium Deposita, Vol. 39, pp. 21–30. https://doi.org/10.1007/s00126-003-0371-z

[6] Bortnikov, N. S., Dobrovol’skaya, M. G., Genkin, A. D., Naumov, V. B., Shapenko, V. V. (1995): Sphalerite-galena geothermometers: Distribution of cadmium, manganese and the fractionation of sulfur isotopes. Econ. Geo. 90 (1), pp. 155–180. https://doi.org/10.2113/gsecongeo.90.1.155

[7] Brownlow, H. A. (1996): Geochemistry. 2nd Edition. Prentice Hall, Inc., U.S.A., 580 pp.

[8] Clayton, N. R. (1981): Isotopic variations of sulfur in nature. Part I. Isotopic fractionation and Genesis of Sulfur-bearing minerals. In: Stable isotope Geochemistry: a Tribute to Samuel Epstein, Special Publication No. 3, The Geochemical Society, 1981, pp. 1–21.

[9] Cooke, D. R., Simmons, S. F. (2000): Characteristics and Genesis of Epithermal Gold Deposits. Reviews in Econ. Geol., Vol. 13, pp. 221–244. https://doi.org/10.5382/Rev.13.06

[10] Cooke, D. R., Deyell, C. L., Waters, P. J., Gonzales, R. I., Zaw, K. (2011): Evidence for Magmatic-Hydrothermal Fluids and Ore-Forming Processes in Epithermal and Porphyry Deposits of the Baguio District, Philippines. Economic Geology, Vol. 106, No. 8, pp. 1399–1424. https://doi.org/10.2113/econgeo.106.8.1399

[11] Deyell, C. L., Tosdal, R. (2005): Sulfur isotopic zonation in alkalic porphyry Cu-Au systems II, Application to mineral exploration in British Columbia. Geological Fieldwork: A Summary of Field Activities and Current Research 2005 – 1, pp. 191–208. British Columbia: Ministry of Energy, Mines and Petroleum Resources.

[12] Douglas, T. A., Chamberlain, C. P., Poage, M. A., Abruzzese, M., Shultz, S., Henneberry, J., Layer, P. (2003): Fluid flow and the Heart Mountain fault: a stable isotopic, fluid inclusion, and geochronologic study. Geofluids 3 (1), pp. 13–32. https://doi.org/10.1046/j.1468-8123.2003.00049.x

[13] Eldrige, C. S., Compston, W., Williams, I. S., Both, R. A., Walshe, J. L., Ohmoto, H. (1988): Sulfur isotope variability in sediment-hosted massive sulfide deposits as determined using the ion-microprobe, SHRIMP: I. An example from the Rammelsberb orebody. Econ. Geol, Vol. 83, pp. 443–449, https://doi.org/10.2113/gsecongeo.83.2.443

[14] Field, C. W., Gustafson, L. B. (1976): Sulfur isotopes in the porphyry copper deposit at El Salvador, Chile. Econ. Geol. 71, pp. 1533–1548. https://doi.org/10.2113/gsecongeo.71.8.1533

[15] Grassineau, N. V. (2006): High-precision EA-IRMS analysis of S and C isotopes in geological materials. Applied Geochemistry 21, pp. 756–765.

https://doi.org/10.1016/j.apgeochem.2006.02.015

[16] Gjorgiev, L. (2020): Multiphase modeling of the ore-forming process in the Borov Dol porphyry copper system. Ph.D. thesis, Goce Delčev University – Štip, Faculty of Natural and Technical Sciences, Department of mineral deposits –Štip, 263 pp. (in Macedonian).

[17] Halbach, P., Nakamura, K.-I., Wahsner, M., Lange, J., Sakai, H., Käselitz, L., Hansen, R.-D., Yamano, M., Post, J., Prause, B., Seifert, R., Michaelis, W., Teichmann, F., Kinoshita, M., Märten, A., Ishibashi, J., Czerwinski, S., Blum, N. (1989): Probable modern analogue of Kuroko-type massive sulphide deposits in the Okinawa Trough back-arc basin. Nature, Vol. 338, Issue 6215, pp. 496–499. https://doi.org/10.1038/338496a0

[18] Hedenquist, J. W., Lowenstern, J. B. (1994): The role of magmas in the formation of hydrothermal ore deposits: Nature, Vol. 370, pp. 519–527. https://doi.org/10.1038/370519a0

[19] Hedenquist, J. W., Matsuhisa, Y., Izawa, E., White, N. C., Giggenbach, W. F., Aoki, M. (1994): Geology, geochemistry, and origin of high-sulfidation Cu-Au mineralization in the Nansatsu District, Japan. Econ. Geo., Vol. 89, No. 1, pp. 1–30. https://doi.org/10.5382/GB.34.10

[20] Heinrich, C. A., Neubauer, F. (2002): Cu-Au-Pb-Zn-Ag metallogeny of the Alpine-Balkan-Carpathian-Dinaride geodynamic province. Min. Dep., Vol. 37, pp. 533–540. https://doi.org/10.1007/s00126-002-0271-x

[21] Heithersay P. S., Walshe, J. L. (1995): Endeavour 26 North; a porphyry copper-gold deposit in the Late Ordovician, shoshonitic Goonumbla volcanic complex, New South Wales, Australia. Econo. Geol., Vol. 90, No. 6, pp. 1506–1532. https://doi.org/10.2113/gsecongeo.90.6.1506

[22] Höss, A., Gerlach, L., Haase, M. K., Keith, M., Klemd, R., Melfos, V., Baker, T., Pelloth, F., Falkenberg, J. J., Voudouris, P., Strauss, H., Tarantola, A. (2024): Magmatic and hydro-thermal evolution of the Skouries Au-Cu porphyry deposit, northern Greece. Ore Geol. Reviews, Vol. 173, 106233. https://doi.org/10.1016/j.oregeorev.2024.106233

[23] Imai, A. (2001): Generation and evolution of ore fluids for porphyry Cu-Au mineralization of the Santo Tomas II (Philex) Deposit, Philippines. Resource Geol., Vol. 51, No. 2, pp. 71–96. https://doi.org/10.1111/j.1751-3928.2001.tb00083.x

[24] Janković, S., Petković, M., Tomson, I. N., Kravcov, V. (1980): Porphyry copper deposits in the Serbo-Macedonian province, Southeastern Europe. In: S. Janković, and R. H. Silittoe (Eds), European copper deposit, Proseeding of an International Symposium held at Bor, Yugoslavia, 1822 September,1979, Beklgrade, pp. 96102.s,

[25] Jensen, L. (1959): Sulfur isotopes and hydrothermal mineral deposits. Econ. Geol. 54, No. 3. https://doi.org/10.2113/gsecongeo.54.3.374

[26] Kajiwara, Y., Krouse, R. H. (1971): Sulfur Isotope Partitioning in Metallic Sulfide Systems. Canadian Journal of Earth Sciences, Vol. 8, Issue 11, pp. 1397–1408. https://doi.org/10.1139/e71-129

[27] Kerridge, J. F., Zafian, A. W., Satpute, S. V. (1988): Isotopic composition of sulfur in carbonaceous chondrites. Geochimica et Cosmochimica Acta, Vol. 52, pp. 2953–2959.

[28] Lehmann, ST., Barcikowski, J., Von Quadt, A., Heinrich, C.A., Schmid, S., Serafimowski, T. (2012): Magmatic evolution of the Bučim-Damjan-Borov Dol ore district, Macedonia. Unpubl. MSc thesis, ETH, Zürich.

[29] Lickfold, V. (2002): Intrusive History and Volatile Evolution of the Endeavour Porphyry Cu-Au Deposits, Goonumbla District, NSW, Australia. Unpublished PhD Thesis, University of Tasmania, Hobart, Australia, 230 pp.

[30] Lowenstern, J. B., Mahood, G. A., Rivers, M. L., Sutton, S. R. (1991): Evidence for extreme partitioning of copper into a magmatic vapor phase. Science, 252, pp. 1405–1409. https://doi.org/10.1126/science.252.5011.1405

[31] Lowenstern, J. B. (1993): Evidence for a copper-bearing fluid in magma erupted at the Valley of Ten-Thousand-Smokes, Alaska. Contributions to Mineral. and Petrol., 114, pp. 409–421, https://doi.org/10.1007/BF01046542

[32] Miyoshi, K., Ohmoto, H., Kerrick, R. D. (1984): Sulfur Isotope fractionation in the system barite–aqueous sulfate at 100–400°C. Geochimica et Cosmochimica Acta, Vol. 48, Issue 2, pp. 245–264.

[33] Naylor, H., Turner, P., Vaughan, D. J., Fallich, A. E. (1989): Genetic studies of redbed mineralization in the Triassic of the Cheshire basin, northwest England. Journal of the Geological Society of London, Vol. 146, pp. 685–699.

https://doi.org/10.1144/gsjgs.146.4.0685

[34] Ohmoto, H., Rye, R. O. (1979): Isotopes of sulfur and carbon. In: Geochemistry of Hydrothermal Ore Deposits, 2nd ed., H. L. Barnes (ed.). New York, Wiley & Sons, Inc., pp. 509–567.

[35] Ohmoto, H., Lasaga C. A. (1982): Kinetics of reactions between aqueous sufates and sulfides in hydrothermal systems. Geochimica et Cosmochimica Acta, Vol. 46, Issue 10, pp. 1727–1745. https://doi.org/10.1016/0016-7037(82)90113-2

[36] Ohmoto, H. (1986): Stable isotope geochemistry of the ore deposits. In: Stable Isotopes in High Temperature Geological Processes, J. E. Valley, H. P. Taylor Jr., and J. R. O’Neil (eds.). Mineralogical Society of America, Reviews in Mineralogy, Vol. 16, pp. 491–560.

[37] Ohmoto, H., Goldhaber, B. M. (1997): Sulfur and Carbon Isotopes. Geochemistry of Hydrothermal Ore Deposits, Edited by Hubert Lloyd Barnes, Third edition. John Wiley and Sons, Inc., 972 pp.

[38] Peltekovski, Z., Serafimovski, D., Tasev, G., Serafimovski, T. (2023): Micromine calculations of ore reserves in the Borov Dol porphyry copper deposit, Republic of North Macedonia. Geol. Macedonica, Vol. 37, No. 1, pp. 49–63. https://doi.org/10.46763/GEOL23371049p

[39] Petrov, D., Filev, K., Pešovska, S., Trajanov, D., Gjorgiev, L., Kostadinov, Lj., Ristov, Lj. (2014): Elaborate of detailed geological explorations with calculation of ore reserves of copper at the Borov Dol locality, Municipality Konće and Štip. Geoinženering M DOOEL Skopje for DPTU Borov Dol DOOEL Radoviš, 205 pp. (in Macedonian).

[40] Rona, G. (1977): Plate tectonics energy and mineral resources: basis research lading to Payoff. Transactions, American Geophysical Union, Vol. 58, No. 8. https://doi.org/10.1029/EO058i008p00629

[41] Rye, R. O., Ohmoto, H. (1974): Sulfur and carbon isotopes and ore genesis: А review. Econ. Geol. Vol. 63: pp.715–730. https://doi.org/10.2113/gsecongeo.69.6.826

[42] Rye, R. O., Bethke, P. M., Wasserman, M. D. (1992): The stable isotope geochemistry of acid sulfate alteration. Econ. Geol., Vol. 87, Issue 2, pp. 225–262. https://doi.org/10.2113/GSECONGEO.87.2.225

[43] Rye, R. O. (1993): The evolution of magmatic fluids in epithermal environment: The stable isotope perspective. Econ. Geol. Vol. 88: pp. 733–752.

https://doi.org/10.2113/gsecongeo.88.3.733

[44] Sakai, H. (1968): Isotopic properties of sulfur compound in hydrothermal processes. Geoch. J. 2, No 1. https://doi.org/10.2343/geochemj.2.29

[45] Salas, R. D. R., Ochoa-Landín, L., Ruiz, J., Eastoe, C., Meza-Figueroa, D., Zuñiga-Hernández, H., Mendívil-Quijada, H., and Quintanar-Ruiz, F. (2013): Geology, stable isotope, and U-Pb geochronology of the Mariquita porphyry copper and Lucy Cu-Mo deposits, Cananea District, Mexico: A contribution to regional exploration. Journal of Geochemical Exploration, Vol. 124, pp. 140–154. https://doi.org/10.1016/j.gexplo.2012.08.016

[46] Sasaki, A., Ulriksen, C. E., Sato, K., and Ishihara, S. (1984): Sulphur isotope reconnaissance of porphyry copper and manto-type deposits in Chile and the Philippines. In: Bulletin of the Geological Survey of Japan, Vol. 35, No. 11, pp. 615–622.

[47] Serafimovski, T. (1990): Metallogeny of the Lece-Chalkidiki zone. Ph.D. thesis, University “Sts. Cyril and Methodius”-Skopje, Faculty of Mining and Geology, Štip, pp. 390 (in Macedonian).

[48] Serafimovski, T. (1993): Structural-metallogenetic Features of the Lece-Chakidiki Zone: Types of Mineral Deposits and Distribution. University “Sts. Cyril and Methodius” –Skopje, Faculty of Mining and Geology, Geological Department – Štip, Special Issue No. 2, pp. 328 (in Macedonian).

[49] Serafimovski, T., Tudžarov, N., Mitevski, G. (1993): Mineral composition and paragenetic relations in the porphyry copper Borov Dol deposit. Geol. Macedonica, 6 (1): pp. 87–98 (in Macedonian).

[50] Serafimovski, T., Tasev, G. (2005): Sulfur isotope composition of some polymetallic deposits in the Republic of Macedonia. Geologica Macedonica, 19 (1), pp. 1–11.

[51] Serafimovski, T., Tasev, G. (2013): Sulfur isotope compositions from different type of deposits in the Bučim-Damjan-Borov Dol ore district, eastern Macedonia. 10th Applied Isotope Geochemistry Conference, pp. 9–14. Budapest, Hungary.

[52] Serafimovski, T. Tasev, G. (2014): Ore microscopic study of samples from the Borov Dol ore deposit, Radoviš. Department for Mineral Deposits, Faculty of Natural and Technical Sciences, Štip in association with Macedonian Authoring Agency for the necessities of DPTU Borov Dol DOOEL – Radoviš, 128 pp (in Macedonian).

[53] Shelton, K. L., Rye, D. M. (1982): Sulfur isotope compositions of ore from Mines Gaspe, Quebec: an example of sulfate-sulfide isotopic disequilibria in ore-forming fluids with applications to other porphyry-type deposits. Econ. Geol. 77, 1688–709. https://doi.org/10.2113/gsecongeo.77.7.1688

[54] Shimazaki, H., Sakai, H. (1984): Regional variation of sulfur isotopic composition of skarn deposits in the westernmost part of the Inner Zone of Southwest Japan. Mining Geology, Vol. 34 (6): pp. 419–424.

[55] Sillitoe, R. H. (1973): Environments of formation of volcanogenic massive sulfide deposits. Econ. Geol., Vol. 68. pp. 1321–1325. https://doi.org/10.2113/gsecongeo.68.8.1321

[56] Tasev, G. (2010): Metallogeny of the Bukovik-Kadiica polymetallic ore-bearing system. Ph.D. thesis, Goce Delćev University – Štip, Faculty of Natural and Technical Sciences, Department of Mineral Deposits – Štip, 206 pp. (in Macedonian).

[57] Tasev, G., Serafimovski, T., Dolenec, M., Šmuc, N. R. (2019): Contribution to Understanding of Ore Fluids in the Zletovo Mine Based on Fluid Inclusion Data. RMZ – M&G, Vol. 66, pp. 075–086. https://doi.org/10.2478/rmzmag-2019-0008

[58] Taylor, B. E. (1987): Stabile isotope geochemistry of the low temperature fluids. Mineralogical Association of Canada, Short Course Handbook, Vol. 13, pp. 337–445.

[59] Tudžarov, N. (1993): Metallogeny of the ore deposit Borov Dol. Ph.D. thesis, University “Sts. Cyril and Methodius” – Skopje, Faculty of Mining and Geology – Štip, 195 pp. (in Macedonian).

[60] Vikre, P. G. (2010): Stable isotope compositions of fluids. In: John, D. A., Ayuso, R. A., Barton, M. D., et al. (eds.) Porphyry Copper Deposit Model. U. S. Geological Survey Scientific Investigations Report 2010–5070–B, pp. 87–88.

[61] Voudouris, P., Mavrogonatos, C., Spry, P. G., Baker, T., Melfos, V., Klemd, R., Haase, K., Repstock, A., Djiba, A., Bismayer, U., Tarantola, A., Scheffer, C., Moritz, R., Kouzmanov, K., Alfieris, D., Papavassiliou, K., Schaarschmidt, A., Galanopoulos, E., Galanos, E., Kołodziejczyk, J., Stergiou, C., Melfou, M. (2019): Porphyry and epithermal deposits in Greece: An overview, new discoveries, and mineralogical constraints on their genesis. Ore Geology Reviews, Vol. 107, pp. 654–691. https://doi.org/10.1016/j.oregeorev.2019.03.019

[62] Weihed, P., Fallick, A. E. (1994): A stable isotope study of the Palaeoproterozoic Tallberg porphyry-type deposit, northern Sweden. Mineralium Deposita, Vol. 29, No. 2, pp. 128–138. https://doi.org/10.1007/BF00191510

[63] Wilson, A. J., Cooke, D. R., Harper, J. B., Deyell C. L. (2007): Sulfur isotopic zonation in the Cadia district, southeastern Australia: exploration significance and implications for the genesis of alkalic porphyry gold–copper deposits. Mineralium Deposita, Vol. 42, pp. 465–487. https://doi.org/10.1007/s00126-006-0071-9

[64] Wolfe C. R., Cooke, D. R. (2011): Geology of the Didipio Region and genesis of the dinkidi alkalic porphyry Cu-Au deposit and related pegmatites, Northern Luzon, Philip-pines. Econ. Geol., Vol. 106, No. 8, pp. 1279–1315. https://doi.org/10.2113/econgeo.106.8.1279

[65] Yamamoto, M., Endo, M., Ujihira, K. (1984): Distribution of selenium between galena and sphalerite. Chemical Geol., 42, pp. 243–248.

https://doi.org/10.1016/0009-2541(84)90018-4

[66] Zlatkov, G. (2022): Mineralogical chemical composition and genesis of the Plavica gold deposit, Kratovo-Zletovo volcanic area, Republic of North Macedonia. PhD thesis, University of Mining and Geology “St. Ivan Rilski”, Department of Geology and Exploration of Mineral Deposits, Sofia, Bulgaria, 140 pp + textual appendix + graphic appendices (in Macedonian).

[67] Čifliganec, V. (1987): Metallogenetic features of the Bučim copper deposit in the Serbo-Macedonian metallogenetic province. Ph.D. thesis, Faculty of Mining and Geology, Belgrade, Serbia, 190 pp. (in Serbian).

Downloads

Published

2025-12-16

How to Cite

ISOTOPIC COMPOSITION OF SULFUR IN THE BOROV DOL DEPOSIT, NORTH MACEDONIA. (2025). Geologica Macedonica, 39(2), 77-89. https://doi.org/10.46763/GEOL2539277gj