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Abstract. In this paper we prove an extension of the contraction mapping principle for single-valued
mappings dealing with more general assumptions containing modulus instead of pseudo-contractive
functions. In [4] A. L. Dontchev and R.T. Rockaffelar supposethe strong metric regularity of set-valued

mapping F and the Lipschitz continuity of the function g with given nonnegative constants and prove
the strong metric regularity of g + F, while we assume the properties of F' and g with modulus

functions and prove a generalization of their result.

MSC (2010): 47J07; 49J53; 49K40; 47H10.

Key words: Metric regularity; inverse function theorem ; set-valued mapping; generalized equations; fixed
point theorem .

1. Introduction

The notion of regular multifunction has emerged out of the pioneering work of Ljusternik and Sobolev [7]
through the efforts of several workers. In its initial form it was conceived as a mean for solving equations
or inequalities under more or less classical surjectivity assumptions on some approximations ([2], [3], [6],
[10], [11], [13], [14]). In [15] Penot prove the equivalence of the definitions for Aubin continuous of the
inverse mapping, metric regularity and openness with linear rate of a set-valued mapping for the case
when the Lipschitz modulus is not just a constant but it is a function.

In this paper we prove an extension of the contraction mapping principle for single-valued mappings
where we use more general assumptions containing modulus instead of pseudo-contractive functions.
Using this result we prove an inverse function theorem. We consider the parametric generalized equation

find xeX suchthat Oe f(p,x)+F(x),
where [ is a function, £ is a set valued mapping acting from a metric space to another metric space
and prove an implicit mapping theorem. Some iterative methods for solving parametric generalized
equation can be found in [8],[9], and [12]. The using of a modified variational iteration method for
solving nonlinear coupled equations is shown in [5].

In this paper we deal with metric spaces (P,7) for p and a complete metric space (X, )
for X. The space (Y, o) is linear space equipped with shifi-invariant metric & for the range of f and
g, thatis:

o(y+z,y +z)=0(y,y") for all y,y,ze?.
In such spaces the standard definitions, e.g. of the ball in X with center X and radius 7 is defined by:
B (X)={xeX]| p(x,x)<r}
and the distance from a point X toaset C in X is denoted by:
d(x,C)=inf p(x,x").
x'eC
The subset C of a complete metric space is closed when d(x;C)=0=x€C. Also a set C is
locally closed at a point x € C if there is a neighborhood U of X such that the intersection C MU is
closed.
The graph of F is the set gphF ={(x,y)e XxY |y e F(x)} and the inverse of F is the

mapping F~': YT X definedby F'(y)={x|y e F(x) .
The solution mapping associated with the generalized equation 0 € f(p,x)+ F(x) is the potentially

set-valued mapping S : PI" X defined by
S:pix| f(p,x)+F(x)>0} for peP.

(M
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Graphical localization of S at p for X, where X € S(p) is a set-valued mapping with its graph
having the form (OxU)MgphS for some neighborhoods O of p and U of X. The localization is
single-valued when this mapping reduces to a function for Q into U . If it is not only single-valued but
Lipschitz continuous on O, we speak of Lipschitz localization.
Definition 1.1. An modulus is said to be an increasing function w:[0,00) —[0,00), which is
continuous in 0 and W(0)=0.
Definition 1.2. A function f : X — Y is said to be Lipschitz continuous with modulus function relative
toaset D,if D cintdom f and there exists a modulus function k, such that

o(f(x"), f(x") <k(p(x',x")) for all x',x" €D, ®)
It is said to be a Lipschitz continuous around X when this holds for some neighborhood D of X.

Definition 1.3. A function f:PxX — Y is said to be Lipschitz continuous with respect to X uniformly
in p around (p,X)eintdom f with modulus function, when there are neighborhoods Q of p and

U of X along with a modulus function &, such that
o(f(p,x"), f(p,x") <kp(x',x") forall x',x"eU and peQ.
Definition 1.4. A set valued mapping £': X I' Y is said to be metrically regular at X for y when
X € F(¥) and there is a constant k£ > 0 together with neighborhoods U of X and V' of y such that
d(x, F' () < kd(y, F(x)) for all (x,y)eUxV.
The infimum of k£ of all such combinations of k,U and V is called the regularity modulus for F at
X for y.
Definition 1.5. A mapping F : X I' Y with (p,X) € gph F is called strongly regular at X for y if
its inverse /'~ has a Lipschitz localization at y for X.
Definition 1.6. Consider a function f :PxX —Y and a point (p,X)cintdom f. A function
h:X —Y with X eintdom/ is said to be a strict estimator of [ with respect to X uniformly in
p at (p,Xx) with modulus x4 if h(X)= f(p,X) and there exists scalars @ and 7 such that
o(r(p,x"),r(p,x)) < u(p(x',x)) for all x,x" € B,(x) and p € B.(p),
where 7(p,x) = f(p,x)—h(x).
Definition 1.7. A nondecreasing function @ :J — J is said to be a Bianchini-Grandolfi gauge function
[1]on J,where J is aninterval on R, containing 0 if
s)=Y @' ()<,  for all tel.
=0
Here we denote by @" to be the 7 -th iteration of the function @ :J —> J, where J is an interval on
R, containing 0, P’ (t) =t.
Note that Ptak [16] called a function @ :.J —> J satisfying the above condition a rate of convergence on

J and noticed that ¢ satisfies the following functional equation

(1) =t +5(p(1)).

2. Main result

We will prove an extension of the contraction mapping principle for set-valued mappings stated in [4] by
A. L. Dontchev and R.T. Rockaffelar. The difference is that we use more general assumptions containing
modulus instead of pseudo-contractive multifunctions.

Theorem 2.1. (Contraction mapping principle) Let (X, 0) be a complete metric space and X € X .
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Consider a single-valued mapping @ : X — X. Assume that the increasing function @:J —J,
where J is an interval on bR, containing 0, is a Bianchini-Grandolfi gauge function. Suppose that there
exist @ >0 and ¥ € J and a constant 7 € J, such that the following assumptions hold:
(a) p(x,D(x))<r, where s(r)<a,
®) p(D(u), (V) <ep(p(u,v)) for all u,veB/(X).
Then @ has a fixed pointin B, ,,(X); that is, there exists x € B, (X) such that x € O(x).
Proof. We will proceed by induction. Denoting x' = ®D(x) and consider the sequence
M ed(x*) for k=12...
We will prove that this sequence satisfies the following inequalities:
PO ) <ot (r);
p(x*, %) <s(r).
We denote x” = X. Then

p(x',X)<r=¢’(r).

Now we suppose that there exists
M =d(x") 3a k=0,1..,n—1.
We will prove that the above mentioned inequalities hold for k£ = n. Using (b) we have
P p(x", @(x")) = p(@(x" ), @(x"))
n-1 _n n—1 n
<p(p(x",x") < (g™ (1) = 9" ().

Hence

P X" <@ (1),

By the triangle inequality we have
P E) <Y p(xH XY < 9" () <s(r),
k=0 k=0

Hence x""' € Bx(,) (X) and this completes the induction.

Since for all k£ > m >1 we have
k-1 k-1
P x2S P )< S @)

and @(¢) is Bianchini-Grandolfi gauge function, the sequence {x" } is Cauchy sequence. But X is

complete metric space, then {x" } converges to X.
Let 1 —> 00 in the following inequality

p(x"", %) <s(r).

Then we have
P(x,x) < s(r)
and consequently x &€ B, (X). Since ® is continuous and x" = D(x"") as n—>00 we have
x =D(x), ie. X is fixed point for () and x € B, (X).
Now we will prove that x 13 unique. Let } €X and x= ‘:U(}:} Then |
P(x,x) = p(B(x), P(x)) = @(p(x, x)).

By the definition of Bianchini-Grandolfi gauge function we have @(0)=0 and @(f) < for Vi = 0.
By the equality s(f) =+ s(@(2)) wehave s(@(r)) < 5(7). Consequently o2(x, ;'} =0=>x=x and

45



lomumen 36opank 2016/2017 dakynrer 3a nHPOpMaTuKa, YHUBep3uTeT ,,l one Jlemaes™ — IItun
Yearbook 2016/2017 Faculty of Computer Science, Goce Delcev University — Stip

this completes the proof of Theorem 2.1.,
The next theorem is a generalization of Theorem 5F.1, p.292 [4].

Theorem 2.2. (Inverse function theorem with strong metric regularity) Let (X, p) be a complete metric
space, (Y,6) be a linear space with shift-invariant metric & and F : X T' ¥ is a set-valued mapping,
(x,y)egph F, U is neighborhood of X, V' is neighborhood of y. The function g: X — 7V is
Lipschitz continuous with modulus function £ in U. Let ¥ F () N U is Lipschitz function in
V' with modulus function & and the function @(f) = k(u(f)), t € J, where J is interval in R,,

containing 0, is Bianchini-Grandolfi gauge function, such that
s(t):Z(p”(t)<oo, for all zeJ.
n=0
Let k™' — M is increasing function.
Then there exist neighborhoods U' of X and V' of 3 such that the mapping

y—=(g+F) "' (y)NU’ is Lipschtz function in g(X)+ V" with modulus function (k' — z2)™".
Proof: Let r(y)=F "' (y)NU, y€eV. By the statements in the theorem we have

pr),r(y)N<k(c(y,y"), forall y,y eV, (1
o(g(x),g(x")) < u(p(x,x"), for all x,x' eU. Q)

Choose @ >0 and b >0 suchthat B,(X) cU, B, (¥)<V and
s(k(b)) La. 3)

Forall y € B,(g(X)+Y) and x € B, (X), using that o shift invariant metric we have
o(=g(x)+y,¥)=o(y,8(x)+7)
<0(,g(X)+y)+0o(g(x),g(x))
<b+ u(p(x,x))<b+ p(a).
Then —g(x)+y eV cdomr. Fix y € B,(g(X)+y) and consider the mapping
O, :xt>r(-gx)+y) for xeB, (%)
Using (1), we have
PP, (X))
=p(r(y),r(=g(x)+))
<k(o(y,y+g(x)) < k(b).
By (3) we have s(k(b)) < a and this showes that assumption (a) of Theorem 2.1 is satisfied. Then for
all u,ve B, (X) by (1) and (2) we come to
PP (1), D, ()
=p(r(=gW)+y),r(=g()+y))
=(o(=g(u),—g(v)))
=(o(=g()+g(u) +g(v),—g() + g ) +g()))
<k(o(gw),g(v) < k(u(p(u,v))).
Since k() is increasing Bianchini-Grandolfi gauge function, we have assumption (b) of Theorem

2.1. Now we use Theotem 2.1 for the mapping (Dy and we conclude that there exists unique fixed point
x=®@ (x) and x € B, (X) < B,(X). Then x(y) =r(y—g(x(»))) and

P(x(»)x(y")
= p(r(=g(x(y) + ), r(=g(x(»")+ ")
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<k(o(y,))+o(g(x(y)),g(x()"))
<k(o(y,)")+ u(p(x(3), x(¥")))-
Consequently
P(x(¥),x(y") < k(o (¥, )+ u(p(x(¥),x(¥'))).

Since k is continuous and increasing function we have
K (p(x(0), (7)) < (3, ') + 1 p(x(1), X(V))),

(k™" = )(P(x(1), x( M) £ (3, ).
By the continuity of k™' — £z we come to

P, x(N K =) (o(r, ).

But x and y arbitrarily chosen in the corresponding neighborhoods of X and ). Then the above

mentioned relation means that y —> (g +F) "' MV is Lipschitz function in g(X)+V" with modulus

k=,
In [4] A. L. Dontchev and R.T. Rockaffelar suppose the strong metric regularity of /' and the Lipschitz
continuity of g with given nonnegative constants and prove the strong metric regularity of g+ F),

while we assume the properties of /' and g with modulus functions. So this theorem is a generalization
of their result.

3. Conclusion

In this study, under more general assumptions containing modulus instead of pseudo-contractive
functions, we examine an extension of the contraction mapping principle for single-valued mappings and inverse
function theorem for strong metric regularity mapping. Our results extend and complement many theorems in the
literature.
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