ASSESSMENT OF HEAVY METAL ACCUMULATION IN MOSS SPECIES AS BIOMONITORS OF ATMOSPHERIC POLLUTION IN THE GOLESH FE–NI MINING AREA, REPUBLIC OF KOSOVO

Authors

  • Elida Lecaj Faculty of Natural and Technical Sciences,”Goce Delcev” University – Stip , Alma Mater Europaea Campus College “Rezonanca”
  • Todor Serafimovski Faculty of Natural and Technical Sciences,”Goce Delcev” University – Stip
  • Biljana Balabanova Faculty of Agriculture, Goce Delcev University – Stip
  • Musaj Pacarizi Faculty of Mathematical and Natural Sciences, Department of Chemistry, University of Prishtina “Hasan Prishtina”

DOI:

https://doi.org/10.46763/GEOL25392127l

Keywords:

mosses; heavy metal; mining Fe–Ni; ICP–MS

Abstract

The study aimed to assess the level of air pollution by heavy metals in the area around Golesh, near the iron–nickel (Fe–Ni) mines, using mosses as biomonitors (Homalothecium lutescens (Hedw.) Robins. At 20 selected sampling sites in this area, concentrations of 17 chemical elements were analyzed using the inductively coupled plasma with mass spectrometry (ICP–MS). This study assessed the elemental content, distribution, and level of heavy metal pollution in moss samples, serving as bioindicators in a potentially contaminated area. Statistical analysis revealed wide variations in metal concentrations, with elements such as Al, Fe, and Mg showing the highest average values. The Contamination Factor (CF) revealed extremely high levels of pollution for Cr, Cd, Co, Pb, and Ni, indicating a significant anthropogenic impact. Factor Analysis and Cluster Analyses confirmed the co–occurrence of toxic elements (As, Pb, Ni, Cd) likely originating from industrial and mining activities. The Pollution Load Index (PLI) also highlighted the overall high contamination status of the area. These findings confirm the presence of local pollution sources and reinforce the usefulness of mosses as biomonitors in environmental assessment.

Downloads

Download data is not yet available.

References

[1] Ahmad, W., Alharthy, R. D., Zubair, M., Ahmed, M., Hameed, A., & Rafique, S. (2021): Toxic and heavy metals contamination assessment in soil and water to evaluate human. health risk. Scientific Reports, 11 (1), 1–12. https://doi.org/10.1038/s41598–021–94616–4

[2] Aničić, M., Tomašević, M., Tasić, M., Rajšić, S., Popović, A., Frontasyeva, M. V., Lierhagen, S., & Steinnes, E. (2009): Monitoring of trace element atmospheric deposition using dry and wet moss bags: Accumulation capacity versus exposure time. Journal of Hazardous Materials, 171 (1–3), 182–188. https://doi.org/10.1016/j.jhazmat.2009.05.112

[3] Bačeva, K., Stafilov, T., Šajn, R., Tǎnǎselia, C., & Makreski, P. (2014): Distribution of chemical elements in soils and stream sediments in the area of abandoned Sb–As–Tl Allchar mine, Republic of Macedonia. Environmental Research, 133, 77–89. https://doi.org/10.1016/J.ENVRES.2014.03.045

[4] Bajraktari, N., Morina, I., & Demaku, S. (2019): Assessing the presence of heavy metals in the area of Glloogoc (Kosovo) by using mosses as a bioindicator for heavy metals. Journal of Ecological Engineering, 20 (6), 135–140. https://doi.org/10.12911/22998993/108639

[5] Balabanova, B., Stafilov, T., Bačeva, K., Šajn, R. (2010): Biomonitoring of atmospheric pollution with heavy metals in the copper mine vicinity located near Radoviš, Republic of Macedonia. Journal of Environmental Science and Health, Part A, 45 (12), 1504–1518. https://doi.org/10.1080/10934529.2010.506097

[6] Balabanova, B., Stafilov, T., Šajn, R., Bačeva, K. (2014): Variability assessment of metals distributions due to anthropogenic and geogenic impact in the lead–zinc mine and flotation „Zletovo” environs (Moss biomonitoring). Geologica Macedonica, 28 (2), 101–114.

[7] Balabanova, B., Stafilov, T., Šajn, R., Bačeva, K. (2014): Comparison of response of moss, lichens and attic dust to geology and atmospheric pollution from copper mine. International Journal of Environmental Science and Technology, 11 (2), 517–528. https://doi.org/10.1007/s13762–013–0262–8

[8] Barandovski, L., Stafilov, T., Šajn, R., Frontasyeva, M., Bačeva Andonovska, K. (2020): Atmospheric heavy metal deposition in North Macedonia from 2002 to 2010 studied by moss biomonitoring technique. Atmosphere, 11 (9), 929. https://doi.org/10.3390/atmos11090929

[9] Barukial, J., & Hazarika, P. (2023): Bryophytes as an Accumulator of Toxic Elements from the Environment: Recent Advances. 165–182. https://doi.org/10.1007/978–3–031–23243–5_6

[10] Boev, B., Nacev, T., Filova, M., & Stafilov, T. (2022): Moss biomonitoring of air pollution and assessment of the effects on archeological objects in Stobi, North Macedonia. Geologica Macedonica, 36 (2), 143–154. https://doi.org/10.46763/GEOL22362143b

[11] Çadraku, H. S. (2022): Monitoring of water flow in the springs of the Golesh massif, Kosovo. Ecological Engineering and Environmental Technology, 23 (5), 109–123. https://doi.org/10.12912/27197050/151760

[12] Carballeira, J. A. F. A. (2001): Evaluation of contamination, by different elements in terrestrial mosses. Archives of Environmental Contamination and Toxicology, 40 (4), 461–468. https://doi.org/10.1007/s002440010198

[13] Chaudhuri, S., Roy, M. (2023): Global ambient air quality monitoring: Can mosses help? A systematic meta–analysis of literature about passive moss biomonitoring. Environment, Development and Sustainability, 26 (3), 5735–5773. https://doi.org/10.1007/s10668–023–03043–0

[14] Chaudhuri, S., Roy, M. (2024): Moss bags as active biomonitors of air pollution: current state of understanding, applications and concerns. Nature Environment and Pollution Technology, 23 (2), 829–841. https://doi.org/10.46488/NEPT.2024.v23i02.019

[15] Chen, W., Wang, Y., Hu, M., Li, Y., Fang, G. (2023): Controlling reactions during heavy metal leaching from municipal solid waste incineration fly ash. Journal of the Serbian Chemical Society, 88 (1), 83–95. https://doi.org/10.2298/JSC220505065C

[16] Doan, T., Trinh, T. T. M., Le, H. K., Frontasyeva, M. V., Nguyen, A. S., Trinh, M. H., Do, V. D., Vo, T. T., Ha, X. V. (2024): Using factor analysis to find source atmospheric pollution by moss technique. Nuclear Science and Technology, 12 (4), 1–7. https://doi.org/10.53747/nst.v12i4.352

[17] Dreshaj Lecaj, E., Haskaj, A., Paçarizi, M. (2024): Pollution indicators of heavy metals in the sediments of the Lepenc river in Kosovo. Environment Protection Engineering, 50 (3). https://doi.org/10.37190/epe240305

[18] Gashi, F., Frančišković–Bilinski, S., Bilinski, H., Kika, L. (2016): Assessment of the effects of urban and industrial development on water and sediment quality of the Drenica River in Kosovo. Environmental Earth Sciences, 75 (9), 801. https://doi.org/10.1007/s12665–016–5612–7

[19] Harmens, H., Norris, D. A., Koerber, G. R., Buse, A., Steinnes, E., Rühling, Å. (2007): Temporal trends in the concentration of arsenic, chromium, copper, iron, nickel, vanadium and zinc in mosses across Europe between 1990 and 2000. Atmospheric Environment, 41 (31), 6673–6687. https://doi.org/10.1016/j.atmosenv.2007.03.062

[20] Harmens, H. (2009): Heavy Metals in European Mosses: 2010 survey. Monitoring manual.

[21] Harmens, H., Norris, D. A., Steinnes, E., Kubin, E., Piispanen, J., Alber, R., Aleksiayenak, Y., Blum, O., Coşkun, M., Dam, M., De Temmerman, L., Fernández, J. A., Frolova, M., Frontasyeva, M., González–Miqueo, L., Grodzińska, K., Jeran, Z., Korzekwa, S., Krmar, M., Zechmeister, H. G. (2010): Mosses as biomonitors of atmospheric heavy metal deposition: Spatial patterns and temporal trends in Europe. Environmental Pollution, 158 (10), 3144–3156. https://doi.org/10.1016/j.envpol.2010.06.039

[22] IHHK (2022): Vjetari Hidrometeorologjik i Kosovës 2022.

[23] Kapusta, P., Sobczyk, Ł. (2015): Effects of heavy metal pollution from mining and smelting on enchytraeid communities under different land management and soil conditions. Science of the Total Environment, 536, 517–526. https://doi.org/10.1016/j.scitotenv.2015.07.086

[24] Kastrati, G., Paçarizi, M., Sopaj, F., Tašev, K., Stafilov, T., & Mustafa, M. K. (2021): Investigation of concentration and distribution of elements in three environmental compartments in the region of Mitrovica, Kosovo: Soil, honey and bee pollen. International Journal of Environmental Research and Public Health, 18 (5), 2269. https://doi.org/10.3390/ijerph18052269

[25] Macedo–Miranda, M. G., Barrera–Díaz, C. E., Avila–Pérez, P., López–Solórzano, E., Ortiz–Oliveros, H. B., Zavala–Arce, R. E. (2024): Bioconcentration capacity of moss Leskea angustata Tayl., for heavy metals and its application in the atmospheric biomonitoring of a metropolitan area. Atmosphric Environment, 331, 120579. https://doi.org/10.1016/j.atmosenv.2024.120579

[26] Maxhuni, A., Lazo, P., Kane, S., Qarri, F., Marku, E., Harmens, H. (2016): First survey of atmospheric heavy metal deposition in Kosovo using moss biomonitoring. Environmental Science and Pollution Research, 23 (1), 744–755. https://doi.org/10.1007/s11356–015–5257–1

[27] Morera–Gómez, Y., Alonso–Hernández, C. M., Santamaría, J. M., Elustondo, D., Lasheras, E., Widory, D. (2020): Levels, spatial distribution, risk assessment, and sources of environmental contamination vectored by road dust in Cienfuegos (Cuba) revealed by chemical and C and N stable isotope compositions. Environmental Science and Pollution Research, 27 (2), 2184–2196. https://doi.org/10.1007/s11356–019–06783–7

[28] Nekhoroshkov, P., Peshkova, A., Zinicovscaia, I., Vergel, K., Kravtsova, A. (2022): Assessment of the atmospheric deposition of heavy metals and other elements in the Mountain Crimea using moss biomonitoring technique. Atmosphere, 13 (4), 573. https://doi.org/10.3390/atmos13040573

[29] NILU. (2016): Atmospheric Deposition of Heavy Metals in Norway, National moss survey 2015.

[30] Ofremu, G. O., Raimi, B. Y., Yusuf, S. O., Dziwornu, B. A., Nnabuife, S. G., Eze, A. M., Nnajiofor, C. A. (2025): Exploring the relationship between climate change, air pollutants and human health: impacts, adaptation, and mitigation strategies. Green Energy and Resources, 3 (2). 100074. https://doi.org/10.1016/j.gerr.2024.100074

[31] Oishi, Y. (2021): Moss Biomonitoring of Transboundary Pollutants in Japan’s Mountains. https://doi.org/10.21203/rs.3.rs–482010/v1

[32] Paçarizi, M., Stafilov, T., Šajn, R., Tašev, K., Sopaj, F. (2021): Estimation of elements’ concentration in air in Kosovo through mosses as biomonitors. Atmosphere, 12 (4), 415. https://doi.org/10.3390/atmos12040415

[33] Paçarizi, M., Stafilov, T., Šajn, R., Tašev, K., Sopaj, F. (2023): Mosses as bioindicators of atmospheric deposition of Tl, Hg and As in Kosovo. Chemistry and Ecology, 39 (2), 123–136. https://doi.org/10.1080/02757540.2022.2147516

[34] Paçarizi, M., Qeriqi, E., Sinani, B., Tašev, K., Reka, А., Stafilov, T. (2024): Geochemistry and mineralogy of lead–zinc mine tailings from the Artana landfill in the Republic of Kosovo. Geologica Macedonica, 38 (1), 53–64. https://doi.org/10.46763/GEOL24381053p

[35] Paches, M., Martínez–Guijarro, R., Aguado, D., Ferrer, J. (2019): Assessment of the impact of heavy metals in sediments along the Spanish Mediterranean coastline: pollution indices. Environmental Science and Pollution Research, 26 (11), 10887–10901. https://doi.org/10.1007/s11356–019–04485–8

[36] Pi, H., Sharratt, B., Schillinger, W. F., Bary, A., Cogger, C. (2018): Chemical composition of windblown dust emitted from agricultural soils amended with biosolids. Aeolian Research, 32, 102–115. https://doi.org/10.1016/j.aeolia.2018.02.001

[37] Pikula, K., Tretyakova, M., Zakharenko, A., Johari, S. A., Ugay, S., Chernyshev, V., Chaika, V., Kalenik, T., Golokhvast, K. (2021): Environmental risk assessment of vehicle exhaust particles on aquatic organisms of different trophic levels. Toxics, 9 (10), 261. https://doi.org/10.3390/toxics9100261

[38] Quyet, N. H., Khiem, L. H., My, T. T. T., My, N. T. B., Frontasieva, M., Zinicovscaia, I., Son, N. A., Thanh, T. T., Nam, L. D., Hong, K. T., Mai, N. N., Trung, T. D., Thang, D. Van, Hang, N. T. T. (2021): Biomonitoring of chemical element air pollution in Hanoi using Barbula indica moss. Environmental Engineering and Management Journal, 20 (5), 791–800. https://doi.org/10.30638/eemj.2021.074

[39] Remeteiová, D., Růžičková, S., Mičková, V., Laubertová, M., Slezáková, R. (2020): Evaluation of US EPA Method 3052 microwave acid digestion for quantification of majority metals in waste printed circuit boards. Metals, 10 (11), 1511. https://doi.org/10.3390/met10111511

[40] Serafimovski, T., Tasev, G., Stafilov, T. (2020): The content of copper and heavy metals in the multilayer soil mud from the Buchim lake under the Buchim mine’s waste dump, Republic North Macedonia. Tehnika, 75 (4), 297–304. https://doi.org/10.5937/tehnika2003297S

[41] Sopaj, F., Stafilov, T., Tašev, K., Šajn, R., & Paçarizi, M. (2021): Determination and Statistical Analysis of Atmospheric Deposition of Heavy Metals in Kosovo. A Moss Survey. 1–23.

[42] Sopaj, F., Paçarizi, M., Stafilov, T., Tašev, K., Šajn, R. (2022): Statistical analysis of atmospheric deposition of heavy metals in Kosovo using the terrestrial mosses method. Journal of Environmental Science and Health, Part A, 57 (5), 335–346. https://doi.org/10.1080/10934529.2022.2063607

[43] Tomlinson, D. L., Wilson, J. G., Harris, C. R., Jeffrey, D. W. (1980): Problems in the assessment of heavy–metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33 (1–4), 566–575. https://doi.org/10.1007/BF02414780

[44] Webb, A. H., Bawden, R. J., Busby, A. K., Hopkins, J. N. (1992): Studies on the effects of air pollution on limestone degradation in Great Britain. Atmospheric Environment. Part B. Urban Atmosphere, 26 (2), 165–181. https://doi.org/10.1016/0957–1272(92)90020–S

[45] Weiss, D., Shotyk, W., Boyle, E. A., Kramers, J. D., Appleby, P. G., Cheburkin, A. K. (2002): Comparative study of the temporal evolution of atmospheric lead deposition in Scotland and Eastern Canada using blanket peat bogs. Science of the Total Environment, 292 (1–2), 7–18. https://doi.org/10.1016/S0048–9697(02)00025–6

[46] Yushin, N., Chaligava, O., Zinicovscaia, I., Vergel, K., Grozdov, D. (2020): Mosses as bioindicators of heavy metal air pollution in the lockdown period adopted to cope with the COVID–19 pandemic. Atmosphere, 11 (11), 1194. https://doi.org/10.3390/atmos11111194

[47] Zhu, Q., Liu, Y., Jia, R., Hua, S., Shao, T., Wang, B. (2018): A numerical simulation study on the impact of smoke aero–sols from Russian forest fires on the air pollution over Asia. Atmospheric Environment, 182, 263–274. https://doi.org/10.1016/j.atmosenv.2018.03.052

Downloads

Published

2025-12-16

How to Cite

ASSESSMENT OF HEAVY METAL ACCUMULATION IN MOSS SPECIES AS BIOMONITORS OF ATMOSPHERIC POLLUTION IN THE GOLESH FE–NI MINING AREA, REPUBLIC OF KOSOVO. (2025). Geologica Macedonica, 39(2), 127-138. https://doi.org/10.46763/GEOL25392127l