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RADON FOOTPRINT FROM THE PHOSPHOGYPSUM WASTE STACK NEAR 

ZGRPOLCI LOCALITY, VELES, REPUBLIC NORTH MACEDONIA 
Mitko Jancev1, Ivan Boev1 

 
1Faculty of Natural and Technical Sciences, “Goce Delcev” University in Stip, Blvd. Krste Misirkov 10-A, 

 P.O, Box 210, 2000 Stip, North Macedonia 

mitko.31315@ugd.edu.mk, ivan.boev@ugd.edu.mk 

 

Abstract. Five locations and five samples of materials from the phosphogypsum waste stack near 
Zgrpolci locality, in the vicinity of the city of Veles, were checked for their radon concentrations in air and 
phosphogypsum radon exhalation rate. The accumulation method using AlphaGUARD DF2000 device was used 
for specific exhalation rate determinations as well as for radon concentrations in air. The activity concentrations 
of 222Rn at 5 different sampling locations of the anthropogenically introduced phosphogypsym waste stack near 
the Zgrpolci locality ranged from 21.02 up to 142.20 Bq kg-3. The 222Rn exhalation rates from these materials 
(from the same 5 locations) were in the range of 592.27-897.99 mBq m-2 h-1 . 

 

Key words:  radon, air, phosphogypsum waste. 
 

 

КАРАКТЕРИСТИКИ НА РАДОНОТ ОД ФОСОФИГИПСНИОТ ОТПАД  
ВО БЛИЗИНА НА ЛОКАЛИТЕТОТ ЗГРПОЛЦИ, ВЕЛЕС,  

РЕПУБЛИКА СЕВЕРНА МАКЕДОНИЈА  
Митко Јанчев1, Иван Боев1 

 
1Факултет за природни и технички науки, Универзитет „Гоце Делчев“, Штип 

mitko.31315@ugd.edu.mk, ivan.boev@ugd.edu.mk 

 
Апстракт. Пет локации и пет примероци на материјали од јаловиштето со фосфогипсен отпад во 

близина на месноста Згрполци, во близина на градот Велес, беа проверени за нивната концентрација на 
радон во воздухот и стапката на есхалација на радон од фосфогипсот. Методот на акумулација со 
употреба на уредот AlphaGUARD DF2000 се користеше за специфични одредби на опсегот на есхалации 
на радон од форсфогипсот, како и за концентрациите на радон во воздухот. Концентрациите на 
активност на 222Rn на 5 различни места на опробување на примероци во антропогено создаденото 
јаловиште на фосфогипс во близина на месноста Згрполци се движеа од 21,02 до 142,20 Bq kg-3. 
Стапките на есхалација на  222Rn од овие материјали (од истите 5 локации) беа во опсег од 592,27-897,99 
mBq m-2 h-1. 

 

Клучни зборови: радон, воздух, фосфогипсен отпад. 
 

1. Introduction 
Radioactive elements in nature are present in a wide range of concentrations in all rocks, soils 

and waters. The presence and distribution of radionuclides in the air is primarily a matter of local 
geology and chemical composition of rocks and water. Among the heavy radioactive elements, the 
most common are 238U and 232Th, which produce other radioactive isotopes, such as radium and radon. 
Radon (222Rn) and thoron (220Rn) are radioactive gases emanating from geological materials. 
Inhalation of these gases is closely related to an increase in the probability of lung cancer if the levels 
are high. Although in our environment people and institutions are still not sufficiently aware of the 
health problems that radon gas can cause, this does not reduce the need for its monitoring in water, air 
and soils. Radon has a half-life of 3.8 days, while thoron has a half-life of 55.6 seconds, which means 
that in this time period, on average, one half of the given amount of radon/thoron atoms will 
decompose. Nevertheless, despite thoron indoor concentration is generally lower than for the radon, 
the 212Pb thoron progeny (half-life of 10.6 h) can accumulate to significant levels in breathable air, 
aggravating its inhalation risk (World Health Organization, 2009). Some studies (Doi et al., 1994; 
Milić et al., 2010; De With and De Jong, 2011; Kudo et al., 2015) have demonstrated that thoron 

concentrations can be comparable to radon and its progeny in some areas of elevated radiological risk. 
Radon and thoron are significant contributors to the average dose from natural background sources of 

UDC: 553.63/.64:546.296.064(497.713)
DOI: https://www.doi.org/10.46763/NRT211510051j
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radiation. They represent approximately half of the estimated dose from exposure to all natural 
sources of ionizing radiation (United Nations Scientific Committee on the Effects of Atomic 
Radiation (UNSCEAR), 2008). Inhalation of these radioactive gases and their decay products can 
cause health risks, especially in poorly ventilated areas. Long-term exposure to high levels of 
radon/thoron in home and working area increases risk of developing lung cancer (World Health 

Organization, 1988; Brenner, 1994). Radon is the second leading cause of increase of the probability 
of lung cancer after tobacco smoke (World Health Organization, 2009).  

Phosphogypsum, a waste by-product derived from the wet process production of phosphoric 
acid, represents a serious problem facing the worldwide phosphate industry. Phosphogypsum can be 
classified as a Naturally Occurring Radioactive Material (NORM) residue of the 
phosphate fertilizer industry. It may therefore contribute to the presence of radon in the environment 
away from the phosphogypsum landfill. There is no radon concentration factor around 
phosphogypsum deposits. Diffusion and convection (wind) usually remove any large accumulation / 
concentration of radon near phosphogypsum landfills (FDHBRC and EPCHCAMD, 2011).  

In some previous work, were studied Zgrpolci phosphogypsum mean values of gross alpha and 
beta specific activities and their standard deviation values (950±104) Bq/kg and (1694±220) Bq/kg, 

respectively (Jancev et al., 2019; Jancev et al., 2020), as well as the mean values of the specific 
activities of 238U and 226Ra were (360±55) Bq/kg and (280±84) Bq/kg, respectively. Also, estimated 
annual outdoor effective dose, at 1m received by adults was calculated at 0.25 mSv/y, which is below 
a dose limit of 1 mSv/y for members of general public (Jancev et al., 2020). If we take into account 
the fact that radon is the second leading cause of lung cancer worldwide after active smoking, as well 
as a common cause of gastric cancer, which somehow imposed the need to record the current state of 
radon in the air in the area of the landfill for phosphogypes near Zgrpolci. Such a need is indicated by 
the fact that radon belongs to the group of inert gases, which means that it is very difficult to 
chemically communicate with other elements, and above all it is a radioactive gas, which makes it a 
factor that has a detrimental effect on public health. In the context of the above, the main objectives of 
these measurements are emphasized, which refer to the provision / analysis of radon concentrations in 
the ambient air of the phosphogypum landfill near Zgrpolci. 

 

 

2. Materials and methods 
The measurement of radon concentrations (222Rn) in the air at the phosphogypsum landfill, 

Zgrpolci was performed at 5 locations that cover the total area (~ 28545 m2), and they are positioned 
in a so-called zigzag layout (Figure 1).  

 

 

 
Fig. 1. Sampling locations of radon concentrations in the air and radon exhalation from the locality of 

phosphogypsum landfill, Zgrpolci 
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The analysis of radon concentrations in the air was performed at a height of 0.5 m from the 
ground (deposited material) using the AlphaGUARD DF2000 professional radon monitor  for multi-
parametric analysis with gas impermeable chamber for pulsating ionization (0, 6 l). 

The radon measurement range was from min 2 to max 2 000 000 Bq / m³ 222Rn. Radon sensitivity 
is: 1 cpm at 20 Bq / m³ (0.5 pCi / l). Sensitivity for radon determination in relation to toron: radon 
minimum 1 cpm at 60 Bq / m³ (1.6 pCi / l); thoron (1 l / min) minimum 1 cpm at 200 Bq / m³ (5.5 pCi 

/ l) and thoron (2 l / min) minimum 1 cpm at 140 Bq / m³ (3.8 pCi / l). 

Also, five samples from the phosphgypsum waste stack, have been collected for the necessities 
of exhalation measurements. These samples were collected from the exact points where the radon in 
the air concentration measurements took place. The mass of each sample labeled as samples 1, 2, 3 
and 5 was 1 kg while the sample 4 had a mass of 2 kg. Figure 1 shows the spatial location of sampled 
materials. The aforementioned materials were classified as materials incorporating residues from 
industries processing naturally-occurring radioactive material (phosphogypsum) in accordance to 
directives by the European Parliament (2014). Sample preparation consisted of hand crushing and 
drying of sampled materials for 48 h at 105OC, prior to proceeding with their exhalation 
measurements. Among the methods to measure exhalation rate of radon and thoron isotopes in 
different materials such as passive methods, that use solid-state nuclear track detector and 
accumulation chamber methods and active methods with radon/thoron monitors, we used the later 
one. The method is schematized in Fig. 2.  

 

 
 

Fig. 2. AlphaGUARD operating outside the Radon-Box in flow-through mode 

 

Accumulation method technique consisted of attaching the Radon Box to the phosphogypsum 
surface with its opening. The edges of the opening were sealed by duct tape to avoid exchange of the 
medium to be measured with the surrounding atmosphere. The AlphaGUARD monitor placed outside 
the Radon Box was connected in a closed loop with the container and its internal AlphaPUMP allows 
continuous measurement of the radon and thoron concentration within the box. Exhalation is the 
amount of radon/thoron as obtained from a given layer (geological material on the surface/surface 
exposure) mainly the outer thinner part of the crust and it is given in Bq h−1, according to the 
Netherlands Standardization Institute (Netherlands Standardization Institute, 2001). Exhalation can be 
related to the mass of the samples (massic radon/thoron exhalation, and its value is expressed Bq kg−1 

h−1) as well as to areal exhalation related to the area of exhalation expressed as Bq m−2 h−1 (Miro et al., 
2014; Hassan et al., 2011; Frutos-Puerto et al., 2018). 

 

 

3. Results of concentration measurements of radon in the air and radon/thoron exhalation 
measurements 

Measurements of radon concentrations in ambient air in the area of interest, as already 
mentioned, were followed by detection of alpha particles in the ionization chamber during air flow / 
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circulation in the system. The results of the measurements of the radon concentration (in Bq · m-3) in 
the air during the measurements are given in Table 1. 

 
Table 1. Measurements of the concentration of radon in the ambient air in the space of the phosphogypsum 

landfill in the locality Zgrpolci (Bq • m-3) 
 

 

Measurement  
time 

Rn222 

(Bq•m-3) 
Air pressure  
Mbar (mbar) 

Temperature 

(°C) 

Loc 1 

18.6.2020 
07:52 

21,77 985,37 25,76 

Loc 1 

18.6.2020 
07:53 

21,92 985,35 25,82 

Loc 1 

18.6.2020 
07:58 

22,36 985,26 26,10 

Loc 1 

18.6.2020 
07:59 

21,51 985,25 26,19 

Loc 1 

18.6.2020 
08:00 

143,20 985,22 26,27 

Loc 1 

18.6.2020 
08:02 

51,50 985,23 26,41 

Loc 2 

18.6.2020 
08:08 

21,94 985,56 27,09 

Loc 2 

18.6.2020 
08:09 

21,94 985,56 27,27 

Loc 2 

18.6.2020 
08:10 

50,78 985,52 27,46 

Loc 2 

18.6.2020 
08:13 

52,35 985,54 27,91 

Loc 2 

18.6.2020 
08:14 

51,69 985,58 28,05 

Loc 2 

18.6.2020 
08:15 

49,11 985,55 28,19 

Loc 2 

18.6.2020 
08:16 

21,55 985,58 28,31 

Loc 2 

18.6.2020 
08:18 

51,56 985,63 28,59 

Loc 2 

18.6.2020 
08:20 

51,65 985,68 28,93 

Loc 3 

18.6.2020 
08:25 

21,02 986,54 29,60 

Loc 3 

18.6.2020 
08:27 

21,97 986,62 29,85 

Loc 3 

18.6.2020 
08:28 

21,95 986,63 30,02 

Loc 3 

18.6.2020 
08:32 

22,35 986,69 30,50 

Loc 3 

18.6.2020 
08:33 

22,26 986,68 30,66 

Loc 3 

18.6.2020 
08:35 

52,93 986,72 30,88 

Loc 3 

18.6.2020 
08:36 

22,05 986,73 30,97 

Loc 4 

18.6.2020 
08:40 

50,54 987,03 31,23 
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Loc 4 

18.6.2020 
08:42 

21,64 987,03 31,37 

Loc 4 

18.6.2020 
08:43 

21,67 987,01 31,49 

Loc 4 

18.6.2020 
08:44 

21,70 987,01 31,59 

Loc 4 

18.6.2020 
08:45 

90,71 986,98 31,68 

Loc 4 

18.6.2020 
08:48 

21,85 987,00 32,00 

Loc 4 

18.6.2020 
08:51 

52,51 986,95 32,30 

Loc 4 

18.6.2020 
08:52 

51,80 986,93 32,41 

Loc 5 

18.6.2020 
08:57 

22,34 987,71 32,53 

Loc 5 

18.6.2020 
08:58 

52,74 987,68 32,54 

Loc 5 

18.6.2020 
09:00 

21,40 987,67 32,63 

Loc 5 

18.6.2020 
09:03 

22,37 987,67 32,90 

Loc 5 

18.6.2020 
09:06 

21,73 987,64 33,21 

Loc 5 

18.6.2020 
09:07 

53,19 987,67 33,29 

Loc 5 

18.6.2020 
09:08 

22,14 987,62 33,41 

Loc 5 

18.6.2020 
09:09 

22,10 987,63 33,52 

     
Loc 1-5 
stat Min 21,02 985,22 25,76 

Loc 1-5 
stat Max 143,20 987,71 33,52 

Loc 1-5 
stat Average 37,10 986,47 29,97 

Loc 1-5 
stat Median 22,30 986,68 30,58 

 

 

As can be seen from Table 1 above, the range of radon concentrations ranged from 21.51 to 
143.20 Bq • m-3 (mean 47.04 Bq • m-3) at location 1, from 21.55 to 52.35 Bq • m-3 ( mean value 41.40 
Bq • m-3) at location 2, from 21.02 to 52.93 Bq • m-3 (mean value 26.36 Bq • m-3) at location 3, from 
21.64 to 90.71 Bq • m-3 (mean value 41.55 Bq • m-3) at location 4, as well as from 21.40 to 53.19 Bq • 
m-3 (mean 29.75 Bq • m-3) at location 5. As can be seen from the measured values, the range of 
measured radon concentrations , except for two "hurricane values", moved within narrow limits with 
mutual differences of about 30 Bq • m-3. This statement becomes even more pronounced if we take 
into account the sum values for all 5 locations, where the mean value of 37.10 Bq • m-3 and the 
median of 22.30 Bq • m-3 point out to the relatively narrow range of measured radon concentrations 
(Table 1). 

For greater illustrativeness of the measurements performed in the diagram given in Figure 3, the 
radon concentrations in the ambient air during the measurements are graphically shown, both at each 
location separately (Figure 3a-3d), and collectively for all locations with their mean values ( Figure 
3f). 
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а) b) 

  
c) d) 

  
e) f) 

Fig. 3. Diagrams for the course of the measurements of the radon concentrations in the ambient air in the 
phosphogyps landfill at the locality Zgrpolci (Bq • m-3) 

a) Location 1; b) Location 2; c) Location 3; d) Location 4; e) Location 5; f) Average presentation of 
the values from the measurements of radon concentrations in all 5 locations; dashed lines in green give 

the range of measured radon concentrations (upper and lower limit) 
 

   

Based on the measurements and calculations (Table 1 and Figure 3), we can conclude that radon 
concentrations in the measured samples undoubtedly indicate the uniformity of the deposited 
phosphogypsum masses, the existence of similar conditions in the measurements, such as air pressure, 
ambient humidity. air, temperature (Table 1), but also uniformity of moisture of the material 
phosphogypsum, compaction of the material, grain size, porosity, diffusion characteristics and similar 
parameters that have a great influence on the concentrations of radon in the space of interest. This 
influence is primarily manifested in the possibility of radon spreading through the material before it 
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can leave it, and its velocity of discharge from the material is related to its diffusion characteristics. 
When equilibrium is not reached in the diffusion process, because if the radon needs too much time to 
reach the surface (half-life 3.8 days), it will decompose before it can reach the air. All of the above 
slightly affects the rate of diffusion through the material, and thus the rate of radon emission. The 
displayed radon concentrations in the air above the phosphogypsum deposit near Zgrpolci are at least 
two magnitudes higher than the usual average of 10 Bq • m-3, determined as the annual average for 
open radon concentrations (UNSCEAR, 1993), but certainly higher that radon concentrations (average 
12 Bq • m-3) in the air around Belgrade, R. Serbia (Kolarž et al., 2020), the People's Republic of China 
(average ~ 13-14 Bq • m-3; Wu et al., 2016) and others. 

Also, going one step further, based on the average, measured radon values, we calculated the 
exposure to radon inhalation, ie, the annual effective doses of ionizing radiation exposure that would 
be received (from radon) by individuals annually ( Table 2), as outdoor stay and indoor stay. The 
annual effective dose due to radon exposure (inhalation), ERn, is: 

 

a) in open space 𝐸𝐸𝑅𝑅𝑅𝑅(𝑚𝑚𝑚𝑚𝑚𝑚/𝑦𝑦) =  6,7 ∗ 10−6 ∗ 𝐶𝐶𝑅𝑅𝑅𝑅 (𝐵𝐵𝐵𝐵 ∗ 𝑚𝑚−3) ∗ 2000(
ℎ𝑦𝑦) 

 

b) indoors (in closed space) 𝐸𝐸𝑅𝑅𝑅𝑅(𝑚𝑚𝑚𝑚𝑚𝑚/𝑦𝑦) =  6,7 ∗ 10−6 ∗ 𝐶𝐶𝑅𝑅𝑅𝑅 (𝐵𝐵𝐵𝐵 ∗ 𝑚𝑚−3) ∗ 7000(
ℎ𝑦𝑦) 

 

where:  𝐸𝐸𝑅𝑅𝑅𝑅(𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑦𝑦−1) – is an effective dose for radon exposure (inhalation) on  
                                                an annual basis 

             𝐶𝐶𝑅𝑅𝑅𝑅(𝐵𝐵𝐵𝐵 ∗ 𝑚𝑚−3) - is the measured concentration of radon in the subject  
                                             area 6.7 * 10-6 mSv at Bq h m-3 dose coefficient 
 

Table 2. Calculated values for the exposure during the inhalation of radon from the ambient air at the 
phosphogyps landfill at the locality Zgrpolci 

 

Sampling location  
Location 

1 

Location 

2 

Location 

3 

Location 

4 

Location 

5 

Number of measurements 6 9 7 8 8 
222Rn (Bq m-3) 47,04 41,4 26,36 41,55 29,75 

Annual effective dose for 
inhalation of 222Rn (mSv y-

1) indoors 

1,19 1,04 0,66 1,05 0,75 

Annual effective dose for 
inhalation of 222Rn (mSv y-

1) outdoors 

0,45 0,39 0,25 0,39 0,28 

Total (Σ) effective dose 
outdoors+indoors (mSv y-

1) 1,63 1,44 0,91 1,44 1,03 

 

The effective doses (ERn) indoors ranged from 0.66 mSv·y-1 to 1.19 mSv · y-1 (mean 0.94 mSv · 
y-1), while the calculations of values for eventual outdoor stay were in the range of 0.25 mSv · y-1 to 
0.45 mSv · y-1 (mean 0.35 mSv · y-1). The cumulative, ie, the sum absolute absolute values of the 
cumulative effective doses (ERn), ranged from 0.91 mSv · y-1 to 1.63 mSv · y-1 (mean 1.29 mSv · y-1) . 
The analysis of these effective doses certainly showed that the mean value for indoor spaces very 
close to the maximum recommended for individual doses in the general population (1 mSv · y-1), the 
mean value for outdoor stay is below the maximum recommended doses, while the combined doses 
outside / indoor space annually exceed that value in the whole range of trials (location 1- location5). 
Doses from other sources of radiation sources such as 40K, 232Th and 238U at the same site (in the 
amount of 0.24537 mSv· y-1; Jancev et al., 2020) should certainly be taken into account here. 
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However, here we want to emphasize that the estimated mean annual effective dose should not be 
taken too seriously, as the mean values are widely used. For example, according to UNSCEAR 
estimates (2000), as many as 65% of people are exposed to doses of 1 to 3 mSv, while 25% of people 
are exposed to doses below 1 mSv and only 10% of them are exposed to doses above 3 mSv, which 
would classify our site of interest in the most numerous group of people with exposure to doses from 
1 to 3 mSv. 

As we already mentioned above, the 222Rn and 220Rn exhalation rates from Zgrpolci 
phosphogypsum materials (from the same 5 locations) were measured, also (Figure 4).  

 

  

Sample 1 Sample 2 

  

Sample 3 Sample 4 
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Sample 5 
Fig. 4. Exhalation measurements of radon and thoron from Zgrpolci phosphogypsum 

 

 

 

4. Radon Exhalation Calculation 
Conventionally, 222Rn exhalation rate, E222, [Bq h-1] is calculated according to the following 

equation, which is equation 1 solved with respect to E (Tuccimei et al., 2009): 
 𝐸𝐸𝑅𝑅𝑅𝑅222 =

(𝐶𝐶 − 𝐶𝐶𝑜𝑜𝑒𝑒−𝜆𝜆222𝑡𝑡)

1 − 𝑒𝑒−𝜆𝜆222𝑡𝑡 ∙ 𝜆𝜆222 ∙ 𝑉𝑉 

 

where C is the equilibrium concentration [Bq m-3],  
            C0 is the initial radon concentration [Bq m-3],  
             λ222 is 222Rn decay constant [h-1],  
             V is the free total volume of the analytical system [m3] and  
             t is time [h]. 

 

Thoron (220Rn) exhalation rate, E220 [Bq h-1], was calculated according to the following equation 

(Tuccimei et al., 2009): 
 𝐸𝐸𝑅𝑅𝑅𝑅220 = (𝜆𝜆220 ∙ 𝑉𝑉𝑜𝑜)

(𝐶𝐶𝑚𝑚)𝑒𝑒−𝜆𝜆220(
𝑉𝑉1𝑄𝑄 )

 

 

where  λ220 is 220Rn decay constant (h-1),  
V0 is the volume of the accumulation chamber (m3),  
Cm is the measured 220Rn concentration [Bq m-3],  
V1 is the volume between the outflow of the accumulation chamber and the inflow of the   
      radon monitor, and  
Q is the flow rate in the system.  
The second term of the equation corrects for the decay of 220Rn during the transport in the 

closed system, because thoron half-life (55.61 s) is comparable with time required to complete a 
whole loop, causing the underestimation of thoron activity concentration. 
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Table 3. Measurements of the radon and thoron accumulation concentration (Bq • m-3), exhalation from 

the phosphogypsum landfill in the locality Zgrpolci (mBq • kg-1 h-1) and annual effective dose 

(mSv y-1) 
 
Sample  No.of  

meas. 
C (Bq m-3) 

range 

Mean SD t (h) m 
(kg) 

ERn222/Rn220  

(mBq kg-1h-1) 
Annual 

effective dose 
(mSv y-1) 

 

1 

222Rn 288 0.14-325.37 90.331 69.847 48 1 281.539 2.34 

220Rn 288 0.60-398.18 59.935 77.753 48 1 13040.3 3.18 

 

2 

222Rn 
378 1.34-553.82 

192.09
3 

112.48
9 

63 1 381.948 
3.99 

220Rn 
378 0.26-721.92 83.708 

108.51
2 

63 1 18032.2 
5.77 

 

3 

222Rn 288 0.13-296.86 69.849 61.259 48 1 255.746 2.14 

220Rn 288 1.27-410.48 57.805 76.034 48 1 13421.76 3.27 

 

4 

222Rn 
288 7.90-360.14 

153.47
7 

78.816 48 2 153.153 
2.59 

220Rn 
288 0.89-452.61 79.676 

102.68
1 

48 2 7408.02 
3.61 

 

5 

222Rn 
288 0.14-453.67 

135.56
5 

97.977 48 1 387.760 
3.27 

220Rn 288 1.59-623.11 80.732 95.554 48 1 20385.35 4.97 

Note: Volume of the RadonBox (exhalation box) 0.035 m3, area of exhalation within the box 
0.21 m2. 

Exhalation measurements of radon from the phosphogypsum samples showed range of values 
going from 153.153 up to 387.78 mBq • kg-1 h-1 and averaging 292.029 mBq • kg-1 h-1, from more 
than of 1530 cumulative measurements. Comparison with literature data showed that measurements of 
radon exhalations from phosphogypsum at the tailing (waste stack) near Zrgopolci showed that the 
values were several times higher than in some common building materials (Frutos-Puerto et al., 2020). 
On average, the measured values for phosphogypsum exhalation were 22 times higher than those of 
concrete, 12 times higher than those of cement, 10 times higher than those of marble, 10 times higher 
than those of marble, 16 times higher than those of shale, 3 times higher those of granite and even 193 
times higher than those of gypsum. We obtained very similar findings when comparing the results for 
the exhalation of radon from phosphogypsum from the tailings near Zgrpolci compared to some 
building materials originating in Italy (tuff, pyroclastic flow, lapilli and cement; Tuccimei et al., 
2009), where our measured values were higher in the range of 3 to 18 times. Without going any 
further into separate comparisons we would like to emphasize that the values of radon exhalation rates 
reported in Table 3 correspond well with the values reported by other authors (Rawat et al., 1991; 
Porstendörfer, 1994; Stoulos et al., 2003; Righi and Bruzzi, 2006; Perna et al., 2018). Also, we would 
like that radon exhalations from sampled phosphogypsum waste stack at Zrgopolci were 
approximately two times higher then respective ones in coals and related fly ashes from some part 
around the World (Singh et al., 2016) 

In regards to exhalation measurements of thoron from the phosphogypsum samples we are 
emphasizing that they showed range of values going from 7408.1 up to 20385.4 mBq • kg-1 h-1 and 
averaging 14457.5 mBq • kg-1 h-1, from more than of 1530 cumulative measurements, also. 
Comparison with literature data showed that measurements of thoron exhalations from 
phosphogypsum at the tailing (waste stack) near Zrgopolci, opposite to radon one, were not that 
uniform. Namely, for  some materials such as concrete, cement, marble, ceramic and gypsum (Frutos-
Puerto et al., 2020), our phosphogypsum thoron exhalation average values were several times higher 
(2.2; 4.1; 3.9; 6.3 and 5.1 respectively). For some other building materials such are granite measured 
values for phosphogypsum exhalation were 2 times lower, 5 times lower than those of wood and 
approximately 0.5 times lower than those of slate. Comparison with some Italian produced building 
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materials (Tuccimei et al., 2009) showed that thoron exhalation for Zrgopolci phosphogypsum were 
from 2 to 7 times lower magnitudes. These findings are similar to the ranges of results given in works 
of other authors (Ujić et al., 2010; Jónás et al., 2016). Contrary to the results for the exhalation of 
radon, the exhalation of the toron from the coals and ashes (Singh et al., 2016) was 3-12 magnitudes 
higher than the exhalations of the toron from the phosphogypsum in waste stack of Zgrpolci. 

This radon concentration model can then be used to determinate the annual effective doses of 
222Rn by the method recommended by the United Nations Scientific Committee on the Effects of 
Atomic Radiation (United Nations Scientific Committee on the Effects of Atomic Radiation 
(UNSCEAR), 2016): 

 𝐷𝐷𝑅𝑅𝑅𝑅222 = 𝐶𝐶𝑅𝑅𝑅𝑅222 ∙ 𝐹𝐹𝑒𝑒 ∙ 𝑇𝑇𝑎𝑎 ∙ 𝐶𝐶𝐹𝐹𝑅𝑅𝑅𝑅222                                                                              (1) 
 

where DRn222 is the annual effective dose of 222Rn (Sv y−1);  
             CRn222 is the activity concentration for 222Rn (Bq m−3);  
             CFRn222 is the dose conversion factor for 222Rn progeny (Sv per Bq h m−3);  
             Fe is the equilibrium factor for 222Rn and its progeny; and  
             Ta is the annual work time.  
The standard parameters were estimated using the RP 122 publication of EC 2002 (European 

Commission, 2002). The values of CFRn222 were assumed to be 9 × 10−9 Sv per Bq h m−3 and the Ta, 7 

000 h y−1. The value of Fe was assumed to be 0.4 as reported in (United Nations Scientific Committee 
on the Effects of Atomic Radiation (UNSCEAR), 2008). 

 

Similarly, for 220Rn: 
 𝐷𝐷𝑅𝑅𝑅𝑅220 = 𝐶𝐶𝑅𝑅𝑅𝑅220 ∙ 𝐹𝐹𝑒𝑒 ∙ 𝑇𝑇𝑎𝑎 ∙ 𝐶𝐶𝐹𝐹𝑅𝑅𝑅𝑅220                                                                              (2) 
 

where DRn220 is the annual effective dose of 220Rn (Sv y−1);  
             CRn220 is the activity concentration for 220Rn (Bq m−3);  
             CFRn220 is the dose conversion factor for 220Rn progeny (Sv per Bq h m−3);  
             Fe is the equilibrium factor for 220Rn and its progeny; and  
             Ta is the annual work time.  
 

The standard parameters were given as CFRn220 dose conversion factor for 220Rn progeny (40 × 
10−9 Sv per Bq h m−3) and Ta as the annual work time, 2 000 h y−1 (European Commission, 2002). 
Fe is the equilibrium factor for 220Rn and its progeny, 0.1 (United Nations Scientific Committee on the 
Effects of Atomic Radiation (UNSCEAR), 2008). Calculated annual effective dose, in 
aforementioned manner, for 222Rn ranged from 2.14 to 3.99 mSv y−1, while for the 220Rn values ranged 
from 3.18 to 5.77 mSv y−1, and all of them were of several magnited higher than allowed one of 1 
mSv y−1. 

5. Conclusion 
More than 40 measurements of radon in air concentration of the phosphogypsum waste stack 

near Zgrpolci showed range of 21.01 to 143.20 Bq • m-3 , at all 5 locations respectively. The displayed 
radon concentrations in the air above the phosphogypsum deposit near Zgrpolci are at least two 
magnitudes higher than the usual average of 10 Bq • m-3, determined as the annual average for open 
radon concentrations.  Calculated annual effective doses for inhalation of 222Rn (mSv y-1) outdoors 

were 0.45; 0.39; 0.25; 0.39 and 0.28, respectively for each sampling location and none of them were 
above the suggested values of 1 mSv • y-1. Exhalation measurements of radon from the 
phosphogypsum samples showed range of values going from 153.153 up to 387.78 mBq • kg-1 h-1 , 
which values were several times higher than those of concrete, cement, marble, shale, granite and 
gypsum. Exhalation measurements of thoron from the phosphogypsum samples ranged from 7408.1 
up to 20385.4 mBq • kg-1 h-1, which were several times higher than some materials such as concrete, 
cement, marble, ceramic and gypsum (2.2; 4.1; 3.9; 6.3 and 5.1 respectively). 
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