DYNAMICS LAGOON MODELING USING DETAILED TIME-SERIES DIGITAL TERRAIN MODEL
DOI:
https://doi.org/10.46763/GEOL2539291jKeywords:
DTM and vertical deformation; dynamic lagoon; SAL; dynamics topography; rapid sedimentationAbstract
A lagoon is a natural feature formed at the mouth of a river due to the dynamics of river sedimentation, currents, vertical deformation, waves, and tides. Lagoons are dominated by soft soil, so their topography is dynamic. Segara Anakan Lagoon (SAL) is an area that experiences dynamic topography caused by rapid sedimentation. Changes in the dynamics of the delta topography can be tracked in the past with the Digital Terrain Model (DTM) time series extracted from the latest DTM, vertical deformation, and sedimentation data. The observation period was 1978–2021. This study aims to model topography dynamics (1978–2021) in SAL according to DTM, vertical deformation, and sedimentation data. This dynamics topography modeling uses (1) parameters of sedimentation rate and volume obtained from river basin center – Balai Besar Wilayah Sungai (BBWS) 2012, (2) DTM 2021 extracted from ALOS-2 (2017) and integrated with vertical deformation from Sentinel-1 (2017–2021) using the Differential Interferometry Synthetic Aperture Radar (D-InSAR) method. The DTMs (1978, 1991, 2001, and 2010) are extracted using a geospatial forensics approach based on topography modeling of DTM 2021, vertical deformation (2017–2021), and rapid sedimentation data. We use the sediment rate entering SAL from the Citanduy River (8.05 million tons/year), Cimeneng River (0.87 million tons/year), and Cikonde River (0.22 million tons/year), with a total sediment supply of 9.14 million tons/year. The DTM 2021 has a spatial resolution of 1 m and has been validated in its vertical accuracy test (+17.6 cm) and its height difference test (~0 m) with a confidence level of 95 % (1.96 σ). The average vertical deformation value is –0.0240 to –0.0320 m. The results obtained are dynamics topography information (1978–2021). The DTMs (1978–2021) visualize dynamics topography changes in SAL. They are carried out by checking the dynamics of shoreline changes and cross-section profiles to determine the suitability of shapes and patterns (lagoon and delta). Sedimentation is the most significant parameter that influences the topography dynamics in SAL.
Downloads
References
[1] Akbar, M. R., Arisanto, P. A. A., Sukirno, B. A., Merdeka, P. H., Priadhi, M. M., Zallesa, S. (2020): Man-grove vegetation health index analysis by implementing NDVI (nor¬malized difference vegetation index) classification method on sentinel-2 image data case study: Segara Anakan, Kabupaten Cilacap. IOP Confer-ence Series: Earth and Environmental Science, 584 (1):012069.
https://doi.org/10.1088/1755-1315/584/1/012069
[21] Ardli, E. R. (2008): A trophic flow model of the Segara Anakan lagoon, Cilacap, Indonesia [Dissertation]. Universität Bremen.
[3] Arroyo-Ortega, I., Chavarin-Pineda, Y., Torres, E. (2024): Assessing contamination in transitional waters using geospatial technologies: A review. ISPRS International Journal of Geo-Information, 13(6). https://doi.org/10.3390/ijgi13060196
[4] ASPRS. Accuracy Standards for Digital Geospatial Data. The American Society for Photogrammetry and Remote Sensing. 2014.
https://doi.org/10.1016/S0033-3506(98)80082-6
[5] BBWS, Kajian Penanganan Sedimen Segara Anakan melalui Check Dam dan Pengerukan (Study of Sediment Handling in Segara Anakan through Check Dam and Dredging). Workshop Penanganan Segara Anakan. 2012.
[6] De Luca, C., Bonano, M., Casu, F., Manunta, M., Manzo, M., Onorato, G., Zinno, I., Lanari, R. (2018): The parallel SBAS-DInSAR processing chain for the generation of national scale Sentinel-1 deformation time-series. Procedia Computer Science, 138, pp. 326–331. https://doi.org/10.1016/j.procs.2018.10.046
[7] Dias, P., Catalao, J., Marques, F. O. (2018): Sentinel-1 InSAR data applied to surface deformation in Macaro-nesia (Cnaries and Cape Verde). Procedia Computer Science, 138, pp. 382–387. https://doi.org/10.1016/j.procs.2018.10.054
[8] Dsikowitzky, L., Van der Wulp, S. A., Dwiyitno, Ariyani, F., Hesse, K. J., Damar, A., Schwarzbauer, J. (2018): Transport of pollution from the megacity Jakarta into the ocean: Insights from organic pollutant mass fluxes along the Ciliwung River. Estuarine, Coastal and Shelf Science, 215, pp. 219–228. https://doi.org/10.1016/j.ecss.2018.10.017
[9] Dudley, R. G. (2020): Segara Anakan Fisheries Management Plan. Segara Anakan Conservation and Development Project.
[10] Ghilani, C. D., Wolf, P. R. (2006): Adjustment Computations Spatial Data Analyses, 4th Edition. https://doi.org/10.1038/ni1566
[11] Guth, P. L., Van Niekerk, A., Grohmann, C. H., Muller, J.-P., Hawker, L., Florinsky, I. V., Gesch, D., Reuter, H. I., Herrera-Cruz, V., Riazanoff, S., López-Vázquez, C., Carabajal, C. C., Albinet, C., Strobl, P. (2021): Digital elevation models: terminology and definitions. Remote Sensing, 13 (18), 3581. https://doi.org/10.3390/rs13183581
[12] Guzzeti, F., Manunta, M., Ardizzone, F., Pepe, A., Cardinali, M., Zeni, G., Reichenbach, P., Lanari, R. (2009): Analysis of ground deformation detected using the SBAS-DInSAR technique in Umbria, Central Ita-ly. Pure and Applied Geophysics, 166, pp. 1425–1459. https://doi.org/10.1007/s00024-009-0491-4
[13] Hakiki, I. A., Sembiring, L. E., Nugroho, C. N. R. (2021): Sedimentation Analysis of Segara Anakan Lagoon using cohesive sediment transport numerical modelling. Jurnal Teknik Hidraulik, 12 (1), pp. 1–14. https://doi.org/10.32679/jth.v12i1.642
[14] Hoja, D., D’Angelo, P. (2010): Analysis of DEM combination methods using high resolution optical stereo imagery and interferometric SAR data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVIII, Part 1, 2–5. https://doi.org/10.1007/978-3-319-59489-7
[15] Ismail, Suliztano, Hariyadi, S., Madduppa, H. (2018): Condition and mangrove density in Segara Anakan, Cilacap Regency, Central Java Province, Indonesia, AACL Bioflux, 11 (4) 1055–1068, http://www.bioflux.com.ro/aacl
[16] Julzarika, A., Djurdjani, D. (2019): DEM classifications: opportunities and potential of its applications. Journal of Degraded and Mining Lands Management 6 (4).
https://doi.org/10.15243/jdmlm.2019.064.1897
[17] Julzarika, A., Harintaka, H. (2019): Utilization of Sentinel -1 satellite for vertical deformation monitoring in Semangko Fault – Indonesia. (ACRS) – The 40th Asian Conference on Remote Sensing, October 14–18, 2019/Daejeon Convention Center (DCC), Daejeon, KoreaWeA2-31, pp. 1–7.
[18] Julzarika, A., Aditya, T., Subaryono, S., Harintaka, H., Dewi, R. S., Subehi, L. (2021): Integration of the latest digital terrain model (DTM) with Synthetic aperture radar (SAR) bathymetry. Journal of Degraded and Mining Lands Management, 8 (3), 2502–2458. https://doi.org/10.15243/jdmlm.2021.083.2759
[19] Julzarika, A., Aditya, T., Subaryono, S., Harintaka, H. (2022): Dynamics topography monitoring in Peatland using the latest digital terrain model. Journal of Applied Engineering Science, 20 (1), 246–253. https://doi.org/10.5937/jaes0-31522
[20] Karim, M., Maanan, M., Maanan, M., Rhinane, H., Rueff, H., Baidder, L. (2019): Assessment of water body change and sedimentation rate in Moulay Bousselham wetland, Morocco, using geospatial technologies. International Journal of Sediment Research, 34(1), 65–72. https://doi.org/10.1016/j.ijsrc.2018.08.007
[21] Li, X., Shen, H., Feng, R., Li, J., Zhang, L. (2017): DEM generation from contours and a low-resolution DEM. ISPRS Journal of Photogrammetry and Remote Sensing, 134, pp. 135–147, https://doi.org/10.1016/j.isprsjprs.2017.09.014
[22] Li, Z., Zhu, C., Gold, C. (2004): Digital Terrain Modeling: Principles and Methodology. CRC Press, Boca Raton. https://doi.org/10.1201/9780203357132
[23] Liosis, N., Marpu, P. R., Pavlopoulos, K., Ouarda, T. B. M. J. (2018): Ground subsidence monitoring with SAR interfeometry techniques in the rural area of Al Wagan, UAE. Re-mote Sensing of Environment, 216, pp. 276–288. https://doi.org/10.1016/j.rse.2018.07.001
[24] Maune, D. F., Nayegandhi, A. (2018): Digital Elevation Model Technologies and Applications: The DEM Users Manual. American Society for Photogrammetry and Remote Sensing.
[25] Mazhari, S. A. (2010): An introduction to forensic geosciences and its potential for Iran. Journal of Geography and Geology, 2(1). https://doi.org/10.5539/jgg.v2n1p77
[26] Nico, G., Leva, D., Fortuny-Guasch, J., Tarchi, D., Antonello, G. (2005): Generation of digital terrain models with a ground-based SAR system. IEEE Transactions on Geoscience and Remote Sensing, 43(1). 45–49. https://doi.org/10.1109/TGRS.2004.838354
[27] NOAA (2024). What is a lagoon? National Ocean Service website, National Oceanic and Atmospheric Administraion. https://oceanservice.noaa.gov/facts/lagoon.html#:~:text=Although%20lagoons%20are%20well%20defined,exposed%20locations%20on%20the%20shore, 06/16/24.
[28] Ongkosongo, O. (1986): Some harmful stresses to the Seribu coral reefs, Indonesia, Proc. MAB – COMAR Region Workshop on Coral Reef Ecosystems.
[29] Paul, A. Kr., Islam, Sk. M., Jana, S. (2014): An assessment of physiographic habitats, geomorphology and evolution of Chilika Lagoon (Odisha, India) using geospatial technology. In: C. W. Finkl & C. Makowski (Eds.), Remote Sensing and Modeling: Advances in Coastal and Marine Resources. pp. 135–160. Springer International Publishing. https://doi.org/10.1007/978-3-319-06326-3_6
[30] Pawitan, H. (2002): Eco-hydrological measures for the management of the Segara Anakan Lagoon basin in West Java, Indonesia. International Symposium on Low-Lying Coastal Areas – Hydrology and Integrated Coastal Zone Management, September 2002.
[31] Prayudha, B., Siregar, V., Ulumuddin, Y. I., Suyadi, Prasetyo, L. B., Agus, S. B., Suyarso, Anggraini, N. (2021): The application of Landsat imageries and mangrove vegetation index for monitoring mangrove community in Segara Anakan Lagoon, Cilacap, Central Java. IOP Conference Series: Earth and Environmental Science, 944 (1). https://doi.org/10.1088/1755-1315/944/1/012039
[32] Ruffell, A., & McKinely, J. (2008): Geoforensics. John Wiley & Sons, Ltd.. ISBN: 978-0-470-05735-3
[33] Şenol, H. İ., Kaya, Y., Yiğit, A. Y., Yakar, M. (2024): Extraction and geospatial analysis of the Hersek La-goon shoreline with Sentinel-2 satellite data. Survey Review, 56 (397), 367–382. https://doi.org/10.1080/00396265.2023.2257969
[34] Spaulding, M. L. (1994): Chapter 5: Modeling of circulation and dispersion in coastal lagoons. In: B. Kjerfve (Ed.), Elsevier Oceanography Series, Vol. 60, pp. 103–131. Else-vier. https://doi.org/https://doi.org/10.1016/S0422-9894(08)70010-2
[35] Strozzi, T., Klimeš, J., Frey, H., Caduff, R., Huggel, C., Wegmüller, U., Alejo Cochachin, R. (2018): Satellite SAR interferometry for the improved assessment of the state of activity of landslides: A case study from the Cordilleras of Peru. Remote Sensing of Environment 217, pp. 111–125. https://doi.org/10.1016/j.rse.2018.08.014
[36] Wilson, J. (2012): Digital terrain modeling. Regional Assessment of Global Change Impacts: The Project GLOWA-Danube, Geomorphology 137 (1), 69–74.