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STABILITY RESULTS FOR FIXED POINT ITERATION PROCEDURES
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Abstract. While solving inclusions numerically by an iterative procedure, usually we follow some
theoretical model and deal with an approximate numerical sequence. If the numerical sequence converges
to a point anticipated by the theoretical sequence, then we say that the iterative procedure is stable. This
kind of study plays a vital role in computational analysis, game theory and computer programming. The
purpose of this paper is to discuss stability of the Picard iterative procedure for pseudo-Lipschitz
multivalued operators in metric spaces.

MSC (2010): 54H25; 65D15; 65D18; 47H10.

Key words: Set-valued mapping; fixed point theorem; Picard iterative procedure; pseudo-Lipschitz
contraction; stability of iterative procedures.

1. Introduction

Let (X, d) be a metric space and 7 : X — X. The solution of a fixed point equation 7x = x for any
x € X, is usually approximated by a sequence {x,} in X generated by an iterative procedure
f(T,x,) that converges to a fixed point of 7. However, in actual computations, we obtain an
approximate sequence {V,} instead of the actual sequence {xn}. Indeed, the approximate sequence
{»,} is calculated in the following manner. First, we choose an initial approximation X, € X. Then we
compute X, = f(7T,x,). But, due to rounding off or discretization of the function, we get an
approximate value y,, say , which is close enough to X, i.e., ), = x;. Consequently, when computing
X,, we actually compute y, = X,. In this way, we obtain an approximate sequence {»,} instead of the
actual sequence {x,}. The iterative procedure f(T',x,) is considered to be numerically stable if and

only if the approximate sequence {y,} still converges to the desired solution of the equation Tx = x.

Urabe [1] initiated the study of this problem. The study of stability of iterative procedures plays a
significant role in numerical mathematics due to chaotic behavior of functions and discretization of
computations in computer programming. For a detailed discussion on the role of stability of iterative
procedures, one may refer to Czerwik et al. [2,3], Harder and Hicks [4-6], Lim [7], Matkowski and Singh
[8], Ortega and Rheinboldt [9], Osilike [10,11], Ostrowski [12], Rhoades [13,14], Rus et al. [15] and
Singh et al. [16].

However, Ostrowski [12] was the first to obtain the following classical stability result on metric
spaces.

Theorem 1.1. Let (X,d) be a complete metric space and 7 : X — X a Banach contraction with
contraction constant ¢, i.e., d(Tx, Ty)Sqd(x, y)for all x, y € X, where 0<¢q <1. Let p
be the fixed point of I'. Let x,€ Xand x,,, =Tx, n = 0, 1, 2,....Suppose that {y,} is a
sequence in X and &, = d(ynH, Ty, ) Then

n
n+l n—j
d(p,yHl)S d(p,xnﬂ) +q d(xo,yo) +Zq fgj.
j=0
Moreover, lim y, = p ifand onlyif lim ¢, =0.
n—0 n—0
This result has found a respectable place in numerical analysis and computer programming and further
extended by Harder and Hicks [5,6], Jachymski [17], Osilike [10,11,18], Osilike and Udomene [19],
Rhoades [13,14], Czerwik et al. [2] and Zhou [20].
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The classical result on stability due to Ostrowski has been extended to multi-valued maps by Singh
and Chadha [21] and further extended by Singh and Bhatnagar [22] and Singh et al. [23].

Furhter, stability of iterative procedures has a remarkable importance in fractal graphics while
generating fractals. Its usefulness lies in the fact that in fractal graphics, fractal objects are generated by
an infinite recursive process of successive approximations. An itertive procedure produces a sequence of
results and tends towards one final object called a set attractor (fractal), which is independent of the initial
choice. This stable character of set attractor is due to the stability of iterative procedure, else the system of
underlying successive approximations would show chaotic behavior and never settle into a stationary
state. However, fractals themselves have a variety of applications in digital imaging, mobile computing,
architecture and construction, various branches of engineering and applied sciences. For recent potential
applications of fractal geometry in related fields, one may refer to Batty and Longley [24], Buser et al.
[25], Lee and Hsieh [26], Mistakeidis and Panagouli [27], Shaikh et al. [28] and Zmeskal et al. [29]. For
connections of the round-off stability with the concept of limit shadowing for a fixed point problem
involving multi-valued maps, one may refer to Petrusel and Rus [30].

The purpose of this article is to discuss the stability of Picard iterative procedure, i.e.,

X, ,€f (T R xn):Txn for a map T satisfying pseudo-Lipschitz multi-valued contraction (cf.
Definition 2.2).

2. Preliminaries

Let (X ,d )be a metric space and
CB(X) = {A: Aisanonempty closed bounded subset of X },
CL(X) = {A: Aisanonempty closed subset of X }.
For A, B € CL(X) and & >0,
N(&,4) ={xeX:d(x,a)< & forsome ae 4},
Forsets A and B in X , the excess of A beyond B is defined by
e(A4,B) = sup,_, d(x,B),

where the convention is used that

0 whenB=#= g

o otherwise

ew,B):{

The Pompeiu—Hausdorff distance between 4 and B is the quantity
h(A,B) = max{e(A,B),e(B,A)}.
Equivalently, these quantities can be expressed by
e(A,B) = inf{e> 0: A< N(¢, B)},
hA4,B) = inf{e> 0: A< N(¢g, B), Bc N(&, A)}.
An orbit 0(xo ) of a multi-valued map T at a point X, is a sequence

L =1, 2,...}.
n=1, 2,...}.

The study of fixed point theorems for multi-valued contractions was initiated by Markin [31] and
Nadler [32]. The notion of multi-valued contractions have been generalized by many authors.
Definition 2.1. (Nadler [32])

Amap T: X — CL(X) is called a Nadler multi-valued contraction if
h(Tx, Ty) <gqd (x,y)

{xn 1 x, eTx

n

For a single-valued map T, this orbit is {xn cx, =Tx

n—12

forall x,y € X, where 0<¢g <I1.
Let (X, d) be a metric space and 7 : X —CL(X). For a point x,€X, let
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X, €T (xn) denote some iteration procedure. Let the sequence {xn } be convergent to a fixed point

p of T. Let {yn} be an arbitrary sequence in X and set
£,=h(3,.,.7(y,)).n=012...

If lim &, = 0implies that lim y, = p then the iteration process is said to be T -stable or stable with
n—w

n—oo
respectto T (cf. [21]).

Ostrowski’s stablity theorem [12] says that Picard iterative procedure for (single-valued) Banach
contraction is stable. Following is the extension of this theorem to multivalued contractions given by
Singh and Chadha [21].

Theorem 2.2. Let X be a complete metric space and 7: X — CL(.X) such that the condition given

in Definition 2.1 holds for all x,y € X . Let X, be an arbitrary point in X and {xn }::1 an orbit for 7' at

X, such that {xn }:O: is convergent to a fixed point p of 7. Let { Y, }w

n=

& =h(y,,.T(y,)).n= 0,12, ..

. , be a sequence in X , and set

Then
n
n+l n—j
d(p’ynH) < d(pﬂxwrl) +q" d(xoayo) +zq jgj'
=0
Further, if Tp is singleton then
limy, = p ifand only if limeg, =0.
n—o0 n—0
We shall need the following result.
Lemma 2.1. (Harder and Hicks [6])
If ¢ is a real number such that 0 < ‘ c ‘ <1 and {bk }::0
n
limb, =0, then lim(zc""‘ka =0.
k—o e

n—»o0

is a sequence of real numbers such that

We denote by B, (x) the closed ball centered at X with radius a.

Theorem 2.3 (Contraction Mapping Principle for Set-Valued Mappings( Dontchev and Hager [33])).
Let X be a complete metric space with metricd , and consider a set-valued mapping
T: X —> CL(X) and apoint X € X . Suppose that there exist scalars @ > 0 and g €[0,1) such that

@ d(x,7(x)) < a(l-g);
(b) e(T(u)ﬁBa (E),T(v)) < qd(u,v) forall u,ve B, (f)
Then T has a fixed point in B, (f); that is, there exists x € B, ()?) such that x € T(x). If Tis

single-valued, then X is the unique fixed point of in B, (x).
Definition 2.2.
A map T: X —>CL(X) is called a pseudo-Lipschitz multi-valued contraction in X € X if there

exist scalars @ >0 and g €[0,1) such that
@ d(%,T(x)) < a(l—q);
(b) e(T(u)mBa ()?),T(v)) < qd(u,v) forall u,ve B, (f) forall u,ve X .

23
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3. Main result

Theorem 3.1. Let X be a complete metric space and 7 : X — CL(X) a pseudo-Lipschitz multi-

valued contraction in X, € X with parameters @ > 0 and g €[0,1) (cf. Definition 2.2). Let {xn }:;1

be an orbit for 7' at X, such that {xn }j:l is convergent to a fixed point p of T . Let { Y, }::0 be a

sequence in B, (xo) and set &, Zh(y“l,T(yn)),n =0, 1, 2,.... Then

d(pﬂyn+|)£d(p’xl1+l) +qn+1d('x0’y0) +an_j$f'

j=0
Further, if 7p is singleton then
limy = p ifand onlyif limg =0.
lim y, = p ifand only i ’Hwen 0
Proof: Let n be a nonnegative integer. Using the triangle inequality, we have

d(p’ yn+l) S d(p’ xn+1) +d(xn+1’ yn+l)' (1)

Since
d(x,., ¥,0) <d(,.,,Tx, "B, (X))
<e(Ix,NB,(x), Iy,) + d(1y,, y,.) @
<qd(x,,y,) + &,

we derive analogously

d(‘xn > yn) S qd(‘xnfl > ynfl) + gnfl‘ (3)
Therefore, using (1) and (2) in (1), we obtain

d(p9 yn+1) < d(p’ xn+1) +qd('xn’ yn) + gn
< d(p5 'xn+1) + qzd(‘xnfl’ ynfl) + (gn + q gnfl)'

Repeat this process (72— 1) times to obtain

d(p,y,n)<d(p.x,.,) +q""d(x),¥,) +Zq"’j€j. “)

=0
Further, if Tp is singleton then

£,= d(y,.. Ty,)
<d(y,.> P) + d(p, Tp) + h(Ip, Ty,)
<d(y,.> p) + d(p, Tp) + qd(p, y,).
This yields &, —0 as n—> 00, since Tp = {p} by hypothesis.
Conversly, suppose that & —>0 as 7 —>00. Note that g €[0,1).
If g=0 then (4) yields lg{i Y, =D . So, assume that g €(0,1). Then ¢""'d(x,, y,) =0 as

n— 0. Since lim¢, =0, by Lemma 2.1 Zq"iké‘k —>0as n—>o0.
n—0 k:o

Hence from (4), limy, = p .U
4. Conclusion

In this study we discuss the stability of Picard iterative procedure, i.e., X, elx ., for a map T

satisfying pseudo-Lipschitz multi-valued contraction. Stability of iterative procedures has a remarkable
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importance in fractal graphics while generating fractals. Its usefulness lies in the fact that in fractal
graphics, fractal objects are generated by an infinite recursive process of successive approximations. Our
results extend and complement many theorems in the literature
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