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RADON FOOTPRINT FROM THE PHOSPHOGYPSUM WASTE STACK NEAR
ZGRPOLCI LOCALITY, VELES, REPUBLIC NORTH MACEDONIA
Mitko Jancev!, Ivan Boev!

'Faculty of Natural and Technical Sciences, “Goce Delcev” University in Stip, Blvd. Krste Misirkov 10-A,
P.O, Box 210, 2000 Stip, North Macedonia
mitko.31315@ugd.edu.mk, ivan.boev@ugd.edu.mk

Abstract. Five locations and five samples of materials from the phosphogypsum waste stack near
Zgrpolci locality, in the vicinity of the city of Veles, were checked for their radon concentrations in air and
phosphogypsum radon exhalation rate. The accumulation method using AlphaGUARD DF2000 device was used
for specific exhalation rate determinations as well as for radon concentrations in air. The activity concentrations
of 222Rn at 5 different sampling locations of the anthropogenically introduced phosphogypsym waste stack near
the Zgrpolci locality ranged from 21.02 up to 142.20 Bq kg. The ??2Rn exhalation rates from these materials
(from the same 5 locations) were in the range of 592.27-897.99 mBq m2 h™' .

Key words: radon, air, phosphogypsum waste.

KAPAKTEPUCTHUKHN HA PAJIOHOT O ®OCO®UT'NIICHUOT OTIIA/L
BO BJIN3UHA HA JIOKAJIUTETOT 3I'PIIOJIIU, BEJIEC,
PEIIYBJIUKA CEBEPHA MAKEJIOHHUJA
MuTtko Janues!, UBan Boes!

!®akynTeT 32 NPUPOIHHA M TEXHHIKH HayKH, Y HuBep3uTeT ,,I'one Jemues®, IlItun
mitko.31315@ugd.edu.mk, ivan.boev@ugd.edu.mk

Armncrpakt. Iler okanuy ¥ NeT NPUMEPOL Ha MaTePHjajIH O] jaJIOBHIITETO cO (ocdoruncer ornan Bo
OnM3MHA HA MecHOCTa 3TproJiiu, Bo Oau3nHa Ha rpagot Benec, 6ea mpoBepeHH 3a HUBHATA KOHIICHTpPAIMja HA
paZoH BO BO3AYXOT M CTalKaTa Ha ecxajialdja Ha paxoH onx ¢ocdorumcor. MeTogor Ha akymyjangja co
ynorpe6a Ha ypenot AlphaGUARD DF2000 ce kopucrenie 3a cnenn@uuHA ogpenOr Ha ONCeroT Ha ecXajlalliu
Ha pagoH ox (GOpchOruIcoT, Kako M 3a KOHICHTPAIMUTE HA PajoH BO BO3ayxoT. KoHIEHTpanuure Ha
aKTUBHOCT Ha 22’Rn Ha 5 pasiuuHM MecTa Ha ONpoOyBame Ha NPUMEPOLM BO AHTPOIOTEHO CO3IAaJEHOTO
janopumre Ha (ocorunc Bo OGIM3MHA HA MECHOCTa 3rpmoimu ce asmxkea on 21,02 mo 142,20 Bq kg=.
Crankure Ha ecxananuja Ha ?’Rn on oBue Marepujanu (0 uctute 5 jokanuu) Gea Bo oncer o1 592,27-897,99
mBq m?2 h.

Kuy4ynu 360poBH: pajioH, BO31yX, pocdorurcen ornai.

1. Introduction

Radioactive elements in nature are present in a wide range of concentrations in all rocks, soils
and waters. The presence and distribution of radionuclides in the air is primarily a matter of local
geology and chemical composition of rocks and water. Among the heavy radioactive elements, the
most common are 28U and 2**Th, which produce other radioactive isotopes, such as radium and radon.
Radon (**’Rn) and thoron (**°Rn) are radioactive gases emanating from geological materials.
Inhalation of these gases is closely related to an increase in the probability of lung cancer if the levels
are high. Although in our environment people and institutions are still not sufficiently aware of the
health problems that radon gas can cause, this does not reduce the need for its monitoring in water, air
and soils. Radon has a half-life of 3.8 days, while thoron has a half-life of 55.6 seconds, which means
that in this time period, on average, one half of the given amount of radon/thoron atoms will
decompose. Nevertheless, despite thoron indoor concentration is generally lower than for the radon,
the 2!2Pb thoron progeny (half-life of 10.6 h) can accumulate to significant levels in breathable air,
aggravating its inhalation risk (World Health Organization, 2009). Some studies (Doi et al., 1994;
Mili¢ et al., 2010; De With and De Jong, 2011; Kudo et al., 2015) have demonstrated that thoron
concentrations can be comparable to radon and its progeny in some areas of elevated radiological risk.
Radon and thoron are significant contributors to the average dose from natural background sources of
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radiation. They represent approximately half of the estimated dose from exposure to all natural
sources of ionizing radiation (United Nations Scientific Committee on the Effects of Atomic
Radiation (UNSCEAR), 2008). Inhalation of these radioactive gases and their decay products can
cause health risks, especially in poorly ventilated areas. Long-term exposure to high levels of
radon/thoron in home and working area increases risk of developing lung cancer (World Health
Organization, 1988; Brenner, 1994). Radon is the second leading cause of increase of the probability
of lung cancer after tobacco smoke (World Health Organization, 2009).

Phosphogypsum, a waste by-product derived from the wet process production of phosphoric
acid, represents a serious problem facing the worldwide phosphate industry. Phosphogypsum can be
classified as a Naturally Occurring Radioactive  Material NORM) residue of the
phosphate fertilizer industry. It may therefore contribute to the presence of radon in the environment
away from the phosphogypsum landfill. There is no radon concentration factor around
phosphogypsum deposits. Diffusion and convection (wind) usually remove any large accumulation /
concentration of radon near phosphogypsum landfills (FDHBRC and EPCHCAMD, 2011).

In some previous work, were studied Zgrpolci phosphogypsum mean values of gross alpha and
beta specific activities and their standard deviation values (950+104) Bq/kg and (1694+220) Bqg/kg,
respectively (Jancev et al., 2019; Jancev et al., 2020), as well as the mean values of the specific
activities of 28U and ?2°Ra were (360+55) Bg/kg and (280+84) Bg/kg, respectively. Also, estimated
annual outdoor effective dose, at 1m received by adults was calculated at 0.25 mSv/y, which is below
a dose limit of 1 mSv/y for members of general public (Jancev et al., 2020). If we take into account
the fact that radon is the second leading cause of lung cancer worldwide after active smoking, as well
as a common cause of gastric cancer, which somehow imposed the need to record the current state of
radon in the air in the area of the landfill for phosphogypes near Zgrpolci. Such a need is indicated by
the fact that radon belongs to the group of inert gases, which means that it is very difficult to
chemically communicate with other elements, and above all it is a radioactive gas, which makes it a
factor that has a detrimental effect on public health. In the context of the above, the main objectives of
these measurements are emphasized, which refer to the provision / analysis of radon concentrations in
the ambient air of the phosphogypum landfill near Zgrpolci.

2. Materials and methods

The measurement of radon concentrations (***Rn) in the air at the phosphogypsum landfill,
Zgrpolci was performed at 5 locations that cover the total area (~ 28545 m2), and they are positioned
in a so-called zigzag layout (Figure 1).

> < - " e e e W
Fig. 1. Sampling locations of radon concentrations in the air and radon exhalation from the locality of

phosphogypsum landfill, Zgrpolci
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The analysis of radon concentrations in the air was performed at a height of 0.5 m from the
ground (deposited material) using the AlphaGUARD DF2000 professional radon monitor for multi-
parametric analysis with gas impermeable chamber for pulsating ionization (0, 6 1).

The radon measurement range was from min 2 to max 2 000 000 Bq / m® 2*Rn. Radon sensitivity
is: 1 cpm at 20 Bq / m? (0.5 pCi / 1). Sensitivity for radon determination in relation to toron: radon
minimum 1 cpm at 60 Bq / m? (1.6 pCi / 1); thoron (1 1/ min) minimum 1 cpm at 200 Bq / m? (5.5 pCi
/1) and thoron (2 1 / min) minimum 1 cpm at 140 Bq / m? (3.8 pCi / ).

Also, five samples from the phosphgypsum waste stack, have been collected for the necessities
of exhalation measurements. These samples were collected from the exact points where the radon in
the air concentration measurements took place. The mass of each sample labeled as samples 1, 2, 3
and 5 was 1 kg while the sample 4 had a mass of 2 kg. Figure 1 shows the spatial location of sampled
materials. The aforementioned materials were classified as materials incorporating residues from
industries processing naturally-occurring radioactive material (phosphogypsum) in accordance to
directives by the European Parliament (2014). Sample preparation consisted of hand crushing and
drying of sampled materials for 48 h at 105°C, prior to proceeding with their exhalation
measurements. Among the methods to measure exhalation rate of radon and thoron isotopes in
different materials such as passive methods, that use solid-state nuclear track detector and
accumulation chamber methods and active methods with radon/thoron monitors, we used the later
one. The method is schematized in Fig. 2.

—>
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Fig. 2. AlphaGUARD operating outside the Radon-Box in flow-through mode

Accumulation method technique consisted of attaching the Radon Box to the phosphogypsum
surface with its opening. The edges of the opening were sealed by duct tape to avoid exchange of the
medium to be measured with the surrounding atmosphere. The AlphaGUARD monitor placed outside
the Radon Box was connected in a closed loop with the container and its internal AlphaPUMP allows
continuous measurement of the radon and thoron concentration within the box. Exhalation is the
amount of radon/thoron as obtained from a given layer (geological material on the surface/surface
exposure) mainly the outer thinner part of the crust and it is given in Bq h™!, according to the
Netherlands Standardization Institute (Netherlands Standardization Institute, 2001). Exhalation can be
related to the mass of the samples (massic radon/thoron exhalation, and its value is expressed Bq kg™
h™') as well as to areal exhalation related to the area of exhalation expressed as Bq m2 h™! (Miro et al.,
2014; Hassan et al., 2011; Frutos-Puerto et al., 2018).

3. Results of concentration measurements of radon in the air and radon/thoron exhalation
measurements

Measurements of radon concentrations in ambient air in the area of interest, as already
mentioned, were followed by detection of alpha particles in the ionization chamber during air flow /

-53 -



Murtko JanueB, FIBan boeB

circulation in the system. The results of the measurements of the radon concentration (in Bq - m™) in
the air during the measurements are given in Table 1.

Table 1. Measurements of the concentration of radon in the ambient air in the space of the phosphogypsum
landfill in the locality Zgrpolci (Bq * m™)

Measurement Rn??? Air pressure | Temperature

time (Bq'm™) | Mbar (mbar) (°C)
Loc 1 (1)3222020 21,77 985,37 25,76
Loc 1 (1)322'32020 21,92 985,35 25,82
Loc 1 (1)3282020 22,36 985,26 26,10
Loc 1 35292020 21,51 985,25 26,19
Loc 1 (1)2802020 143,20 985,22 26,27
Loc 1 (1)2(6)22020 51,50 985,23 26,41
Loc 2 (1)2882020 21,94 985,56 27,09
Loc 2 (1)2892020 21,94 985,56 27,27
Loc 2 (1)2?02020 50,78 985,52 27,46
Loc 2 (1)22?‘32020 52,35 985,54 27,91
Loc2 | oste 51,69 985,58 28,05
Loc 2 (1)22?.52020 49,11 985,55 28,19
Loc 2 (1)2?62020 21,55 985,58 28,31
Loc 2 (1)2?82020 51,56 985,63 28,59
Loc 2 (1)2302020 51,65 985,68 28,93
Loc 3 (1)223.52020 21,02 986,54 29,60
Loc 3 (1)2372020 21,97 986,62 29,85
Loc 3 (1)2382020 21,95 986,63 30,02
Loc3 (1)§§22020 22,35 986,69 30,50
Locs | o833 22,26 986,68 30,66
Loc 3 (1)222.52020 52,93 986,72 30,88
Loc 3 (1)2262020 22,05 986,73 30,97
Loc 4 (1)22()2020 50,54 987,03 31,23
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18.6.2020

Loc 4 08:42 21,64 987,03 31,37
18.6.2020

Loc 4 08:43 21,67 987,01 31,49
18.6.2020

Loc 4 08:44 21,70 987,01 31,59
18.6.2020

Loc 4 08:45 90,71 986,98 31,68
18.6.2020

Loc 4 08:48 21,85 987,00 32,00
18.6.2020

Loc 4 08:51 52,51 986,95 32,30
18.6.2020

Loc 4 08:52 51,80 986,93 32,41
18.6.2020

Loc 5 08:57 22,34 987,71 32,53
18.6.2020

Loc 5 08:58 52,74 987,68 32,54
18.6.2020

Loc 5 09:00 21,40 987,67 32,63
18.6.2020

Loc 5 09:03 22,37 987,67 32,90
18.6.2020

Loc 5 09:06 21,73 987,64 33,21
18.6.2020

Loc 5 09:07 53,19 987,67 33,29
18.6.2020

Loc 5 09:08 22,14 987,62 33,41
18.6.2020

Loc 5 09:09 22,10 987,63 33,52

Loc 1-5

stat Min 21,02 985,22 25,76

Loc 1-5

stat Max 143,20 987,71 33,52

Loc 1-5

stat Average 37,10 986,47 29,97

Loc 1-5

stat Median 22,30 986,68 30,58

As can be seen from Table 1 above, the range of radon concentrations ranged from 21.51 to
143.20 Bq * m™ (mean 47.04 Bq * m™) at location 1, from 21.55 to 52.35 Bq * m> ( mean value 41.40
Bq * m?) at location 2, from 21.02 to 52.93 Bq * m™ (mean value 26.36 Bq * m™) at location 3, from
21.64 to 90.71 Bq * m™ (mean value 41.55 Bq * m™) at location 4, as well as from 21.40 to 53.19 Bq *
m~> (mean 29.75 Bq * m™) at location 5. As can be seen from the measured values, the range of
measured radon concentrations , except for two "hurricane values", moved within narrow limits with
mutual differences of about 30 Bq « m™. This statement becomes even more pronounced if we take
into account the sum values for all 5 locations, where the mean value of 37.10 Bq * m™ and the
median of 22.30 Bq * m™ point out to the relatively narrow range of measured radon concentrations
(Table 1).

For greater illustrativeness of the measurements performed in the diagram given in Figure 3, the
radon concentrations in the ambient air during the measurements are graphically shown, both at each
location separately (Figure 3a-3d), and collectively for all locations with their mean values ( Figure

39).
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Radon concentration in air at
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Fig. 3. Diagrams for the course of the measurements of the radon concentrations in the ambient air in the
phosphogyps landfill at the locality Zgrpolci (Bq * m-3)
a) Location 1; b) Location 2; ¢) Location 3; d) Location 4; ¢) Location 5; f) Average presentation of
the values from the measurements of radon concentrations in all 5 locations; dashed lines in green give
the range of measured radon concentrations (upper and lower limit)

Based on the measurements and calculations (Table 1 and Figure 3), we can conclude that radon
concentrations in the measured samples undoubtedly indicate the uniformity of the deposited
phosphogypsum masses, the existence of similar conditions in the measurements, such as air pressure,
ambient humidity. air, temperature (Table 1), but also uniformity of moisture of the material
phosphogypsum, compaction of the material, grain size, porosity, diffusion characteristics and similar
parameters that have a great influence on the concentrations of radon in the space of interest. This
influence is primarily manifested in the possibility of radon spreading through the material before it
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can leave it, and its velocity of discharge from the material is related to its diffusion characteristics.
When equilibrium is not reached in the diffusion process, because if the radon needs too much time to
reach the surface (half-life 3.8 days), it will decompose before it can reach the air. All of the above
slightly affects the rate of diffusion through the material, and thus the rate of radon emission. The
displayed radon concentrations in the air above the phosphogypsum deposit near Zgrpolci are at least
two magnitudes higher than the usual average of 10 Bq * m™, determined as the annual average for
open radon concentrations (UNSCEAR, 1993), but certainly higher that radon concentrations (average
12 Bq * m™) in the air around Belgrade, R. Serbia (Kolarz et al., 2020), the People's Republic of China
(average ~ 13-14 Bq * m>; Wu et al., 2016) and others.

Also, going one step further, based on the average, measured radon values, we calculated the
exposure to radon inhalation, ie, the annual effective doses of ionizing radiation exposure that would
be received (from radon) by individuals annually ( Table 2), as outdoor stay and indoor stay. The
annual effective dose due to radon exposure (inhalation), Ery, is:

a) in open space

h
Ern(mSv/y) = 6,7 * 107° x Cry, (Bq * m™3) * 2000(;)

b) indoors (in closed space)

h
Ern(mSv/y) = 6,7 %« 107 % Cg,, (Bq * m™3) = 7000(;)

where: Eg,(mSv-y~1) —is an effective dose for radon exposure (inhalation) on
an annual basis
Crn(Bq * m™3) - is the measured concentration of radon in the subject
area 6.7 * 10° mSv at Bq h m™ dose coefficient

Table 2. Calculated values for the exposure during the inhalation of radon from the ambient air at the
phosphogyps landfill at the locality Zgrpolci

Location | Location | Location | Location | Location
Sampling location 1 2 3 4 5
Number of measurements 6 9 7 8 8
22Rn (Bqg m™) 47,04 41,4 26,36 41,55 29,75
Annual effective dose for
inhalation of ?>’Rn (mSv y 1,19 1,04 0,66 1,05 0,75
" indoors
Annual effective dose for
inhalation of ?>’Rn (mSv y 0,45 0,39 0,25 0,39 0,28
") outdoors
Total (2) effective dose
outdoors+indoors (mSv y
D) 1,63 1,44 0,91 1,44 1,03

The effective doses (Ern) indoors ranged from 0.66 mSv-y™! to 1.19 mSv - y! (mean 0.94 mSyv -
y1), while the calculations of values for eventual outdoor stay were in the range of 0.25 mSv - y! to
0.45 mSv - y! (mean 0.35 mSv - y!). The cumulative, ie, the sum absolute absolute values of the
cumulative effective doses (Ern), ranged from 0.91 mSv - y!' to 1.63 mSv - y! (mean 1.29 mSv - y!) .
The analysis of these effective doses certainly showed that the mean value for indoor spaces very
close to the maximum recommended for individual doses in the general population (1 mSv - y'), the
mean value for outdoor stay is below the maximum recommended doses, while the combined doses
outside / indoor space annually exceed that value in the whole range of trials (location 1- location5).
Doses from other sources of radiation sources such as “°K, 232Th and 2*®U at the same site (in the
amount of 0.24537 mSv- y!; Jancev et al., 2020) should certainly be taken into account here.
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However, here we want to emphasize that the estimated mean annual effective dose should not be
taken too seriously, as the mean values are widely used. For example, according to UNSCEAR
estimates (2000), as many as 65% of people are exposed to doses of 1 to 3 mSv, while 25% of people
are exposed to doses below 1 mSv and only 10% of them are exposed to doses above 3 mSv, which
would classify our site of interest in the most numerous group of people with exposure to doses from

1 to 3 mSv.

As we already mentioned above, the ?*Rn and 2*°Rn exhalation rates from Zgrpolci

phosphogypsum materials (from the same 5 locations) were measured, also (Figure 4).
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Fig. 4. Exhalation measurements of radon and thoron from Zgrpolci phosphogypsum

4. Radon Exhalation Calculation
Conventionally, ?’Rn exhalation rate, E2», [Bq h™'] is calculated according to the following
equation, which is equation 1 solved with respect to E (Tuccimei et al., 2009):

(C — C e 222t
ERrnoz2 = 1 — e—7222t "AzazV

where C is the equilibrium concentration [Bq m™],
Cy is the initial radon concentration [Bq m™],
X222 is 222Rn decay constant [h!],
V is the free total volume of the analytical system [m®] and
t is time [h].

Thoron (**°Rn) exhalation rate, Exo [Bq h!], was calculated according to the following equation
(Tuccimei et al., 2009):

C

ERpn220 = (4220 Va)(—m)y1
o H220(Q)
where A2 is 2*°Rn decay constant (h),

V) is the volume of the accumulation chamber (m?),

Cnm is the measured ?>°Rn concentration [Bq m?],

V| is the volume between the outflow of the accumulation chamber and the inflow of the

radon monitor, and

Q is the flow rate in the system.

The second term of the equation corrects for the decay of 2?°Rn during the transport in the
closed system, because thoron half-life (55.61 s) is comparable with time required to complete a
whole loop, causing the underestimation of thoron activity concentration.
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Table 3. Measurements of the radon and thoron accumulation concentration (Bq * m~), exhalation from
the phosphogypsum landfill in the locality Zgrpolci (mBq * kg™! h'!) and annual effective dose

(mSv y™)
Sample No.of C (Bq m?®) Mean SD t (h) m Ern222/Rn220 Annual
meas. range (kg) | (mBqkg'h!) | effective dose
(mSv y)

222Rn 288 0.14-325.37 90.331 | 69.847 48 1 281.539 2.34

1 220Rn 288 0.60-398.18 59.935 | 77.753 48 1 13040.3 3.18
222Rn 378 1.34-553.82 1923'09 ! 129'48 63 1 381.948 3.99

2
220Rn 378 0.26-721.92 83.708 10%51 63 1 18032.2 >77
222Rn 288 0.13-296.86 69.849 | 61.259 48 1 255.746 2.14

3 220Rn 288 1.27-410.48 57.805 | 76.034 48 1 13421.76 3.27
222Rn 288 7.90-360.14 1537'47 78.816 48 2 153.153 259

4
220Rn 288 0.89-452.61 79.676 1021'68 48 2 7408.02 3.61
222Rn 288 0.14-453.67 1355'56 97.977 48 1 387.760 3.27

5
220Rn 288 1.59-623.11 80.732 | 95.554 48 1 20385.35 4.97

Note: Volume of the RadonBox (exhalation box) 0.035 m?, area of exhalation within the box
0.21 m?.

Exhalation measurements of radon from the phosphogypsum samples showed range of values
going from 153.153 up to 387.78 mBq * kg! h'! and averaging 292.029 mBq * kg! h’!, from more
than of 1530 cumulative measurements. Comparison with literature data showed that measurements of
radon exhalations from phosphogypsum at the tailing (waste stack) near Zrgopolci showed that the
values were several times higher than in some common building materials (Frutos-Puerto et al., 2020).
On average, the measured values for phosphogypsum exhalation were 22 times higher than those of
concrete, 12 times higher than those of cement, 10 times higher than those of marble, 10 times higher
than those of marble, 16 times higher than those of shale, 3 times higher those of granite and even 193
times higher than those of gypsum. We obtained very similar findings when comparing the results for
the exhalation of radon from phosphogypsum from the tailings near Zgrpolci compared to some
building materials originating in Italy (tuff, pyroclastic flow, lapilli and cement; Tuccimei et al.,
2009), where our measured values were higher in the range of 3 to 18 times. Without going any
further into separate comparisons we would like to emphasize that the values of radon exhalation rates
reported in Table 3 correspond well with the values reported by other authors (Rawat et al., 1991;
Porstendorfer, 1994; Stoulos et al., 2003; Righi and Bruzzi, 2006; Perna et al., 2018). Also, we would
like that radon exhalations from sampled phosphogypsum waste stack at Zrgopolci were
approximately two times higher then respective ones in coals and related fly ashes from some part
around the World (Singh et al., 2016)

In regards to exhalation measurements of thoron from the phosphogypsum samples we are
emphasizing that they showed range of values going from 7408.1 up to 20385.4 mBq * kg h! and
averaging 14457.5 mBq < kg!' h'l, from more than of 1530 cumulative measurements, also.
Comparison with literature data showed that measurements of thoron exhalations from
phosphogypsum at the tailing (waste stack) near Zrgopolci, opposite to radon one, were not that
uniform. Namely, for some materials such as concrete, cement, marble, ceramic and gypsum (Frutos-
Puerto et al., 2020), our phosphogypsum thoron exhalation average values were several times higher
(2.2; 4.1; 3.9; 6.3 and 5.1 respectively). For some other building materials such are granite measured
values for phosphogypsum exhalation were 2 times lower, 5 times lower than those of wood and
approximately 0.5 times lower than those of slate. Comparison with some Italian produced building
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materials (Tuccimei et al., 2009) showed that thoron exhalation for Zrgopolci phosphogypsum were
from 2 to 7 times lower magnitudes. These findings are similar to the ranges of results given in works
of other authors (Uji¢ et al., 2010; Jonas et al., 2016). Contrary to the results for the exhalation of
radon, the exhalation of the toron from the coals and ashes (Singh et al., 2016) was 3-12 magnitudes
higher than the exhalations of the toron from the phosphogypsum in waste stack of Zgrpolci.

This radon concentration model can then be used to determinate the annual effective doses of
22Rn by the method recommended by the United Nations Scientific Committee on the Effects of
Atomic Radiation (United Nations Scientific Committee on the Effects of Atomic Radiation
(UNSCEAR), 2016):

Dgn222 = Crn222 " Fe " Tg - CFrp222 (D

where Drn222 is the annual effective dose of ?*Rn (Sv y ™ !);
Crm22 is the activity concentration for 2?Rn (Bq m™);
CFru222 is the dose conversion factor for >’Rn progeny (Sv per Bq h m3);
F. is the equilibrium factor for ?*2Rn and its progeny; and
Ta is the annual work time.

The standard parameters were estimated using the RP 122 publication of EC 2002 (European
Commission, 2002). The values of CFra222 were assumed to be 9 x 107° Sv per Bq h m™ and the T,, 7
000 h y!. The value of F. was assumed to be 0.4 as reported in (United Nations Scientific Committee
on the Effects of Atomic Radiation (UNSCEAR), 2008).

Similarly, for 220Rn:

Dgn220 = Crn220 " Fe " Ta - CFrn220 )

where Drn22o is the annual effective dose of °Rn (Svy');
Cru220 is the activity concentration for *?°Rn (Bq m);
CFra220 is the dose conversion factor for >>°Rn progeny (Sv per Bq h m™);
F. is the equilibrium factor for 2°Rn and its progeny; and
T is the annual work time.

The standard parameters were given as CFrm20 dose conversion factor for 220Rn progeny (40 x
10—9 Sv per Bq h m—3) and Ta as the annual work time, 2 000 h y~! (European Commission, 2002).
F. is the equilibrium factor for 2?°Rn and its progeny, 0.1 (United Nations Scientific Committee on the
Effects of Atomic Radiation (UNSCEAR), 2008). Calculated annual effective dose, in
aforementioned manner, for ???Rn ranged from 2.14 to 3.99 mSv y !, while for the ?°Rn values ranged
from 3.18 to 5.77 mSv y !, and all of them were of several magnited higher than allowed one of 1
mSv y L.

5. Conclusion

More than 40 measurements of radon in air concentration of the phosphogypsum waste stack
near Zgrpolci showed range of 21.01 to 143.20 Bq * m™ , at all 5 locations respectively. The displayed
radon concentrations in the air above the phosphogypsum deposit near Zgrpolci are at least two
magnitudes higher than the usual average of 10 Bq * m™, determined as the annual average for open
radon concentrations. Calculated annual effective doses for inhalation of #?Rn (mSv y!) outdoors
were 0.45; 0.39; 0.25; 0.39 and 0.28, respectively for each sampling location and none of them were
above the suggested values of 1 mSv < y!. Exhalation measurements of radon from the
phosphogypsum samples showed range of values going from 153.153 up to 387.78 mBq * kg! h!,
which values were several times higher than those of concrete, cement, marble, shale, granite and
gypsum. Exhalation measurements of thoron from the phosphogypsum samples ranged from 7408.1
up to 20385.4 mBq * kg! h'!, which were several times higher than some materials such as concrete,
cement, marble, ceramic and gypsum (2.2; 4.1; 3.9; 6.3 and 5.1 respectively).
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