JOURNAL OF AGRICULTURE AND PLANT SCIENCES, JAPS, Vol 18, No. 1, 2020

Manuscript received 04.05.2020 Accepted: 28.06.2020

In print: ISSN 2545-4447 On line: ISSN 2545-4455 doi: <u>https://doi.org/10.46763/JAPS2010041r</u> Original scientific paper

INVESTIGATION OF THE CORRELATIONS BETWEEN QUANTITATIVE TRAITS WHICH DETERMINE YIELD IN THE VINE CULTIVAR BOLGAR AND THE HYBRID COMBINATION BOLGAR X RUSSALKA 1

Venelin Roychev^{1*}, Dushko Nedelkovski², Klime Beleski²

¹Agricultural University – Plovdiv, R. Bulgaria ²Ss Cyril and Methodius University, Institute of Agriculture – Skopje, Republic of North Macedonia *Corresponding author: <u>roytchev@yahoo.com</u>

Abstract

The correlations between quantitative traits, which determine yield in the vine cultivar Bolgar and F₁ progeny of the hybrid combination Bolgar x Russalka 1 have been investigated through Path analysis. It has been found that there are no highly significant traits for the formation of yield from this cultivar, for which the correlation coefficients, direct and total indirect influences have positive values. Positive correlations have been reported between the two parent cultivars and F1 progeny for the traits: shoot and fruiting shoot fertility coefficient, cluster width, total number of shoots, fruiting shoots and clusters. All studied fertility coefficients in the cultivar Bolgar exert positive direct influences, determined by moderate correlations, on the seedlings from F1 progeny. The correlations of the other traits and the influence of separate parent cultivars have positive or negative values, which can be used in the selection of valuable elite forms.

Key words: quantitative traits, yield; seeded and seedless vine cultivar; F1 progeny; correlations; direct and indirect influences; Path analysis

INTRODUCTION

It is known that, by means of Path analysis it is possible to determine the degree, to which the variability of a certain quantitative trait influences the change of a single trait or a group of other traits. The total correlation and the relative participation of each trait in yield formation are established through this method, and it allows their comparing with results from other experiments. The advantages of Path analysis combined with the analytical potential of the production function are a model, which can be efficiently applied in the experimental procedures in viticulture (Mokreva 2004, 2007). The type of the effect from the influence of a certain significant agrobiological factor, combined with the remaining ones, on the phenotypic manifestation of the variable value – the cumulative trait (yield), is also of interest. Their application is especially important and valuable in the complicated development of new table seeded and seedless vine cultivars (Smirnov 1977; Golodriga et al., 1985; Pospisilova, Palenik 1988; Valchev 1990; Troshin 1990, 1997). The purpose of the current investigation is to determine the degree of correlations between quantitative traits and their relative participation in yield formation for the vine cultivar Bolgar and F_1 progeny of the hybrid combination Bolgar x Russalka 1.

MATERIAL AND METHODS

During seven consecutive years, in 30 plants from F_1 progeny of the hybrid combination Bolgar (P_1 – seeded) x Russalka 1 (P_2 – seedless), 21 quantitative traits were determined, related to the phenology, fertility, quality and grape yield

(Bulgarian Ampelography, 1990; Roychev 2012). The experimental results were processed by means of Path analysis (Rokitskii 1973; Lidanski 1988). The studied traits were conditionally divided into six groups. The direct and indirect

influences of the indicated traits of parent cultivars on yield formation in seedlings and the degree of correlations between them were analyzed. The presented results are a part of a larger-scale research related to the application of Path analysis in selection for the obtaining of new seeded and seedless vine cultivars.

RESULTS AND DISCUSSION

In the cultivar Bolgar (P_1) few traits from different groups manifest high, significant and moderate correlations with yield (Table 1). Most often, the high direct positive effect is eliminated by almost the same in size total indirect influence, deriving from the interdependence of the other traits or vice versa. This is typical not only for the traits with higher correlation coefficients (0,625) – total number of clusters, (0,530) - total number of fruiting shoots, (0,476) - total number of shoots, (0,357) – berry length, (0,383) – berry width, (0,357) – shoot fertility coefficient, (0,288) – main shoot fertility coefficient, but also for all remaining ones. There are no traits significant for the yield, in which the correlation coefficients, direct and total indirect influences have positive values, which means that the yield in this cultivar depends on numerous different factors and their interaction.

Table 1.

The traits which exert positive influence on yield formation in the cultivar Bolgar (P1) are in the first, second, third and sixth group, with total relative participation 95,6% (Table 2). The most significant presence belongs to all traits connected with the actual fertility of vines (59,2%). Out of them, the larger share belongs to total number of clusters (24,8%) and fruiting shoots (17,9%), as well as the three fertility coefficients – totally (16,5%). Comparatively more traits from a larger number of groups participate in yield formation for this cultivar.

		Total yield variation	100,0
Groups	Nº	Total relative participation of the most important traits 95,6%, from which:	%
	x ₁	Shoot fertility coefficient	8.1
I	x ₂	Main shoot fertility coefficient	5.3
	х ₃	Fruiting shoot fertility coefficient	3.1
II	Х ₆	Cluster length (cm)	2.5
	x ₉	Berry length (mm)	8.1
111	x ₁₀	Berry width (mm)	9.3
	Х ₁₈	Total number of buds	2.1
VI	х ₁₉	Total number of shoots	14.4
VI	x ₂₀	Total number of fruiting shoots	17.9
	x ₂₁	Total number of clusters	24.8
		Other traits	4.4

•											j		j											
alan ay	Į		a	Ħ	R		đ		ł	8	r		Ŧ	-	~ Ŧ	- F	Ŧ	*	ž	₽ 	-	Ř]	-
	المعتقد والمزادة تلمط	Æ	T.	20,728	-10,283	uato	909,0- 506,0-	ų.	2,045	255	1925	- 01610	4,154 E	6,118 -1	-1,154 -4		0,150 aV	50 60.00	122/2 722.1	명 시포	10,275		engine -	0,367
-	غسندكمه يزاكرها إنساء مندو	R	-11/38	20,610	-0,611	1,050	0,374	-0,355		525	-7,485	7	7,660 -2	-2,000 9,	9,1255 -3,	Ĩ.	-0,734 -1,222	_	-2,287 6,046	10 - D.AEZ	67 - 1,662	20,226		0,200
	الدكين فسل يمكن المتكنين	F	-M,573	26 29 H		927	97191 -0,328		8	922	10,044	8,415 U	12,044 ₁₀	10,001 E	5524 12	12,254 -0	9221 9220-		-1,713 E,214	HN DUEDE	202 S 102	112,71 8	921 ¹ 25	미꼬과
	الكالمانية والمناهدين		4,371		2513			0,141	5,548	Q137	5 THUE	-2,116 -5	11 11212	1,000 M	14,201 14	1,780	-1,322,1,553		-0967 -1,9	1 ,421	21 4,728	A 12,549		-01048
	Arrest dedar when we are	a.	5,200	4747	5		Z,UUT	0,239	ELAE	1,446	4,135	2 2015	1 282	1,522 9,	9-204	- 1	-0,751 1,034		-5,361 10,000	- F.	226 225	21/2112	2112	0,105
•	وسرطيدة منعت	F	-3,677	ta yan	-15,618	a,757	90.1- 157,0-	1.00	4 Minut	S.MIL	-3422	-7,763 18	16,746 8,	7	738 1,	1,494 -0,	-0213 -1,595	_	1,575	22 A.BTS	909) - 31998	8 15,252		0,1517
		*		1	1,738	1,998	840-850-		- 10,700	975,0-	4,018	14,151	9,000	6,983 17	EL 1994/11	D- ZIMEL	-0,435 -5,851	_	4100 - 6,M3	2300- EH	53,7,53	M2,21 G	1927	0,162
	AN THE REAL OF MALE AND	T	8	6,1EI	-1475		■11,0-	0, 1623	4,156	. 8	10,082	- 200	-7,125 11	11,305,10	10,922 4,	4,967 -0	13. 13.	10- ME,ET	19270 920'0-	1253 143	GH 4,368	a la ja	34,966	-0,137
	وسبر فيهاد يدمل	F	2629	219/01	20,02	925		-0,158	2,836	13,722			M,38M EJ	6 66 2 19	19,270 ⁷ ,	7,000 1)	1,556 -6,653	_	6,870 3,1	1,000 - 5,4	And 2094	522B	36,114	0,367
•	Barry and and	f	a A	5	-11,005	SHEJD	No.	0,2M	5,980	Burn	_	0,162 ₁₈	19,202,13	ILDAG 30	anna 4	4,5HB 2)	2000	1,205,12	-1,877 7,205	06 4199	120 - 3.574	4 17,000		
	والندية طلميته والمثلاة	Æ	Į,	5	-16,527	5	Ā	-0,463	Ş	ļ		17,255	41,742 -6,	4,730 M	H, TON 3,	D- LUBELE	15- 2560-	-3,168 -6/	6,417 2,320	2,55	21/YEB		112°14-	-apisa
	الميناع والمستاع ومقنعها	Ħ	6,853	2,547	-13,854	0,162	80010			226	3 CERTE	8 627,E1	B,TER	. 1	9,753 31	1- 11EL'HE	-1,1400 5,6	5,400 1.1	1150 0,244	11	223 Q.115	EM2,7 B	100	-0,138
	بعينا وننعاد وناعدا	F	0,942	623	-7,000		8	-0,175	5	222/2-	1988 B	10 10	12,178 -8,	-a,D-m (A)	ľ	11,225,-31	162 J.225		3,463 15,70 5		21 SGM	11,155	-10,000	-0, 250
2		F	4,057	200	14,915	2,049	1995	Q. 22.	5289	3765	4,057	4577	-2,9988 27,	27,436 12	12,125	۲ آ.	-1,368 -0,522	ηſ	EH 1,416	110 S,200	as 1,057	7 10,000		quer
	والمستحيث ومستحيث والمستحد والمستحم والمستحد والمستحم والمستحد والمستحد والمستحد والمستحد والمستحد والمستحد والمستحم والمستحم و والمستحد والمستحد والمستحم والمستحم والمستحم والمستحد والمستحد والمستحم و	#	1,756	1,514		5	Ĕ		31218	894	11,256		10.966 ₁₃		44,116 ₁₇	17,755	National Annual Annu		3,4M -0,163	nya 🖬	NT 4, MI	1	danit	-0,206
	التواد والأ	F	-1,768	-25	-5511	8	0,1	13.0	5,80H	2000	3,684		-7,360 12	12,480 9,	9,0007 1,	1,1004 -1,	(T) T(1-	17,722 -2(-2,628 5,066	M6 3,612	710/5 210	בוילוו ז	200°21-	-0,275
>	Annual Annual	F	4,157	546	508	0,406	ų,	-0,154	Ņ	0,255	11,534	-5.00	tran a	a10 11	, ¥	10 23316	012- 002(Q	-3812 180	1,522 HILLING	ŤΓ	47H	10,234	-6,25	QUBH
	The sum of the second	ŧ	-10,272	7,145	-11,269	0,414	1010-0101-	-0,061	4,011		1- 665.6-	5 112 ,01	a- Merie	5	2,227	2,135 D)	1992 2194	_	dan art	2000 I 15 200	- E.9M	11	50'UB	0, 103
	This makes in the second	#	-1,782	183	1	252	-1,362 -0,467	-0,167	5	6,253	4,495		3-326	6 000 13	13,738	(0 100)	0,655 -2,955	_	492 M 993	- 6	- 16,094	10/14 W	50°16	QARE
5	ملسعة ومشدة لا مملسه فازر		-18,342	2,676	12,000	1,337	-1,150 -0,550	-0,692	£,264	6,748	1,368,5	4 612,7	14.DG7 BC	8,214 12	12,222 Z	2,158 DJ	0,650 -3,511		4555 A.BV	- 22	- 102221	54157	ZIJZE	0,530
	This sector is a sector		N, THE	210/21	-15,369	1,183	9270- 9421-	Ŗ	Ĩ	571	10012	12,158 -5	1838	1	-1,884 7,	7,000 D)	ME,E- 302(0		546 11710		- 19,674			0,625

Table 1. Direct and indirect influences of the studied traits on grape yield per vice for Bolgar (P.).

The structure of correlations between separate parents and F_1 progeny by groups of traits is different (Table 3). In the first group, the correlations are positive at shoot fertility coefficient (0,176)-P₁, (0,235)-P₂ and fruiting shoot fertility coefficient (0,165) -P₁, (0,382) -P₂; in the second group – cluster width (0,138)-P₁, (0,608)-P₂, in the sixth group – total number of shoots (0,305)-P₁, (0,009)-P₂, total number of fruiting shoots (0,155)-P₁, (0,057)-P₂ and total number of clusters (0,291)-P₁, (0,027) -P₂. In all traits in the fourth group – phenophases and periods, fifth group – chemical composition, and sixth group – actual fertility of vine, the positive correlations prevail of the cultivar Bolgar (P₁) with F₁ progeny, and in the first group - of the cultivar Russalka 1 (P₂). Except for berry shape index for Bolgar (P₁), both parent cultivars have negative correlations for the berry traits. We should also point out the higher positive correlations of Bolgar (P₁) with F₁ progeny regarding the traits total number of buds (0,385), acids (0,578), budding-flowering (0,399) and cluster length (0,525), and of Russalka 1 (P₂) – main shoot fertility coefficient (0,313), millerandage berries (0,358) and average cluster weight (0,278).

Table 3. Correlation coefficients between the	traits of the studied	d vine cultivars Bolgar (P ₁)), Russalka 1 (P_2) and
the plants from the hybrid combination - F, pl	rogeny.		

Groups	Nº	Traits	Cultivars		F ₁	P ₁	P ₂
		Shoot fertility	F ₁ progeny	F ₁	1	0,176	0,235
	1	coefficient	Bolgar	P ₁		1	-0,133
			Ryssalka 1	P ₂			1
		Main shoot fertility	F ₁ progeny	F,	1	-0,098	0,313
	2	coefficient	Bolgar	P,		1	0,124
			Ryssalka 1	P ₂			1
		Fruiting shoot fertility	F ₁ progeny	F,	1	0,165	0,382
	3	coefficient	Bolgar	P ₁		1	-0,236
			Ryssalka 1	Ρ,			1
			F ₁ progeny	F,	1	-0,042	0,358
	4	Millerandage berries	Bolgar	P,		1	0,218
		(%)	Ryssalka 1	P ₂			1
			F ₁ progeny	F ₁	1	-0,112	0,278
II	5	Average cluster weight	Bolgar	Ρ,		1	0,135
		(g)	Ryssalka 1	P ₂			1
			F ₁ progeny	F,	1	0,525	-0,350
	6	Cluster length (cm)	Bolgar	P ₁		1	-0,270
			Ryssalka 1	P ₂			1
			F ₁ progeny	F ₁	1	0,138	0,608
	7	Cluster width (cm)	Bolgar	P ₁		1	0,117
			Ryssalka 1	P ₂			1
			F ₁ progeny	F ₁	1	-0,294	-0,190
	8	Average weight of 100	Bolgar	P ₁		1	-0,044
		berries (g)	Ryssalka 1	P ₂			1
			F ₁ progeny	F ₁	1	-0,048	-0,251
III	9	Berry length (mm)	Bolgar	P ₁		1	0,174
			Ryssalka 1	P ₂			1
			F ₁ progeny	F,	1	-0,016	-0,075
	10	Berry width (mm)	Bolgar	P ₁		1	-0,327
			Ryssalka 1	P ₂			1
			F ₁ progeny	F,	1	0,035	-0,294
	11	Berry shape index	Bolgar	P ₁		1	0,295
			Ryssalka 1	Ρ,			1

			F, progeny	F,	1	0.399	-0.106
	12	Budding-flowering	Bolgar	P ₁	1	1	-0.220
	12	(days)	Ryssalka 1	P_2		1	-0.220
			F ₁ progeny	F ₁	1	0.088	-0.042
IV	13	Flowering-softening	Bolgar		1	1	
	15	(days)	Ryssalka 1	P ₁		I	0.317
		Softening-		P ₂	1	0.089	-0.440
	14	technological maturity	F ₁ progeny	F ₁	1	0.089	
	14	(days)	Bolgar	P ₁		I	0.255
			Ryssalka 1	P ₂	1	0.125	1
	15	Budding-technological	F ₁ progeny	F,	1	0.135	-0.228
	15	maturity (days)	Bolgar	P ₁		1	0.305
			Ryssalka 1	P ₂			1
			F ₁ progeny	F ₁	1	0.169	-0.208
V	16	Sugars (%)	Bolgar	P ₁		1	0.186
			Ryssalka 1	P ₂			1
			F ₁ progeny	F ₁	1	0.578	-0.019
	17	Acids (g/dm³)	Bolgar	P,		1	0.159
			Ryssalka 1	P ₂			1
			F ₁ progeny	F,	1	0.385	-0.096
	18	Total number of buds	Bolgar	P ₁		1	0.099
			Ryssalka 1	Ρ,			1
			F ₁ progeny	F ₁	1	0.305	0.009
VI	19	Total number of shoots	Bolgar	P ₁		1	0.260
			Ryssalka 1	Ρ,			1
			F ₁ progeny	F,	1	0.155	0.057
	20	Total number of fruiting	Bolgar	P ₁		1	0.065
		shoots	Ryssalka 1	P ₂			1
			F, progeny	F ₁	1	0.291	0.027
	21	Total number of clusters		P,		1	0.053
			Ryssalka 1	P ₂			1

All fertility coefficients in the cultivar Bolgar (P_1) exert positive direct influence determined by a moderate correlation, on the seedlings from F_1 progeny – shoot fertility coefficient (0,267; 0,235), main shoot fertility coefficient (0,328; 0,313), fruiting shoot fertility coefficient (0,433; 0,382) (Table 4). Both parent cultivars have direct positive influence with a significant correlation coefficient on the trait millerandage berries. The direct influences of all traits in the sixth group of the cultivar Russalka 1 (P_2) are positive, and of Bolgar (P_1) – only in total number of fruiting shoots and clusters. Positive influences and correlations in the two cultivars were reported for cluster width, and in average cluster weight only their direct effects are positive. In sugars (0,227), acids (0,255), the phenological traits (except for budding-flowering), berry shape index (0,306) and berry length (0,162), the direct influence of Russalka 1 (P_2) is positive, and of Bolgar (P_1) – negative. In cluster length all influences and correlations are negative in both parent cultivars.

······ 41 ·····

Groups	Nº	Traits	Cultivars		Direct and influe		r
	1	Shoot fertility	Bolgar	P ₁	0,267	-0,032	0,235
		coefficient	Ryssalka 1	P ₂	0,047	-0,180	-0,133
Ι	2	Main shoot fertility	Bolgar	P ₁	0,328	-0,015	0,313
		coefficient	Ryssalka 1	Ρ,	-0,032	0,156	0,124
	3	Fruiting shoot fertility	Bolgar	P ₁	0,433	-0,051	0,382
		coefficient	Ryssalka 1	P_2	0,071	-0,307	-0,236
	4	Millerandage berries	Bolgar	P ₁	0,368	-0,010	0,358
		(%)	Ryssalka 1	$ P_2 $	-0,015	0,233	0,218
	5	Average cluster	Bolgar	P ₁	0,297	-0,019	0,278
II		weight (g)	Ryssalka 1	P_2	-0,033	0,168	0,135
	6	Cluster length (cm)	Bolgar	P ₁	-0,288	-0,062	-0,350
			Ryssalka 1	P_2	-0,151	-0,119	-0,270
	7	Cluster width (cm)	Bolgar	P ₁	0,603	0,005	0,608
			Ryssalka 1	P_2	0,083	0,034	0,117
	8	Average weight of	Bolgar	P ₁	-0,222	0,032	-0,190
		100 berries (g)	Ryssalka 1	P ₂	0,065	-0,109	-0,044
	9	Berry length (mm)	Bolgar	P ₁	-0,243	-0,008	-0,251
111			Ryssalka 1	P_2	0,012	0,162	0,174
	10	Berry width (mm)	Bolgar	P ₁	-0,080	0,005	-0,075
			Ryssalka 1	P_2	0,001	-0,328	-0,327
	11	Berry shape index	Bolgar	P ₁	-0,305	0,011	-0,294
			Ryssalka 1	P_2	-0,011	0,306	0,295
	12	Budding-flowering	Bolgar	P ₁	-0,021	-0,085	-0,106
		(days)	Ryssalka 1	P_2	-0,008	-0,212	-0,220
	13	Flowering-softening	Bolgar	P ₁	-0,070	0,028	-0,042
b./		(days)	Ryssalka 1	P_2	-0,006	0,323	0,317
IV	14	Softening-	Bolgar	P ₁	-0,467	0,027	-0,440
		technological maturity (days))	Ryssalka 1	P ₂	-0,042	0,297	0,255
	15	Budding-	Bolgar	P ₁	-0,274	0,046	-0,228
		technological maturity (days)	Ryssalka 1	P ₂	-0,037	0,342	0,305
	16	Sugars (%)	Bolgar	P ₁	-0,246	0,038	-0,208
V			Ryssalka 1	P_2	-0,041	0,227	0,186
	17	Acids (g/dm ³)	Bolgar	P ₁	-0,166	0,147	-0,019
			Ryssalka 1	P_2	-0,096	0,255	0,159
	18	Total number of	Bolgar	P ₁	-0,158	0,062	-0,096
		shoots	Ryssalka 1	P ₂	-0,061	0,160	0,099
N/I	19	Total number of	Bolgar	P ₁	-0,078	0,087	0,009
VI		shoots	Ryssalka 1	P ₂	-0,024	0,284	0,260
	20	Total number of	Bolgar	P ₁	0,048	0,009	0,057
		fruiting shoots	Ryssalka 1	P ₂	0,007	0,058	0,065
	21	Total number of	Bolgar	P ₁	0,013	0,014	0,027
		clusters	Ryssalka 1	Ρ,	0,004	0,049	0,053

Table 4. Direct and indirect influences of the studied parent vine cultivars Bolgar (P_1) and Russalka 1 (P_2) on the plants from the hybrid combination - F_1 progeny.

------ **42** ------

CONCLUDING REMARKS

There are no highly significant traits for yield formation from the cultivar Bolgar, in which the correlation coefficients, direct and total indirect influences have positive values. With a total relative participation 95,6%, the productivity of this cultivar is determined by traits, which are predominantly connected with the actual fertility of vines – total number of clusters (24,8%) and fruiting shoots (17,9%), fertility coefficients – totally (16,5%).

Positive correlations have been established between the two parent cultivars and F1 progeny in the traits shoot and fruiting shoot fertility coefficient, cluster width, total number

Bulgarian Ampelography (1990). General ampelography, Bulgarian Academy of Sciences. Agricultural Academy. Institute of Viticulture and Wine Production – Pleven. Sofia.

Golodriga, P.Y., Troshin, L.P., Frolova, L.I. (1985). Inheritance of the trait seedlessness in hybrid progeny in vine V. vinifera L.. Cytology and Genetics, 19, 372-376.

Lidanski, T, (1988). Statistical methods in biology and agriculture. Zemizdat, Sofia, 375.

Mokreva, T. (2004). Production function in analysis of yield structure in vine. Horticultural Sciences, 42, 130-137.

Mokreva, T. (2007). Comparative characteristics of statistical criteria and algorithms for evaluation of experimental data from viticulture. PhD Dissertation, Plovdiv, 145.

Pospisilova, D., Palenik, V. (1988). Heredity

of shoots, fruiting shoots and clusters. For Bolgar they are higher regarding total number of buds, acids, budding-flowering and cluster length, and for Russalka 1 – main shoot fertility coefficient, millerandage berries and average cluster weight.

Positive direct influence determined by a moderate correlation, on the seedlings from F_1 progeny, is exerted by all studied fertility coefficients in the cultivar Bolgar. The correlations in the other traits and the influence of the separate parent cultivars have positive or negative value, which can be used in the selection of valuable elite forms.

REFERENCES

of seedlessness in grapes. Genetika a Slechteni, 24 /LXI/, 4, 325-332.

Rokitskii, P.F. (1973). Biological statistics. Third edition. Minsk, Higher Institute, 328.

Roychev, V. (2012). Ampelography. Academic Press of the Agricultural University – Plovdiv, 574.

Smirnov, K.V. (1977). Vine selection for seedlessness. Moscow. Collection of scientific works, TSHA, 231, 90-97.

Troshin, L.P. (1990). Evaluation and choice of selection material in vine. Yalta, 136.

Troshin, L.P. (1997). Analysis of hereditary information in vine. Grape and Wine of Russia, 1, 17-21.

Valchev, V. (1990). Intraspecific and interspecific hybridization in vine. Habilitation dissertation, Pleven, 272.

ИСТРАЖУВАЊЕ НА КОРЕЛАЦИЈАТА ПОМЕЃУ КВАНТИТАТИВНИТЕ КАРАКТЕРИСТИКИ КОИШТО ГО ОДРЕДУВААТ ПРИНОСОТ КАЈ СОРТАТА БЛГАР И ХИБРИДОТ БЛГАР Х РУСАЛКА 1

Венелин Ројчев^{1*}, Душко Неделковски², Климе Белески²

¹Земјоделски универзитет- Пловдив, Р. Бугарија ²Универзитет Св.Кирил и Методиј – Скопје, Земјоделски институт- Скопје, Република Северна Македонија *Контакт автор: roytchev@yahoo.com

Резиме

Корелациите помеѓу квантитативните карактеристики, коишто го одредуваат приносот кај сортата блгар и Ф, потомок на хибридна комбинација блгар х русалка 1, беа испитани преку Path анализа. Откриено е дека нема карактеристики коишто се многу значајни за формирање на принос од оваа сорта за кои коефициентите на корелација, директните и вкупните индиректни влијанија имаат позитивни вредности. Позитивни корелации се утврдени помеѓу двете родителски сорти и F, потомството за својствата: развиени и родни ластари, коефициент на родност, ширина на гроздот, вкупен број на ластари, родни ластари и гроздови. Сите анализирани коефициенти на родност кај сортата блгар имаат позитивни директни влијанија, утврдени со умерени корелации, врз семениците од F, потомство. Корелациите на другите особини и влијанието на одделните родителски сорти имаат позитивни или негативни вредности кои можат да се користат при изборот на вредни елитни форми.

Клучни зборови: квантитативни карактеристики, родност, семена и бессемена сорта, F1, потомок