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WAVELET APPLICATION IN SOLVING ORDINARY DIFFERENTIAL EQUATIONS
USING GALERKIN METHOD
Jasmina Veta Buralieva ', Sanja Kostadinova 2 and Katerina Hadzi-Velkova Saneva 2

Faculty of computer science, “Goce Delcev” University -Stip, 2 Faculty of Electrical Engineering and
Information Technologies, Skopje;
jasmina.buralieva@ugd.edu.mk, (ksanja, saneva)@feit.ukim.edu.mk;

Abstract. The Galerkin method is one of the most used methods for finding numerical
solutions of ordinary and partial differential equations. Its simplicity makes it suitable for
many applications. In this paper we show that the wavelet-Galerkin method is an
improvement over the standard Galerkin method for ordinary differential equations.

Keywords. condition number, sparse matrix, wavelet, scaling function, wavelet-Galerkin method.

1. Introduction

The concepts of wavelet theory were provided by Meyer, Mallat, Daubechies, and many others,
[4], [8], [10]. Since the beginning, the number of applications where wavelets have been used has
exploded. In areas such as time-series analysis, approximation theory and numerical solutions of
differential equations, wavelets are recognized as powerful weapons not just tools, [1], [2], [3], [7], [11],
[12], [13].

In general, it is not always possible to obtain exact solution of an arbitrary differential equation.
This necessitates either to go for discretization of differential equations leading to numerical (approximate)
solutions, or for qualitative study which is concerned with deduction of important properties of the solutions
without actually solving them. In the early nineties, scientists were very optimistic because it seemed that
many fine properties of wavelets can be directly applied and would automatically lead to efficient numerical
method for solving differential equations. The reason for this optimism was the fact that many nonlinear
partial differential equations (PDEs) have solution containing local phenomena and interactions between
several scales. Such solutions can be well represented in wavelet basis because of its satisfactory
properties such as compact support (locality in time domain) and vanishing moments (locality in frequency
domain).

The Galerkin method is one of the best known methods for finding numerical solutions of ordinary
and partial differential equations. Its simplicity makes it perfect for many applications. The wavelet-Galerkin
method is an improvement over the standard Galerkin method by using a compactly supported orthogonal
functional basis, [2], [11], [12], [13]. The translates of a wavelet for all dilations form an unconditional

orthonormal basis of L?(R) and the translates of a scaling function for all dilations form an unconditional
orthonormal basis for V,- c LZ(R), which is a great improvement over the standard polynomial basis or a

trigonometric basis which not necessarily have to be unconditional.

The aim of this article is to throw some light on this aspect of wavelet analysis for numerical and
qualitative analysis of ordinary differential equations. Section 2 is of preliminary character; we describe the
spaces of functions that we use throughout this paper, we also recall some basic wavelet tools such as
multiresolution analysis (MRA) and define the condition number of a matrix. In Section 3 we describe the
classical Galerkin method for numerical solving of Sturm-Liouville differential equation which comes down
to solve a linear system of equations, or equivalently, a matrix equation AX =Y . For numerical

purposes, there are two properties that we would like the matrix A to have. Firstly, we would like A to
have a small condition number, to obtain stability of the solution under small perturbations in the data.

Secondly, for performing with A quickly, we would like A to be sparse, which means that A should
have a high proportion of entries that are 0. In this paper we show that the two desirable properties of

matrix A can be achieved if we use the wavelets as basis vectors.
2. Preliminaries and Notations

2.1. Spaces of functions. r (R) is a Hilbert space of square integrable functions on the real line

with the inner product <f,g> = Jf(t)g(t)dt , where g(t) is a complex conjugate of g(¢). The Fourier
R

transform of a function f € L*(R) is given with

f@=[fwe"dr.
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The Hilbert space of square integrable functions on [0,1], with the inner product
1
(f.g)=[fwzwa,
0

is denoted by L*([0,1]). C*([0.1]) is the space of functions on [0,1] with continuous derivatives up to
order 2.

2.2. The condition number of a matrix. The methods for numerically solving linear ordinary
differential equation often come down to solving a linear system of equations, or equivalently, the matrix

equation AX =Y. Theoretically, such a system is well understood: for a square matrix A, there exists
a unique solution X for every Yifand only if A is an invertible matrix. However, in applications there
are further issues that are of crucial importance. It is often observed that for two close values of Y, for

example Y' and Y’ , the appropriate obtained solutions X and X are far apart. Such a linear system
is called badly conditioned. In this situation, small errors in data ¥ can lead to large error in the solution
X . A measure of the stability of the linear system AX =Y under perturbation of the data Y isa
condition number of a matrix A .

Let A be a 1 x n matrix. The operator norm, or just the norm of A is defined by

Jaj=supl .
E

2.1)
where the supremum is taken over all nonzero complex vectors z in Cc".
Let A be an invertible 71 x 7 matrix. A condition number C#(A) of A, is defined by

C,(4)=[A]|a"

where A™' is the inverse matrix for A. ltis clear that C# (A) > 1. Itis known thatif A is normal
invertible matrix then

A
2.2)
where ‘)L‘m = max{w : Ais an eigenvalue of A}and

min

W in = mln{w : A is an eigenvalue of A}. If A is unitary matrix, then C,(A) =1. For irregular
matrix A, C,(A) =00.
In applications, a small condition number (i.e. near 1) is desirable. In case when C#(A) is high, the

system AX =Y can be replaced with the equivalent system BAX =BY, where B is a
preconditioning matrix such that C,(BA) < C,(A). In theory this is always possible, i.e. for an invertible

matrix A, B= A
2.3. Wavelets and Multiresolution analysis (MRA). Let ,,, a>0,beR be a family of
functions defined as translations (or shifting) by factor b and dilatation (or scaling) by factor a of the

function y € I (R)
1 t—b
W, (1) = w[)
b Ja a

The function y e 15 (R) (called a wavelet or mother wavelet) is assumed to satisfy the admissibility
condition
A~ 2
T (o)
L
@]

—0
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which implies that
¥(0) = [y(di =0.
@3)

One can prove that, if jw(t)dt =0 and J.(1+‘t‘a )‘y/(t)‘dt < oo forsome a >0, then Cv/ < o0, [1].

In most situations, it is useful to restrict |/ to be well localized both in time and frequency
domains. For time localization, y/(¢) and its derivatives must decay very rapidly, while for frequency
localization, /(@) must decay sufficiently fast as ‘a)‘ —o0 and ¥ (w) must become flat in the

neighborhood of 0. The flatness is associated with the number of vanishing moments of y/(¢) since

jtky/(t)dt =0 y*(0)=0

(2.4)
for k=0, 1, ..., n. It means that larger number of vanishing moments more is the flatness @ is small.
The notion of multiresolution analysis (MRA) was introduced in 1988/89 by Mallat and Meyer as a
natural approach to the wavelet orthonormal basis. One can easily obtain a wavelet basis associated to
the particular multiresolution approximation as follows.

A multiresolution analysis (MRA) of space I’ (R) consists of a sequence of closed subspaces

{V,}’-_, (called approximation spaces) with the following properties:

1. Vjc:V‘

2. UV,=C®R); NV,={0}:
3. fMeV, & f2neV,;
4. f)eV, o fit-k)eV, VkeZ

5. There exists a function ¢ (called scaling function or father wavelet) such that

J€Z;

¢, ()= 272(27t — k), k € Z constitute orthonormal basis for corresponding subspace VJ. .

2
Let ¢ € L"(R) be compactly supported scaling function of MRA. Then

T¢(t)dt #0,

(2.5)
and ¢ satisfies the following dilatation equation

#(t) =2 a,¢(2t —k)
26) keZ

where @, are real coefficients and a, #0 for only finitely many k € Z (the number of nonzero
coefficients @, in the series (2.6) is denoted by L). Since ¢, (1) = 21242/t =k), jkeZ are

orthonormal in L*(R) , we have

[ g -mg—kyde =5,

2.7)
where &, , is the Kronecker delta function such that 0, , =0 for n# k and 5,(’" =1lforn=k.
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If e I’ (R) be compactly supported scaling function of MRA, one can construct the wavelet i/ such
that v, (1) = 2j/2l,y(2jt —k), j,k € Z constitute an orthonormal basis for L* (R) . It can be shown

[4], that if ¢ and 1/7 are the Fourier transforms of the scaling function and its corresponding wavelet, then,
the following relation holds

i@ =g - (é(w))zjme"”” ,

(2.8)
or equivalently,

v =2 (=D a,_ pQr—k).
keZ (29)

The simplest example of MRA is the Haar multiresolution analysis. In this case

I, 0<t<l
¢(t)={

0, otherwise
(2.10)

Consequently to (2.8), we obtain that y/(¢) = @(2t) — (2t — 1), thatis

1, O£t<l
2

1
1)=<9-1, —<t<l1
w () 3

0, otherwise

(2.11)
The Haar wavelet l//(t) is developed by Alfred Haar in 1910, long before anyone began speaking of
wavelets.
3.  Wavelet-Galerkin method for Sturm-Liouville equation

3.1. Sturm-Liouville equation. We consider the class of ordinary differential equations (known as
Sturm-Liouville equations) of the form

Lu(t) = —i[a(t) ﬂj +bu(t) = f(), 0<t <1,
dt dt

(3.1)
with Dirichlet boundary conditions

u(0)=u()=0.
(3.2)
Let a(t), b(t) and f(t) be areal-valued functions, such that f(¢) and b(t) are continuous functions
and a(t) has a continuous derivative on [0, 1]. Note that L may be differential operator with variable
coefficient because a(t) and p(t) are not necessarily constants. We assume that the operator L is

uniformly elliptic, which means that there exist constants C, >0, C, >0 and C; >0 such that

0<C 2a(®)<C,and 0<b(t) <C,forall t €[0,1].

(3.3)
By the theory of ordinary differential equations, it is known that there is a unique function u satisfying
equation (3.1) and the boundary conditions (3.2).
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3.2. Galerkin method for ordinary differential equations. For the Galerkin method [9], [12], we suppose

that {Vi} is a complete orthonormal system (orthonormal basis) for L*([0,1]), and that every v, is

C?*([0.1]) function that satisfies
v;(0)=v,()=0.

We select some finite set A of indices j and consider the subspace
S =span{v;,je A},
i.e. the set of all finite linear combination of the elements {v }, j € A.

We look for an approximation u of the exact solution u of the equation (3.1) in the form

u, = Zxkvk es,
kel
(3.4)

where the coefficients X, ,k € A are unknown. Our criterion for determining the coefficients X, is that

1, should behave like the true solution % on the subspace S , i.e.

<Lus,vj> = <f,vj> ,VjeA.
(3.5)
If we substitute equation (3.4) in equation (3.5) we obtain

Z<ka,vj>xk =<f,vj>, VieA.
@6)

Let X denote the vector (x,),., andlet ¥ be the vector (y,),., where y, = <f,vk>. Let

A=la;, ]j,keA where a;, = <ka ,vj> . Thus, (3.6) is a linear system of equations

2% =Y, J €A
keA
(3.7)
or,
AX =Y.
(3.8)
For each subset A we obtain an approximation u, e S to the true solution u, by solving the linear

system (3.8) for X and then we determine U, by equation (3.4).

We expect that as we increase our set A in some systematic way, our approximations U,

should converge to the true solution # . Now, our main concern is the nature of the linear system, resulting
from the choice of wavelet basis as opposed to some other basis, for example, Fourier basis. For
numerical purposes, there are two properties that we would like the matrix A in the linear system (3.8) to
have. First, we would like A to have a small condition number, to obtain stability of the solution under
small perturbations in the data. Second, for performing with A quickly, we would like A to be sparse,
which means that A should have a high proportion of entries that are 0. In the rest of the paper we will
show that the two desire properties of matrix A can be achieved if we use the wavelets as basis vectors.

3.3. Wavelet-Galerkin method for ordinary differential equations. As we emphasized, the
family of wavelets W ; , (1) = 2/2y(2't—k), j,k € Z constitute an orthonormal basis for I*(R).

We assume the possibility of modifying the wavelet system for L (R), so as to obtain a complete
orthonormal system {w/; , } ;. for L’ ([0,1]). The set " is a certain subset of Z xZ that we do not

specify. The functions W, are not exactly the same functions as in a wavelet basis for 1.> (R), but they

21
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are similar. In particular, Vi has a scale of about 27j, and is concentrated near the point 27jk, and
Wik is 0 outside an interval centered at 2/ k of length proportional to 277 Wavelets concentrated well
into the interior of [0,1] are nearly the same as usual wavelets, but those concentrated near the boundary

points are substantially modified. After the modifications, V(j,k) €I, y ., should be C? function and
satisfy the boundary conditions
Wik 0)= Wik 1 =0.

Now, we rewrite the equations (3.4) and (3.6) using the fact that the wavelets are indexed by two integers,

in the form
U= DX
(jk)er
and
Z<L\V;k ’Wl,m >x_j,k = <f9Wl,m>’ V(l,m) € r -

(jk)el
(3.9)
We can still regard this, as a matrix equation AX =Y, where the vectors X =(x;,) ;. and

Y:(yj,k)(j,k)er' Vi =<f’\|]j,k> are indexed by pairs (j,k)eI', and A:[a,’m;j,k](,,m);(j,k)er,

Qi = <L\|/M ,\y,,m> . The pairs (l,m) and (j,k) represent row and column of A respectively.

Next, we will prove that if the matrix A does not have a low condition number or is not sparse,
then the system AX =Y can be replaced with the equivalent system MZ =V | for which the new
matrix M has the desire properties, i.e. M is sparse matrix and has smaller condition number than A.

Indeed, we define matrix M = [ml,m;j,k ](l,m),(j,k)el“ by
M=D"AD",
(3.10)
where D =[d

1,m;j.k ](l,m),(j,k)el' ’
L2 am=ai
L0, (m) # (k)
is diagonal matrix.
Since det(D)=2"", its inverse matrix D7is

2/ D0 0...0
Jj(n=1)
a1 adiD = 1. 92 0...0 _
det(D) 2
00 O0..2/m"Y
100...0 2700...0
_Lzm—w 010...0 _ 0270...0
2.in . :
00 0...1 00 0..27

nxn nxn

Then, for the elements of matrix M we have
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— -l )
My, =2"""a,,,, =2 <L‘Vj,k ’Wl,m>
3.11)

Since AX=Y<D'AD'DX =D"'Y, seting Z=DX and V=D"'Y, we obtain the

equivalent system MZ =V .
The matrix M is sparse, because of the good localization (compact support) of the wavelets.

Namely, Vi is 0 outside an interval of length ¢2 ’around the point 2”‘](, for some constant C

(depending on the choice of wavelet system). Because the operator L involves only differentiation and
multiplication by another function, it does not change this localization property. So, L(//jk is 0 outside this

interval as well. Similarly, y, is 0 outside an interval of length ¢2 " around the point 27/ m. As jand /

get large, fewer and fewer of these intervals intersect, so more and more of the matrix elements

My sk =277 Afomjk =27" 1<LW/k’Wlm " J_[L\V,k(t) \Vlm(t) dt

are 0. So M is sparse, which makes computation with it easier.

It is proved in [11] that if {‘///k}g oer 1S Wavelet system, then there exist constants C,,C; >0

such that for all functions g of the form g = zcjk(//jk (the sum is finite), it holds

(jdoyer
c, 2% jk\ <j\g O dr<c, Y 2% Jk\z
(j.k)el (j.k)el’
(3.12)

The next proposition shows that the condition number of matrix M is bounded, independently of the set of
indices, so the new equivalent system MZ=V is well conditioned.

Proposition 3.1. [11, Theorem 1.2] Let L be a uniformly elliptic Sturm-Liouville operator. Let {y//. k}(jk)el"

be a complete orthonormal system for [*([0,1]) such that Wi is in C*([0,1]), satisfies
¥+ (0)=y ,, (1) =0 and (3.12) holds. Let A be a finite subset of I".

Then the condition number of M defined by (3.10) satisfies the following inequality
(C, +C,)C;

c.C,
for any finite set A, where the constants C,,C, ,C, are determined by (3.3), and C,,C; by (3.12).

C,(M) <

Remark. In most practical situations, it is usefully to restrict ¥/ to have a larger number of vanishing
moments (see eq. (2.4)). So, if f (t) is a polynomial, then Yik = <f v, k> 0, i.e. Bis a null-matrix. So,

according to (2.5), it is much more suitable to work with the scaling function ¢ and not with the actual
wavelet I/ .

In the next example, we will use the Haar scaling function and the corresponding wavelet. It will be shown
that the numerical results obtained by using the Haar scaling function are better than the ones obtained by
the Haar wavelet.

Example. We consider the differential equation
u"@®)—u@)=t-1,0<r<1

23
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with Dirihlet boundary conditions

u(0)=ul)=0.

Its exact solution is
2
1 . e

u(t)=— e +
® o

e’ —t+1.
1-¢?
Now, we will obtain the approximate solution u; using a Haar wavelet (2.11). Let
'={(3,0);(3,1);(3,2);(3,3);(3,4);(3,5);(3,6);(3,7)}.  The
Lu(t) =u"(t) —u(t) , so we obtain

differential operator L is

=1, (jik) = (Lm)

Ly ==V VU R)el, and a,, :<L'/’/vk"/’l~'">:{ 0, (jk)#(Lm)

Since y,, = <f,l,uj,k > , we have
1
Y3k =<f,\ll3,k>=—m

Solving the linear system AX =Y where X =(X; ) 0> Y =0;1)per and

A=1a, 1 )imp e Gmjr = <LV’j,k v‘/’/,m> we get
1

X, =  Vk=0,7
a2

So the approximate solution is

= 3w = 2 (2P0 4 x (=D 4 x (2P =2+ xy (2 -3) +

(j.k)er

+ 2, (2t =)+ Xy (2P =5) + Xy (2Pt —6) + x, (231 =T)).

In a similar way we obtain the approximate solution uf using the Haar scaling function (2.10).

Table 1. Comparison of the results using Haar wavelet and Haar scaling function

t Exact solution Numerical Absolute error Numerical Absolute error
u solutllon of ”i solutzlon of ”s2
uS uS

0.0 0 0 0 0 0

0.1 0.0265183 -0.03125 0.057768 0.09375 0.672317
0.2 0.0442945 -0.03125 0.075545 0.08125 0.036956
0.3 0.0545074 0.03125 0.023257 0.06875 0.014243
0.4 0.0582599 0.03125 0.027009 0.05625 0.00201
0.5 0.0565906 -0.03125 0.087841 0.05625 0.00034
0.6 0.0504834 -0.03125 0.072128 0.04375 0.00673
0.7 0,0408782 -0.03125 0.002570 0.03125 0.009628
0.8 0,0286795 0.03125 0.016484 0.01875 0.009929
0.9 0.0147663 0.03125 0.03125 0.00625 0.008516
1.0 0 0 0 0 0

Remark. Let us note that here we have used the simplest scaling function which is not even a smooth
function. The results can be improved using scaling functions with better properties. For comparison, in [9],
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the same equation is solved using the cubic spline scaling function and the obtained results are much
better.
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