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CALCULATION OF MULTI-STATE TWO TERMINAL 
RELIABILITY 

Natasha Stojkovic1, Limonka Lazarova2 and Marija Miteva3 

 
1Faculty of Computer Science, “Goce Delcev” University– Stip 

(natasa.maksimova, limonka.lazarova, marija.miteva)@ugd.edu.mk 
 
 
Abstract.  Traditionally, reliability of the transportation system has  been  analyzed from 
a binary perspective. It is assumed that a system and its components can be in either a 
working or a failed state. But, many transportation systems as: telecommunication 
systems, water distribution, gas and oil production and hydropower generation systems 
are consisting of elements that may operate in more than two states. The problem that 
we consider in this paper is known as the multi-state two terminal reliability computation. 
The multi – state two terminal reliability can be computed with the formula of inclusion 
and exclusion, if the minimal path vector or minimal cut vector are known. 

Keywords: multi-state systems, network reliability, minimal path vectors, minimal cut 
vectors. 

 
 
1 Introduction 
Two-terminal network reliability for binary transportation system has been 

studied in various ways. For the binary network it is assumed that a whole 
system and its components can be in two states: working or failed state. 
However, the binary approach does not completely describe some 
transportation systems. Such systems are telecommunication systems, water 
distribution, gas and oil production and hydropower generation systems. These 
networks and its components may operate in any of several intermediate states 
and better results may be obtained using a multi-state reliability approach.[1] 
The authors developed a multi-state approach for exact computation of multi-
state two-terminal reliability at demeaned level d (M2TRd). The multi-state two 
terminal reliability is defined as the probability that a demand of d units can be 
transmitted from source to sink nodes through multi-state edges [2]. The multi 
– state two terminal reliability can be computed if the minimal path vector or 
minimal cut vectors are known.  In the literature many algorithms for calculating 
on minimal path or cut vectors are known.  

Some algorithms for obtaining minimal path or cut vectors are given in [1], 
[2], [3] and [4]. In [1] is developed a multi-state approach for exact computation 
of multi-state two-terminal reliability. In the paper is proposed algorithm for 
obtaining minimal path vector. Disadvantage of this algorithm is that it gives 
candidates minimal path vectors that are not minimal. In [2] is proposed 
algorithm for obtaining minimal cut vectors for the multi-state two-terminal 
transportation system. The disadvantage of this algorithm is that it works only 
for weak homogeneous components. The components can have different 
number of state, but the first state of the components has to be the same. In [3] 
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WAVELET APPLICATION IN SOLVING ORDINARY DIFFERENTIAL EQUATIONS  
USING GALERKIN METHOD 

Jasmina Veta Buralieva 1,*, Sanja Kostadinova 2 and Katerina Hadzi-Velkova Saneva 3 

1Faculty of computer science, “Goce Delcev” University -Stip, 2 Faculty of Electrical Engineering and 
Information Technologies, Skopje; 

jasmina.buralieva@ugd.edu.mk, (ksanja, saneva)@feit.ukim.edu.mk; 
 

Abstract. The Galerkin method is one of the most used methods for finding numerical 
solutions of ordinary and partial differential equations. Its simplicity makes it suitable for 
many applications. In this paper we show that the wavelet-Galerkin method is an 
improvement over the standard Galerkin method for ordinary differential equations.  
 
Keywords. condition number, sparse matrix, wavelet, scaling function, wavelet-Galerkin method. 
 

1. Introduction 
The concepts of wavelet theory were provided by Meyer, Mallat, Daubechies, and many others, 

[4], [8], [10]. Since the beginning, the number of applications where wavelets have been used has 
exploded. In areas such as time-series analysis, approximation theory and numerical solutions of 
differential equations, wavelets are recognized as powerful weapons not just tools, [1], [2], [3], [7], [11], 
[12], [13].  

In general, it is not always possible to obtain exact solution of an arbitrary differential equation. 
This necessitates either to go for discretization of differential equations leading to numerical (approximate) 
solutions, or for qualitative study which is concerned with deduction of important properties of the solutions 
without actually solving them. In the early nineties, scientists were very optimistic because it seemed that 
many fine properties of wavelets can be directly applied and would automatically lead to efficient numerical 
method for solving differential equations. The reason for this optimism was the fact that many nonlinear 
partial differential equations (PDEs) have solution containing local phenomena and interactions between 
several scales. Such solutions can be well represented in wavelet basis because of its satisfactory 
properties such as compact support (locality in time domain) and vanishing moments (locality in frequency 
domain).  

The Galerkin method is one of the best known methods for finding numerical solutions of ordinary 
and partial differential equations. Its simplicity makes it perfect for many applications. The wavelet-Galerkin 
method is an improvement over the standard Galerkin method by using a compactly supported orthogonal 
functional basis, [2], [11], [12], [13]. The translates of a wavelet for all dilations form an unconditional 
orthonormal basis of )(2 RL   and the translates of a scaling function for all dilations form an unconditional 
orthonormal basis for )(2 RLVj  , which is a great improvement over the standard polynomial basis or a 

trigonometric basis which not necessarily have to be unconditional. 
The aim of this article is to throw some light on this aspect of wavelet analysis for numerical and 

qualitative analysis of ordinary differential equations. Section 2 is of preliminary character; we describe the 
spaces of functions that we use throughout this paper, we also recall some basic wavelet tools such as 
multiresolution analysis (MRA) and define the condition number of a matrix. In Section 3 we describe the 
classical Galerkin method for numerical solving of Sturm-Liouville differential equation which comes down 
to solve a linear system of equations, or equivalently, a matrix equation YAX  .  For numerical 
purposes, there are two properties that we would like the matrix A  to have. Firstly, we would like A  to 
have a small condition number, to obtain stability of the solution under small perturbations in the data. 
Secondly, for performing with A  quickly, we would like A  to be sparse, which means that A  should 
have a high proportion of entries that are 0. In this paper we show that the two desirable properties of 
matrix A  can be achieved if we use the wavelets as basis vectors. 

 
2. Preliminaries and Notations 
2.1. Spaces of functions.  )(2 RL  is a Hilbert space of square integrable functions on the real line 

with the inner product 
R

dttgtfgf )()(, , where )(tg  is a complex conjugate of )(tg . The Fourier 

transform of a function )(2 RLf   is given with 






 .)()(ˆ dtetff ti  
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The Hilbert space of square integrable functions on [0,1],  with the inner product 


1

0

)()(, dttgtfgf , 

is denoted by ])1,0([2L . ])1,0([2C  is the space of functions on ]1,0[  with continuous derivatives up to 
order 2. 
 

2.2. The condition number of a matrix. The methods for numerically solving linear ordinary 
differential equation often come down to solving a linear system of equations, or equivalently, the matrix 
equation YAX  . Theoretically, such a system is well understood: for a square matrix A , there exists 
a unique solution X for  every Y if and only if A  is an invertible matrix. However, in applications there 
are further issues that are of crucial importance. It is often observed that for two close values of Y , for 

example 
'Y  and ''Y , the appropriate obtained solutions 'X  and ''X  are far apart. Such a linear system 

is called badly conditioned. In this situation, small errors in data Y  can lead to large error in the solution 
X . A measure of the stability of the linear system YAX   under perturbation of the data Y  is a 

condition number of a matrix A . 
Let A  be a nn  matrix. The operator norm, or just the norm of A  is defined by 

,sup
z

Az
A       

         (2.1) 
where the supremum is taken over all nonzero complex vectors z  in nC . 

Let A  be an invertible nn  matrix. A condition number )(# AC  of A , is defined by 
1

#  )(  AAAC , 

where 1A  is the inverse matrix for А.  It is clear that 1)(# AC . It is known that if A  is normal 
invertible matrix then 

min

max
# )(




AC              

         (2.2) 
where }A of eigenvaluean  is :max{

max
  and 

}A of eigenvaluean  is :min{min   . If A  is unitary matrix, then 1)(# AC . For irregular 

matrix A, )(# AC . 

In applications, a small condition number (i.e. near 1) is desirable. In case when )(# AC  is high, the 

system YAX   can be replaced with the equivalent system BYBAX  , where B  is a 
preconditioning matrix such that ).()( ## ACBAC   In theory this is always possible, i.e. for an invertible 

matrix A , 
1 AB . 

2.3. Wavelets and Multiresolution analysis (MRA). Let ba, , R ba  ,0  be a family of 

functions defined as translations (or shifting) by factor b  and dilatation (or scaling) by factor a of the 
function )(2 RL  







 


a

bt
a

tba  1)(, . 

The function )(2 RL  (called a wavelet or mother wavelet) is assumed to satisfy the admissibility 
condition 






 



 dC
2)(ˆ

, 
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which implies that  

    




 0)()0(ˆ dtt .    

         (2.3) 

One can prove that, if 




 0)( dtt  and 




 dttt )()1(   for some 0 , then C , [1]. 

In most situations, it is useful to restrict   to be well localized both in time and frequency 
domains. For time localization, )(t  and its derivatives must decay very rapidly, while for frequency 

localization, )(ˆ   must decay sufficiently fast as   and )(ˆ   must become flat in the 

neighborhood of 0. The flatness is associated with the number of vanishing moments of )(t  since 

0)0(ˆ0)( )( 




kk dttt       

         (2.4) 
for k = 0, 1, …, n. It means that larger number of vanishing moments more is the flatness   is small. 
 The notion of multiresolution analysis (MRA) was introduced in 1988/89 by Mallat and Meyer as a 
natural approach to the wavelet orthonormal basis. One can easily obtain a wavelet basis associated to 
the particular multiresolution approximation as follows.  
 A multiresolution analysis (MRA) of space )(2 RL  consists of a sequence of closed subspaces 


jjV }{  (called approximation spaces) with the following properties: 

1. ;,1 Z  jVV jj  

2. )(2

j
R

Z
LVj 


 ;  0  

j



jV

Z
 ; 

3. jVtf )(   1)2(  jVtf ; 

4.  jVtf )(   jVktf  )( , Zk ; 

5. There exists a function   (called scaling function or father wavelet) such that       

Z kktt jj
kj ),2(2)( 2/

,  constitute orthonormal basis for corresponding subspace jV .  

 Let )(2 RL  be compactly supported scaling function of MRA. Then  






 0)( dtt ,     

         (2.5) 
and   satisfies the following dilatation equation 





Zk

k ktat )2(2)(           

         (2.6) 
where ka  are real coefficients and 0ka  for only finitely many Zk  (the number of nonzero 

coefficients ka  in the series (2.6) is denoted by L). Since Z kjktt jj
kj ,),2(2)( 2/

,   are 

orthonormal in )(2 RL , we have 






 nkdtktnt ,)()(            

         (2.7) 
where nk ,  is the Kronecker delta function such that 0, nk  for kn   and 1, nk  for kn  . 
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If )(2 RL  be compactly supported scaling function of MRA, one can construct the wavelet   such 

that Z kjktt jj
kj ,),2(2)( 2/

,   constitute an orthonormal basis for )(2 RL . It can be shown 

[4], that if ̂  and ̂  are the Fourier transforms of the scaling function and its corresponding wavelet, then, 
the following relation holds 

       2/
2/122

)(ˆ)2/(ˆ)(ˆ  ie




  ,        

         (2.8) 
or equivalently,  




 
Zk

k
k ktat )2()1(2)( 1  .  

         (2.9) 
 
 The simplest example of MRA is the Haar multiresolution analysis. In this case 
 

                             .
otherwise,0  

10,1
)(



 


t

t                                  

(2.10) 
 

Consequently to (2.8), we obtain that )12()2()(  ttt  , that is 

           





















otherwise     ,0  

1
2
1   ,1

2
10    ,1   

)( t

t

t
.                                            

(2.11) 
The Haar wavelet )(t is developed by Alfred Haar in 1910, long before anyone began speaking of 
wavelets.  

3. Wavelet-Galerkin method for Sturm-Liouville equation 
 

3.1. Sturm-Liouville equation. We consider the class of ordinary differential equations (known as 
Sturm-Liouville equations) of the form 

10  ),()()()()( 





 ttftutb

dt
duta

dt
dtLu ,  

         (3.1) 
with Dirichlet boundary conditions 

0)1()0(  uu .    
         (3.2) 

Let )(ta , )(tb  and )(tf  be a real-valued functions, such that )(tf  and )(tb  are continuous functions 

and )(ta  has a continuous derivative on ]1,0[ . Note that L may be differential operator with variable 

coefficient because )(ta  and )(tb  are not necessarily constants. We assume that the operator L is 

uniformly elliptic, which means that there exist constants 01 C , 02 C  and 03 C  such that 

21 )(0 CtaC   and 3)(0 Ctb   for all ]1,0[t .                        
(3.3) 

By the theory of ordinary differential equations, it is known that there is a unique function u satisfying 
equation (3.1) and the boundary conditions (3.2).  
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3.2. Galerkin method for ordinary differential equations. For the Galerkin method [9], [12], we suppose 

that }{ jv  is a complete orthonormal system (orthonormal basis) for ])1,0([2L , and that every jv  is 

])1,0([2C  function that satisfies 

0)1()0(  jj vv .    

  
We select some finite set   of indices j  and consider the subspace 

},{  jvspanS j , 

i.e. the set of all finite linear combination of the elements }{ jv , j . 

We look for an approximation su  of the exact solution u of the equation (3.1) in the form 

   Svxu
k

kks 


,         

         (3.4) 
where the coefficients kxk ,  are unknown. Our criterion for determining the coefficients kx  is that 

su  should behave like the true solution u  on the subspace S , i.e. 

jjs vfvLu ,,   , j .                       

(3.5) 
If we substitute equation (3.4) in equation (3.5) we obtain 

jk
k

jk vfxvLv ,, 


, j .                       

(3.6) 

Let X  denote the vector kkx )(  and let Y  be the vector kky )(  where kk vfy , . Let 

 kjkjaA ,, ][  where jkkj vLva ,,  . Thus, (3.6) is a linear system of equations  

jk
k

kj yxa 


, j     

         (3.7) 
or, 

YAX  .     
         (3.8) 

For each subset   we obtain an approximation Sus   to the true solution u , by solving the linear 

system (3.8)  for X  and then we determine su  by equation (3.4).  

We expect that as we increase our set   in some systematic way, our approximations su  
should converge to the true solution u . Now, our main concern is the nature of the linear system, resulting 
from the choice of wavelet basis as opposed to some other basis, for example, Fourier basis. For 
numerical purposes, there are two properties that we would like the matrix A  in the linear system (3.8) to 
have. First, we would like A  to have a small condition number, to obtain stability of the solution under 
small perturbations in the data. Second, for performing with A  quickly, we would like A  to be sparse, 
which means that A  should have a high proportion of entries that are 0. In the rest of the paper we will 
show that the two desire properties of matrix A  can be achieved if we use the wavelets as basis vectors. 
 

3.3. Wavelet-Galerkin method for ordinary differential equations. As we emphasized, the 

family of wavelets Z kjktt jj
kj ,),2(2)( 2/

,   constitute an orthonormal basis for )(2 RL . 

We assume the possibility of modifying the wavelet system for )(2 RL , so as to obtain a complete 

orthonormal system ),(, }{ kjkj  for ])1,0([2L . The set   is a certain subset of ZZ  that we do not 

specify. The functions  kj ,  are not exactly the same functions as in a wavelet basis for )(2 RL , but they 
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are similar. In particular, kj ,  has a scale of about j2 , and is concentrated near the point kj2 , and 

kj ,  is 0 outside an interval centered at kj2  of length proportional to j2 . Wavelets concentrated well 

into the interior of ]1,0[  are nearly the same as usual wavelets, but those concentrated near the boundary 

points are substantially modified. After the modifications,  ),( kj , kj ,  should be 2C  function and 

satisfy the boundary conditions  
0)1()0( ,,  kjkj  . 

Now, we rewrite the equations (3.4) and (3.6) using the fact that the wavelets are indexed by two integers, 
in the form 





),(

,,
kj

kjkjs xu  , 

and  

mlkj
kj

mlkj fxL ,,
),(

,, ,, 





,  ),( ml .                     

(3.9) 
We can still regard this, as a matrix equation YAX  , where the vectors  ),(, )( kjkjxX  and 

 ),(, )( kjkjyY , kjkj fy ,, ,  are indexed by pairs ),( kj , and  ),();,(,;, ][ kjmlkjmlaA , 

mlkjkjml La ,,,;, , . The pairs ),( ml  and ),( kj  represent row and column of A  respectively. 

 
Next, we will prove that if the matrix A  does not have a low condition number or is not sparse, 

then the system YAX   can be replaced with the equivalent system VMZ  , for which the new 
matrix M  has the desire properties, i.e. M  is sparse matrix and has smaller condition number than A. 

Indeed, we define matrix  ),(),,(,;, ][ kjmlkjmlmM  by 

           
11  ADDM ,     

       (3.10) 
where  ),(),,(,;, ][ kjmlkjmldD , 









),(),(     ,0  
),(),(    ,2 

,;, kjml
kjml

d
j

kjml
 

is diagonal matrix. 

Since jnD 2)det(  , its inverse matrix 
1D  is 

 


































nn
nj

nj

nj

jnadjD
D

D

)1(

)1(

)1(

1

2    0    0   0

0    0  2   0
0    0   0  2

2
1

)det(
1









 

 

                                

nn
j

j

j

nn

nj
jn























































2    0    0   0

0    0  2   0
0    0   0  2

1    0    0   0

0    0  1  0
0    0   0  1

2
2
1 )1(

















. 

 
Then, for the elements of matrix M we have 
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mlkj
jl

kjml
jl

kjml Lam ,,,;,,;, ,22                        

(3.11) 
 

Since YDDXADDYAX 111   , setting DXZ   and YDV 1 , we obtain the 
equivalent system VMZ  .                                                      

The matrix M is sparse, because of the good localization (compact support) of the wavelets. 
Namely, kj ,  is 0 outside an interval of length jc 2 around the point kj2 , for some constant c  

(depending on the choice of wavelet system). Because the operator L  involves only differentiation and 
multiplication by another function, it does not change this localization property. So, kjL ,  is 0 outside this 

interval as well. Similarly, ml ,  is 0 outside an interval of length lc 2 around the point ml2 . As j and l  

get large, fewer and fewer of these intervals intersect, so more and more of the matrix elements 

 
1

0

___________

,,,,,;,,;, )()(2,22 dtttLLam mlkj
jl

mlkj
jl

kjml
jl

kjml   

are 0. So M  is sparse, which makes computation with it easier.  
 
 It is proved in [11] that if ),(, }{ kjkj  is wavelet system, then there exist constants 0, 54 CC  

such that for all functions g  of the form 



),(

,,
kj

kjkjcg   (the sum is finite), it holds 





),(

2
,

2
5

1

0

2

),(

2
,

2
4 2)(2

kj
kj

j

kj
kj

j cCdttgcC .    

       (3.12) 
 

The next proposition shows that the condition number of matrix M is bounded, independently of the set of 
indices, so the new equivalent system MZ=V is well conditioned. 
 
Proposition 3.1. [11, Theorem 1.2] Let L be a uniformly elliptic Sturm-Liouville operator. Let ),(, }{ kjkj  

be a complete orthonormal system for ])1,0([2L  such that kj ,  is in ])1,0([2C , satisfies 

0)1()0( ,,  kjkj   and (3.12) holds. Let   be a finite subset of  .  

 
 
 
 
 

Then the condition number of M defined  by (3.10) satisfies the following inequality 
 

                  
41

532
#

)(
)(

CC
CCC

MC


  

for any finite set   , where the constants 321 ,, CCC  are determined by (3.3), and 54 ,CC  by (3.12). 
 
Remark. In most practical situations, it is usefully to restrict   to have a larger number of vanishing 

moments (see eq. (2.4)). So, if f (t) is a polynomial, then 0, ,,  kjkj fy  , i.e. B is a null-matrix. So, 

according to (2.5), it is much more suitable to work with the scaling function   and not with the actual 
wavelet  . 
In the next example, we will use the Haar scaling function and the corresponding wavelet. It will be shown 
that the numerical results obtained by using the Haar scaling function are better than the ones obtained by 
the Haar wavelet. 
 
Example.  We consider the differential equation 

1)()(  ttutu , 10  t                        
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with Dirihlet boundary conditions 
0)1()0(  uu .            

        
Its exact solution is 

.1
11

1)( 2

2

2 





  te
e

ee
e

tu tt   

 
Now, we will obtain the approximate solution 1

su  using a Haar wavelet (2.11). Let 

)}7,3();6,3();5,3();4,3();3,3();2,3();1,3();0,3{( . The differential operator L is 

)()()( tututLu  , so we obtain 

  kjkjL ,,   ,  ),( kj ,  and  








)()(  0,   
)()( ,1

, ,,,;, l,mj,k
l,mj,k 

La mlkjkjml  . 

Since kjkj fy ,, , , we have  

264
1, ,3,3  kk fy  , 

____
7,0k . 

 
Solving the linear system YAX   where  ),(, )( kjkjxX ,  ),(, )( kjkjyY , and 

 ),();,(,;, ][ kjmlkjmlaA , mlkjkjml La ,,,;, ,   we get  

264
1

,3 kx , 
____

7,0k  

So the approximate solution is  
 

  


)32()22()12()2(2 3
3,3

3
2,3

3
1,3

3
0,3

2/3

),(
,,

1 txtxtxtxxu
kj

kjkjs            

                  
)72()62()52()42( 3

7,3
3

6,3
3

5,3
3

4,3  txtxtxtx  . 

 
In a similar way we obtain the approximate solution 2

su  using the Haar scaling function (2.10). 
 
 
 

 
Table 1. Comparison of the results using Haar wavelet  and Haar scaling function 

 
t  Exact solution 

u  
Numerical 
solution 

1
su  

Absolute error 
of 1

su  
Numerical 
solution 

2
su  

Absolute error 
of 2

su  

0.0 0 0 0 0 0 
0.1 0.0265183 -0.03125 0.057768 0.09375 0.672317 
0.2 0.0442945 -0.03125 0.075545 0.08125 0.036956 
0.3 0.0545074 0.03125 0.023257 0.06875 0.014243 
0.4 0.0582599 0.03125 0.027009 0.05625 0.00201 
0.5 0.0565906 -0.03125 0.087841 0.05625 0.00034 
0.6 0.0504834 -0.03125 0.072128 0.04375 0.00673 
0.7 0,0408782 -0.03125 0.002570 0.03125 0.009628 
0.8 0,0286795 0.03125 0.016484 0.01875 0.009929 
0.9 0.0147663 0.03125 0.03125 0.00625 0.008516 
1.0 0 0 0 0 0 

 
Remark. Let us note that here we have used the simplest scaling function which is not even a smooth 
function. The results can be improved using scaling functions with better properties. For comparison, in [9], 
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the same equation is solved using the cubic spline scaling function and the obtained results are much 
better. 
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