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TIME COMPLEXITY IMPROVEMENT OF THE FIRST PROCESSING
STAGE OF THE INTELLIGENT CLUSTERING

Done Stojanov'*, Cveta Martinovska?

"Faculty of Computer Science, University ,,Goce Delcev’-Stip
done.stojanov@ugd.edu.mk

2Faculty of Computer Science, University ,,Goce Delcev’-Stip
cveta.martinovska@ugd.edu.mk

* Done Stojanov, e - mail: (done.stojanov@ugd.edu.mk)

Abstract.

A new approach for data clustering is presented. IC clustering [1] initial
processing stage is changed, so that the interval between the smallest and
the largest radius-vector is divided into k equal sub-intervals. Each sub-
interval is associated to a cluster. Depending on which sub-interval a radius-
vector belongs, it is initially distributed within a cluster, associated with that
sub-interval.

Key words: data clustering, radius-vectors, IC clustering, intervals.
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1. Introduction

Since the second half of the 20th century, several techniques for data
clustering have been proposed. The oldest one, but commonly used
technique for data clustering is the k-means [2] algorithm, based on initial
selection of k,k<n random objects (centroids) of object set of size n. The
remaining n-k objects, which are not selected as centroids, are distributed
within the closest clusters. Initially, each centroid represents a cluster. When
a cluster is changed, cluster's center is also changed. Centers no further
change implies appropriate data distribution.

PAM (Partitioning Around Medoids) [4] as opposed to the k-means
algorithm, effectively handles extreme values (data outliers), which can easily
disrupt the overall data distribution. Central objects within clusters (medoids)
are used. Medoids are swapped only if that would result with a better data
clustering.

CLARA [3] is basically PAM clustering, applied to a part (set of
samples) of the object set. The result is not always the optimal one.
CLARANS [5] searches graph data structure. Nodes medoids are replaced
by nodes non-medoids, if that would reduce the clustering cost.

IC clustering [1] calculates the radius-vector for each object of object
set of size n. During the first processing stage, the set of radius-vectors is
sorted in ascending order, and then divided into k subsets of approximately
equal size, where each subset initially represents a cluster. Next, radius-
vectors being closer to the neighboring clusters are moved from one cluster
into another. This is repeated until clusters no further change, when all objects
are properly partitioned. Finally radius-vector clusters are transformed into
object clusters, with properly partitioned objects.

In this paper, IC clustering is changed. Each radius-vector initially is
partitioned within a cluster, determined by a sub-interval to which the radius-
vector belongs, what in the worst case takes O(nk) processing time, where n
is the size of the object set, k is the number of clusters, k<n. Certainly
O(nk)<O(n?), where O (n®) is the time required to sort a set of size n, what
implies improved time complexity of the first processing stage of the IC
clustering.

2. Preliminaries
If a set of n objects 0={0,,0,....0,,,0,} iS given, where each object is

represented with m attributes (properties), o, = (p; . P2+ PimrPim) » ObjECtS
should be properly partitioned in k,k <n clusters, where similar objects share
a common cluster. There is no empty cluster.
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3. Methodology
For each object o,, a radius-vectorRr; = /ﬁpgk ,1<i<n is calculated. Memory
k=1

keeps n data pairs(i,R;),1<i<n, tracking object’s position i in the object set
O, where R, is the radius-vector corresponding to the object at position i .

From the set of radius-vectors R={R,.R,....R, ,.R,}, the smallest and

n—1-

=min{Rl,R2,...,Rn_1 ’Rn} )
R,.x ] is divided into x equal

the largest radius-vector are chosen, R
R
subintervals, starting from s, up to s, . A radius-vector R, , such as

min

= Max{R,,R,,...R,_,R }. The interval [R_;,,

R es;.1<i<n,1< j<k is satisfied, initially is partitioned in cluster ;.
1
Sy [Rmin ’Rmin +E(Rmax _Rmin ))

1 2
pp) :[Rmin +;(Rmax _Rmin )7Rmin +;(Rmax _Rmin )

k=2 k-1
Sp1 [Ropin +T(R -R Rin -i—T(Rmax -Rin))

max min )’

Sk :[Rmin +%(Rmax _Rmin )’Rmin +§(Rmax _Rmin )]

Since the data distribution is initiall, some of the radius-vectors might
be inappropriately partitioned. The mean values for each two neighboring

clusters ¢; and ¢,,,.1< j<k-1, are calculated according (1) , where Ic; I is

the number of elements in cluster ;. A radius-vector g, ec;, for which
IR, —mc ;,, IR, —mc ;| is satisfied, is moved from cluster ¢, in cluster ¢, .

Thus radius-vector Rr; ec; for which | R, —mc; IR, —mc ;,, | is satisfied, is

+1

moved from cluster c; in cluster ;- When a radius-vector is moved from

+1

one cluster into another, clusters’ structure and clusters’ mean values are
changed, recalculating clusters’ new mean values mc; and mc,,,. Objects

are moved from one cluster into another neighboring cluster, until clusters’
structure no further change, when all radius-vectors will be properly
partitioned. Using data pairs (i,R;) information, each radius-vector R, is

transformed into object o, , 1<i<n . Thus clusters of radius-vectors
c;. 1< j<k, are transformed into object clusters oc;,1< j<k, having each
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object o,,1<i<n from the object set 0 properly partitioned in object cluster
oc;, 1<j<k.

_2Riec
chl

mc A< j<k (1)

J

4. Algorithm

Algorithm 1 Improved IC: Intelligent Clustering
Input: set of objects O={01,0,...,0n-1,0n}
Output: k clusters of objects ocj, 1<=j<=k

for each object o; which belongs to the object set Of
calculate its radius-vector R;;
store data pair (i,Ri) in the memory;
}
find the smallest radius-vector Rnin=min{R1,R>,...,Rn-1,Rxn};
find the largest radius-vector Rnmax=max{R1,Rz,...,Rn-1,Rn};
determine sub-intervals s;j, 1<=j<=k;
i=1;
=1
while(i<=n){
while(j<=k){
if(R; belongs to sub-interval s){
add R in cluster cj;
break while(j<=k) loop;
}
jtt;
}
i++;
}
calculate centers of clusters mc;, 1<=j<=k;
LOOP: j=1;
while(j<=k-1){
for each R; which belongs to cluster ¢;
if (|Ri-mcj+1|<|R-mcj]){
move R; from cluster ¢; in cluster Cj+1;
calculate clusters’ new mean values mc; and mcj+1;
}
for each R; which belongs to cluster cj+1
if (|Ri-mcj|<|R-mcj+1|){



40

lonumen 36opank 2012 ®akynrer 3a nHPpoOpMaTuka, YHUBep3uTeT ,,l one Jemaes™ — IItun
Yearbook 2012 Faculty of Computer Science, Goce Delcev University — Stip

move R; from cluster cj+1 in cluster c;;
calculate clusters’ new mean values mc; and mcj.;

}
j+H;
}
go to LOOP while at least one mc; is changing;
transform radius-vector clusters ¢; into object clusters ocj, 1<=j<=k;

5. An Example

Set of objects
0={(34),(575.9),(6,5.7),(6.15.8),(585.9),(4.54.9),(4.6,5),(7,7),(4,4),(8,6)y should
be partitioned in three clusters. According to the methodology being
presented, for each object at position i a radius-vector R;,1<i<10 is

calculated, Table 1. Memory keeps ten data pairs (i,R,),1<i<10, Table 2.

Table 1 Objects’ radius-vectors

Obje (3, (5.7, (6,5 (6.1, (58, (45 (46 (7, (4, | (8,
ct 4) 5.9) 7) 58) 59 49 S) 7) 4) 6
Radi | 5 | 8204 8.27 8417 8273 6.653 6.79 9.8 56 1
us- 6 4 99 57

vect

or

)
0

Table 2 Data pairs (i,R;)
Data pairs
(1,5)
(2,8.204)
(3,8.276)
(4,8.417)
(5,8.273)
(6,6.653)
(7,6.794)
(8,9.899)
(

(

9,5.657)
10,10)
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Once the smallest and the largest radius-vector have been found,
in =35, R =10 intervals s,,s, and s, can be determined.

{5,5 +1x 402 5)}[5 230j [5,6.667)

{§ 425102 5)] {20 25} [6.667.8.333)
3 2 3
{ L3, (0= 5)} [25 30} [8.333.10]
3°3
Distributing radius-vector R;,1<i<10 in cluster c¢;,1<;j<3 s
permitted, only if R, belongs to the interval s;,1<j<3.
Cluster ¢, : {5,6.653,5.657}, mean value mc, =L;1=5.77
31.547

Cluster ¢, : {8.204,8.276,8.273,6.794}, mean value mc, = =7.887
Cluster ¢, : {8.417,9.899,10}, mean value mc _ 28316 _ g 439

A check for radius-vectors R, < ¢, being cluster ¢, less distanced than
cluster ¢,, is conducted, Table 3.

Table 3 Calculating the distances between cluster ¢4 radius-vectors and
cluster ¢4 and c; mean values

Radius-vector \ Distance from cluster ¢; Distance from cluster c;

5 | |5-5.77|=0.77 |5-7.887|=2.887

6.653 6.653-5.77|=0.883 |6.653-7.887|=1.234
5.657 5.657-5.77|=0.113 |5.657-7.887|=2.23

According Table 3, there is no cluster ¢, radius-vector, being closer
to cluster ¢, than cluster ¢, , what indicates appropriate radius-vector
distribution in cluster ¢, .

A check for radius-vectors R; ec,, being closer to cluster ¢, than
cluster ¢,, has also to be conducted, Table 4.

Table 4 Calculating the distances between cluster c, radius-vectors and
cluster ¢4 and c2 mean values
Radius-vector | Distance from cluster c; | Distance from cluster c
8.204 18.204-7.887|=0.317 | 18.204-5.77|=2.434

8.276 ' [8.276-7.887|=0.389 ' |8.276-5.77|=2.506
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' |8.273-7.887|=0.386 8.273-5.77|=2.503

‘ |6.794-7.887]|=1.093 |6.794-5.77|=1.024

Considering Table 4 distance results, it can be denoted that radius-
vector 6.794 is cluster ¢, less distanced than cluster ¢,, where was initially

distributed. In this case, radius-vector 6.794 is moved from cluster ¢, in
cluster ¢, . Since cluster ¢, and cluster ¢, structure has been changed,
cluster ¢, and cluster ¢, new mean values are calculated.
24.104

Cluster ¢, : {5,6.653,5.657,6.794}, mean value mc, = =6.026
Cluster ¢, : {8.204,8.276,8.273}, mean value mc, = 25153 _g s
Cluster ¢, : {8.417,9.899,10}, mean value mc, = 2251° _ 9439

Distance results between cluster ¢, radius-vectors and cluster ¢, and
cluster ¢, mean values are given in Table 5.

Table 5 Calculating the distances between cluster c. radius-vectors and
cluster c2 and cz mean values

Radius-vector \ Distance from cluster c; Distance from cluster c3 \

8.204 | |8.204-8.251|=0.047 |8.204-9.439|=1.235 |

|

|

8.276 8.276-8.251|=0.025 8.276-9.439|=1.163

8.273 18.273-8.251/=0.022 8.273-9.439|=1.166

Table 5 distance results clearly show that there is no cluster ¢, radius-
vector being closer to cluster ¢; than cluster ¢, , where from can be
concluded that cluster ¢, radius-vectors are properly partitioned.

At the end has to be checked whether exist cluster ¢, radius-vectors
being cluster ¢, less distanced than cluster ¢;, Table 6.

Table 6 Calculating the distances between cluster cs3 radius-vectors and
cluster c; and c; mean values
Radius-vector \ Distance from cluster c; Distance from cluster c;
8.417 |8.417-9.439|=1.022 |8.417-8.251|=0.166

9 899 19.899-9.439|=0.46 9.899-8.251|=1.648 |
|

| |10-9.439|=0.561 |10-8.251|=1.749
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Once again, radius-vector being partitioned in one cluster is closer to
the neighboring cluster. Cluster ¢, radius-vector 8.417 is cluster ¢, less

distanced than cluster ¢, , resulting with rearrangement of radius-vector
8.417, being moved from cluster ¢, in cluster ¢, . Since cluster ¢, and cluster
¢, Structure is changed, clusters’ new mean values mc, and mc, are
calculated.

Cluster ¢, : {5,6.653,5.657,6.794}, mean value mc, = 22102

=6.026

Cluster ¢, : {8.204,8.276,8.273,8.417}, mean value mc, :3’%%:8.293

Cluster ¢, : {9.899,10}, mean value mc, :@:9950

Repeating this procedure from the beginning, no structure change of
a cluster is recorded, where from a conclusion for clusters’ no further structure
change can be deduced.

Using data pairs (i,R.),1<i <10, each radius-vector is transformed into

object from the object set 0. Thus radius-vector clusters are transformed into
object clusters, having all objects properly partitioned.

Object cluster oc, : {(3,4),(4.5,4.9),(4,4),(4.6,5)}
Object cluster oc, : {(5.7,5.9),(6,5.7),(5.8,5.9),(6.1,5.8)}
Object cluster oc, : {(7,7),(8,6)}

Conclusion

A new data clustering technique is presented. Each object is represented with
a radius-vector. Instead of sorting a set of radius-vectors of size n (Intelligent
Clustering initial processing stage [1]), the interval between the smallest and
the largest radius-vector is divided in k equal sub-intervals. Depending on
which sub-interval a radius-vector belongs, it is distributed within a particular
cluster. Radius-vectors being less distanced to the neighboring clusters are
rearranged, moving them from one cluster into another. That is repeated until
clusters’ structure no further change, when all radius-vectors are properly
partitioned. Finally clusters of radius-vectors are transformed into clusters of
objects, having all objects appropriately partitioned.
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