YHUBEP3UTET »I'OHE AEJYEB” - HITUII
DGAKWITET 3A UHOOPMATHUKA

ISSN:1857-8691

I'OAULUIEH 3bOPHHUK
2014
YEARBOOK
2014

I'OAUHA 3 VOLUME III

GOCE DELCEYV UNIVERSITY - STIP
FACULTY OF COMPUTER SCIENCE

YHUBEP3UTET ,,OLHE JEJTYEB* — IITHUII
DAKVIITET 3A UTHOOPMATUKA

I'OAUIIEH 3b0PHHUK
2014
YEARBOOK
2014

I'OANHA 3 JYHMU, 2015 VOLUME III

GOCE DELCEYV UNIVERSITY - STIP
FACULTY OF COMPUTER SCIENCE

lonumen 36opauk 2014
Yearbook 2014

dakynret 3a nHPpoOpMaTuka, YHUBep3uTeT ,,l one Jemaes™ — lItun
Faculty of Computer Science, Goce Delcev University — Stip

I'OAMNIIEH 350PHUK
OAKYITET 3A THOOPMATHUKA
YEARBOOK
FACULTY OF COMPUTER SCIENCE

3a U37aBayvoT:
IIpod n-p Buaapgo I'mues

H3naBauku coBer

poo. n-p Cama Murpes

pod. n-p JInmjana Konena - ['yaea
ITpod. n-p Brago 'mues

ITpod. a-p LiBeTa MapTuHOBCKa
IIpod. n1-p Tarajana Atanacosa - [Tauemcka
Hor. n-p 3opan 3npases

Mo 1-p Anekcanapa Musesa

Hotr. 1-p Camo Konecku

Hou. a-p Harama Konecka

JHom. n-p 3opan YTKOBCKH

Hor. n-p Urop CtojaHoBHK

Hou. n-p braroj Jlenunerpor

Penaxuucku ogéop

ITpod. a-p LiBeTa MapTuHOBCKa

IIpod. ni-p TaTajana Atanacosa - [Tauemcka
Hou. a-p Harama Konecka

Iom. g-p 3opaH Y TKOBCKA

Hor. n-p Urop CrojaHoBUK

JHou. n-p Anekcannpa Musnesa

Hou. a-p 3opan 3npaseB

I1aBeH U 0ITOBOPEH YpPETHUK
Hou. a-p 3opan 3npaseB

JazuuHo ypenyBame

Hanuna I'aBpunoBacka - AraHacoBcka
(MaKeIOHCKH ja3HK)

ITaBnuuka I1aBnoBa-Muresa
(aHDIINCKM ja3uK)

TexHUYKO ypeayBame
Cnagse /lumMuTpoB
brnaroj Muxos

Penakuuja u agMuHUCTpanuja
Yuusepsurert ,,l'one Jlemues-ITun
Daxyarer 3a nHGOpPMATHKA

yi. ,,Kpcre Mucupkos 10-A

1. ¢ax 201, 2000 [Tumn

P. Maxenonuja

Editorial board

Prof. Sasa Mitrev, Ph.D

Prof. Liljana Koleva - Gudeva, Ph.D.
Prof. Vlado Gicev, Ph.D.

Prof. Cveta Martinovska, Ph.D.

Prof. Tatjana Atanasova - Pacemska, Ph.D.
Ass. Prof. Zoran Zdravev, Ph.D.

Ass. Prof. Aleksandra Mileva, Ph.D.
Ass. Prof. Saso Koceski, Ph.D.

Ass. Prof. Natasa Koceska, Ph.D.
Ass. Prof. Zoran Utkovski, Ph.D.
Ass. Prof. Igor Stojanovik, Ph.D.
Ass. Prof. Blagoj Delipetrov, Ph.D.

Editorial staff

Prof. Cveta Martinovska, Ph.D.

Prof. Tatjana Atanasova - Pacemska, Ph.D.
Ass. Prof. Natasa Koceska, Ph.D.

Ass. Prof. Zoran Utkovski, Ph.D.

Ass. Prof. Igor Stojanovik, Ph.D.

Ass. Prof. Aleksandra Mileva, Ph.D.

Ass. Prof. Zoran Zdravev, Ph.D.

Managing/ Editor in chief
Ass. Prof. Zoran Zdravev, Ph.D.

Language editor

Danica Gavrilovska-Atanasovska
(macedonian language)

Pavlinka Pavlova-Miteva
(english language)

Technical editor
Slave Dimitrov
Blagoj Mihov

Address of the editorial office
Goce Delcev University — Stip
Faculty of Computer Science
Krste Misirkov 10-A

PO box 201, 2000 Stip,

R. of Macedonia

Topumren 36opauk 2014 ®dakynrer 3a nHPOpMarnka, YaHusep3urer ,,l oue Jlemger — Hltumn
Yearbook 2014 Faculty of Computer Science, Goce Delcev University — Stip

COJIPKMHA
CONTENT

AHAJIMN3A HA TOYHOCTA HA METOJAOT HA CRANK-NICOLSON BO
3ABUCHOCT O] TAPAMETAPOT HA METOJOT r
Becna I'ynoBa, Baano I'nues 5

MULTIMEDIA TECHNOLOGIES IN ENGINEERING EDUCATION
D.Minkovska, L.Stoyanova 15

MO/IEJI HA IIPUPAKAIGE U YIIOTPEBA HA PEIIO3UTOPUYMOT HAMEHET
3A HACTABHUYKHNOT KAJIAP HA YHUBEP3UTETOT ,,TOLE JEJTYEB*“ - IIITHUII
Mupjana Konanesa , Urop CrojanoBuk , 3opan 3apaBen 21

PEIHABAILE HA TOIIVIMHCKA PABEHKA CO NEUMANN I'PAHUYHH YCJIIOBU
CO YIIOTPEBA HA CRANK NICOLSON METOIOT
Mupjana KonaJsiea , Biago I'muen 33

I'OJIEMH TIOJATOIMN 3A EJUKATHUBHO IIOJATOYHO PYJAPEIGE,
AHAJIMTUKA HA ITIOJATOIIM U BEB PABOTHHU TABJIN

3opan Muuescku, Enena I'esioBa, 3opan 3apaBses 39

AJIATKH 3A BU3YAJIU3ALIUJA HA COPTBEP
Anexcanapa CrojanoBa, Harama CrojkoBuk, /lyman bukos 47

VALUATION OF FACTORS AFFECTING THE UNEMPLOYMENT RATE OF YOUNG
PEOPLE IN REPUBLIC OF MACEDONIA

Tatjana Atanasova Pacemskal, Elena Mitreva 56

NUMERICAL ANALYSIS OF BEHAVIOR FOR LORENZ SYSTEM
WITH MATHEMATICA
Biljana Zlatanovska 63

JUT'UTAJIEH BOJIEH KHUI' BO CJIMKA BO ®PEKBEHTEH JOMEH CO
JUCKPETHA KOCUHYCHA TPAHC®OPMAILINJA

Ana Jby06oTeHncka, Anexkcanapa Muiiesa 73

COMPARING OF THE BINOMIAL MODEL AND THE BLACK-SCHOLES MODEL
FOR OPTIONS PRICING
Limonka, Lazarova, Biljana, Jolevska-Tuneska , Tatjana, Atanasova-Pacemska 83

Topumren 36opauk 2014 ®dakynrer 3a nHPOpMarnka, YaHusep3urer ,,l oue Jlemger — Hltumn
Yearbook 2014 Faculty of Computer Science, Goce Delcev University — Stip

AJIATKH 3A BU3YAJ/IN3AIIMJA HA COPTBEP

Anekcannpa Crojanosa', Harama Crojkosuk', Jlyman bukos'

'®akynrer 3a nHpopMmaruka, YHusepsuter ,,l'oue dendes”, [tun
(aleksandra.stojanova, natasa.maksimova, dusan.bikov)@ugd.edu.mk

AncrpakT. Busyanmsarujata Ha coTBEpOT IPETCTaByBa €ACH BHJ| KOMIjyTepCKa YMETHOCT, 4 HCTOBPEMEHO
1 HayKa 3a TeHEpHpPambe Ha BU3YEJIHH NIPETCTABU HA PAa3JIMYHU aCIEKTH Ha CO(TBEPOT U HErOBHOT IIPOLEC HA
pa3Boj. Ilocrojar MHOrY ajgaTKH KOM IO OBO3MOXKYBaaT BH3yalM3HPameTo Ha co(TBep, HO HHE ce
3a/p)KyBaMe Ha HEKOU 0J] HUB. Bo 0BOj Tpya ke Guaar pa3paboTeHH TOYHO YETHPH alaTKU 3a BH3yaH3aluja
Ha coep, u Toa: Jeliot 3, SRec, jGrasp u DDD. Ke Guaar pasriefann i aHANN3HPAHH BU3YaTH3alEUTE
KOH THE I'Ml IPOU3BE/lyBaaT, a HCTOBPEMEHO Ke OMJIaT HAIJIACCHN MECTaTa Kajie LITO THE MOXKAT Jja IOMOTHAT.
Hcro Taka, ke OMIaT HArNaceHH MPEAHOCTHTE UM HEJOCTATOLUTE HA OBUE ANATKU KOM I'M 3abenexaBMe Mpu
HUBHOTO pa3pa00TyBambe 1 HUBHATA yroTpeha.

Kiyunn 360poBM: cmamuuka euzyanusayuja, OUHAMUYKA GUYALU3AYUJA, NPOSPAMCKA GU3VATU3AYUIA,
aHumayuja

TOOLS FOR SOFTWARE VISUALIZATION

Aleksandra Stojanova!, Natasha Stojkovikj!, Dusan Bikov'

Faculty of computer science, Goce Delcev University, Stip, Macedonia
(aleksandra.stojanova, natasa.maksimova, dusan.bikov)@ugd.edu.mk

Abstract: Software visualization is a kind of computer art, and in the same time is a science for generating
visual representations of different software aspects and of software development process. There are many
tools that allow software visualization but we are focusing on some of them. In this paper will be examined
in details just four tools: Jeliot 3, SRec, jGrasp and DDD. Visualizations that they produce will be reviewed
and analyzed and will be mentioned possible places for their application. Also, will be discussed their
advantages and disadvantages that we noticed during their work and examination.

Kew words: static visualization, dynamic visualization, program visualization, animation.

1. Introduction

The software itself is something intangible and invisible and its understanding, research and creation can be
difficult. The goal of software visualization is not to produce accurate computer images, but computer images
that can cause images in user’s mind which can help process of software understanding.

Today there are many different tools for software visualization. Even today's development environments for
programming languages increasingly include visual elements in programming in order to get closer to the user
and leave traditional programming, which use only pure code.

In this paper, we will focus on visualization of software, especially on tools that are used for educational
purposes [6] [7], which explain the way in which certain programs and program segments work.

We are examining in detail four tools: DDD [1] [4] [5] [14], JGrasp [9] [10] [15], SRec [3] [8] [16] and
Jeliot 3 [2] [11][12] [17].

Most of today’s freely available tools for software visualization are based on Java programming language.
Three from our chosen tools JGrasp, SRec and Jeliot, are based on Java and only DDD is working with
programs written in C or C++ programming language.

The reason for choosing these tools is that they have integrated more of the features used in existing tools.
They accurately and precisely represent and visualize parts of the program they are intended for. Another reason
why we chose these tools is that the user has the opportunity to use pure Java or C code, without any need for
translating into another programming language or inserting elements into the code in order to get the desired
visualization. Another advantage of these tools over existing ones for this purpose is that they don’t work only
with certain already predefined code, but offer the users opportunity for writing their own code and watching the
results from its visualization.

47

48

lonumen 36opauk 2014 dakynret 3a nHPpoOpMaTuka, YHUBep3uTeT ,,l one Jemaes™ — lItun
Yearbook 2014 Faculty of Computer Science, Goce Delcev University — Stip

2. Analyzed tools for software visualization
2.1 Jeliot 3

Jeliot 3 is a Program Visualization application. It visualizes how a Java program is interpreted. Method
calls, variables, operation are displayed on a screen as the animation goes on, allowing the user to follow step by
step the execution of a program. Programs can be created from scratch or they can be modified from previously
stored code examples. The Java program being animated does not need any kind of additional calls; all the
visualization is automatically generated. Jeliot 3 understands most of the Java constructs and it is able to
animate them. This tool has successfully performed the displaying of object-oriented concepts, visualizing
objects and inheritance [11].

The main feature of Jeliot 3 is fully or semi automatic visualization of the data and control flows. So there
is no need of adding additional code or using special elements to obtain visualization. The user uses pure Java
code and automatically gets visualizations from the written program.

The main advantages of this tool are:

- The system is easy to use and is extensible.
- The visualizations produced by the system are consistent with the visualization in all cases and are
complete and continuous.

This tool also offers static visualization of program’s code. Static visualization is consisted of emphasizing
key words (a method called “pretty printing”) and numbering each line of code for easily finding potential
erTors.

User interface of Jeliot 3 and part of static and dynamic visualization of program illustrating merge-sort is
given in Figure 1. This tool allows two different views during dynamic visualization: theatre view and call tree
view.

19 Jeliot 3.7.2 - MergeSortAlgorithm. java [

File Edit Control Animation Options Help

1) sort(data, 0, data.length - 1) [+¢ Theater | Call Tree | History

12

i WMethod Area Expression Evaluation Area
5 W‘L @Zm @

15 public static void sort{int a[], in

MergeSortAlgorithm.sort
16 if (1o >= hi) { = = i Choosing I
17 return;

i) int[] |

) VR
n intto[_0_]
21 sort(a, lo, mid);

. om0

2 while ((lo <= end_lo) c& (stert|
28 if (a[lo] < alstarchil) { ce and Array Area
29 Lot

Constant Area
20) erse ¢ inttengtn[5 |

a1 int T = afstartmi]:
0] 13

33 for (int k = start hi - m 12
32 alk+H] = afk]:

35 3 2 19
36 alo] = T @l 15
37 Lowt:

38 end_lott; 4 12
39 start_hi++;
a0)

a1 7
as =i Iy
JLT Dl s

w0 LW Animation)

Figure 1. Part of static and dynamic visualization of program illustrating merge-sort produced by Jeliot 3.

All visualizing components in dynamic visualization have their own area in the theatre view. There are four
areas: Method Area, Expression Evaluation Area, Constant Area and Instance and Array Area.

Visualizations are formed as close as possible to the Java Language Specification. All the visualized
material is coherent and complete in a sense that none of the visualized elements appear from nowhere, but each
of the elements has its own place to appear. In addition, all the expressions and their sub expressions are
evaluated and all the values shown so that user doesn’t need to guess where each value is coming from.
Furthermore, the visualization and program code is linked with the code highlighting so that cause and effect
could be identified [2].

For object-oriented program visualization, notation similar to UML diagrams is used. The objects are
shown as boxes that contain attributes and their values. The references are shown as lines connecting the object
with the corresponding variable, allowing the object to have several references at any moment.

Topumren 36opauk 2014 ®dakynrer 3a nHPOpMarnka, YaHusep3urer ,,l oue Jlemger — Hltumn
Yearbook 2014 Faculty of Computer Science, Goce Delcev University — Stip

: Edit Control Animation Options Help

jmport jeliot.io.®; ::' Theater | Call Tree | History
Seiie Gless HeCisss 1 Method Area - Expression Evaluation Area
public static void main() { ffais

Tocka t=new Tocka(5,6);

Tocka a=new Tockai): M

a.setx(3); ITocka this|J
a.sety(4);

9

10 ¥

11}

12 public class Tocka {

13 int x, ¥,

14 Tocka(){}

15 Tocka (int a, int b){x=a;y=b;
16 1}

17 void setx(int x){

18 this.x=x;} mnd Array Area

19 woid sety{int y){ -
20 this.y=y:} Constant Area Ohject of the class Tocka

21
2 c.o.\-s--w-sg

L T R S S]

Figure 2.Part of static and dynamic visualization of simple object oriented program with Jeliot 3.

In Figure 2 a part of static and dynamic visualization of simple class Tocka with two constructors is
presented. One object from class Tocka is displayed and its connection with the class can be clearly seen.

All object oriented concepts like: inheritance, polymorphism and encapsulation can be displayed with this
tool.

In Call Tree view all method calls which are currently running are displayed in the form of a tree. Example
of Call Tree view for the same program Tocka are presented in Figure 3.

[Theater | CallTree | History |

MyClass.maing)

new Tockai(5, 6) new Tockal) Tocka.setx(3) Tocka.sety(d)
returned 1757322 | [returned 1d9ddba| |returned novalue| |returned no value

Figure 3. Part of Call Tree visualization with Jeliot 3.

Jeliot 3 is more usable when working with simple and small programs or program segments, which can be
analyzed in details, and their way of work can be easily understood. This tool can help understanding basic
program’s concepts and it can be especially useful for novices in programming. For larger programs, program
running can last very long time, so user can lose his interest while waiting the whole program to end. Another
disadvantage of this tool is that some features in Java are not yet implemented here.

Jeliot 3 can be easily found on the web and download and its installation is very simple, which makes tool
easy to use especially in initial programming courses. User interaction with Jeliot 3 consists of ability to edit the
code at any time and be able to notice any change occurring while running the animation.

49

50

lonumen 36opauk 2014 dakynret 3a nHPpoOpMaTuka, YHUBep3uTeT ,,l one Jemaes™ — lItun
Yearbook 2014 Faculty of Computer Science, Goce Delcev University — Stip

2.2 SRec

SRec is an animation system, which is specifically designed for visualization of recursion in algorithms
implemented in Java. It supports three visualizations of recursion, or three views: trace view, control stack view,
and recursion tree view. SRec supports automatic generation and modification of animations [16].

In the last version of SRec there are three additional visualizations specially designed for “divide and
conquer” algorithms. The present system is able to simultaneously display two different views in order to allow
better examination of program visualization.

This tool is specially designed for visualizing recursion as a programming technique that is most difficult to
be understood by beginners in programming.

For programs and program segments that don’t contain recursive calls, this tool is not very useful. Different
views that offers, gives users detailed presentation where they can monitor the execution of the recursive call
step by step [3].

Programming code that is visualized can be easily modified and edited which means that there is a good
user interaction with the program. All programs that have recursive calls can be visualized with this tool. There
is no need for writing a complete program with main method because only recursive functions are enough. That
facilitates process of writing program segments. As an example for illustrating the visualization with SRec an
example of code for finding the n-th member of the Fibonacci sequence is used. A part of static and dynamic
visualization produced by this tool can be clearly seen in Figure 4.

& SRec, System for recursion animation [Fib.java *]

Fle Visualzation Information Configuration Help

] = SE s AT L [el OO O f O O
OmB oMby NE2 D 8)dF e AAAAANARAAH
fib1(4) | d— MO A T M X
A1 Tree view | Trace view 4| Chronological view | Structurs view | Stack view |

I
nizata na Fibunaci
*
public class Fib = =
{
public static int £ibl (int n] {
if (n==0 || n=-1)
return 1:
else
return £ibl(n-1) + £ibl(n-2);

public static int £ib2 (int n] {
int[] fibs = new int[n+l];
for (int i=0; i<=n; i+

fiba[i] = -1:
fibMewo [n, fibs):
return fibs[n]:
i
private static void fibMemo {int n, i

¥

if [fibs[n] == -1)
if {n==0]In==1)
fibs[n] = 1;
alan 1 L4
< >

Compilation with no errors. < W

Figure 4.Part of visualizing the program for finding the n-th member of the Fibonacci sequence with SRec
(static visualization, tree view and stack view).

On the left part is code written as poor java code, giving the static visualization through emphasizing key
words and numerating each line. Dynamic visualization is given through building recursion tree and changing
stack view. Recursion tree presents flow of recursion step by step. Recursion tree’s leaves are basic cases of
recursion.

Topumren 36opauk 2014 ®dakynrer 3a nHPOpMarnka, YaHusep3urer ,,l oue Jlemger — Hltumn
Yearbook 2014 Faculty of Computer Science, Goce Delcev University — Stip

Another part of dynamic visualization is Trace view. Trace view of our example is given in Figure 5.

FE—

Tree view | Trace view |

in fib1: n==1
returnfib1: return 1
in fib1:n==0
returnfib1: return 1
return fib 1: return 2
in fibl:n==
return fib1: return 1
return fib1: return 3
in fib1:n==
in fibl:n==
return fib1: return 1
in fib1: n==
return fib1: return 1
return fib1: return 2
return fib1: return 5

Figure 5. Trace view as part of dynamic visualization of the program for finding the n-th member of the
Fibonacci sequence with SRec.

Recursion is also met at “divide and conquer” algorithms. SRec automatically recognizes and detects these
types of algorithms and obtains additional views for them. As an example for illustrating this kind of algorithms
we chose merge-sort again. In Figure 6 are given Tree view, Structure view, Chronological view and Stack view
as part of dynamic visualization merge-sort with SRec.

1([1,32},0,3) [l LR LUl R I TR e T W LI R T S e P o R e S

Trea viow | Trace view A ackview | | stack view | Stack.view | Chronologic 3
L d al view | Structure view

1 2 3
merges: {13.2},1,2

merges: {1,3.2},1,1

B erges: (132),0,3
- (123.0.3

-l
|
(5

merges: (132} ,1.,1
{1.3.2).1.1

merges: {132} ,2,

{132).2.1 132,11

Figure 6. Tree view, Structure view, Chronological view and Stack view as part of dynamic visualization of
merge-sort with SRec.

This tool can be easily found, download and installed. Version 1.2 can be directly run as .jar file. That
makes this tool easy to use and can greatly assist in understanding of recursive functions.

Disadvantage of this tool is that it only works with simple data types and does not provide the input and
output arguments of recursive functions to be instances of classes. If large number is entered as input argument
to function then recursive tree becomes enormous and difficult to be followed. In this case, visibility and clarity
in recursion visualization is lost.

2.3 JGrasp

JGrasp is tool or development environment, created specifically to provide automatic generation of software
visualizations to improve the comprehensibility of software. JGRASP is implemented in Java, and runs on all
platforms with a Java Virtual Machine. jGrasp can compile and execute programs written in Java, C/C++,
Python or Ada. For all these programs this tool enables creation of Control Structure Diagrams — CSD and only
for Java programs enables creation of Complexity Profile Graphs —CPGs and UML class diagrams as part of
static visualization. Dynamic visualization with this tool is obtained during debugging and it’s possible only for
programs written in Java. There is data structure identifier mechanism which recognizes objects that represent
traditional data structures such as stacks, queues, linked lists, binary trees, and hash tables, and then displays
them in an intuitive textbook-like presentation view [9].

Programs that can be visualized are written in poor Java or C/C++ code, without need for inserting
additional program elements. Because we already had used program for merge-sort we decided to use here too.
Static visualization (Control Structure Diagrams — CSD) of merge-sort with jGrasp is given in Figure 7.

52

lonumen 36opauk 2014 dakynret 3a nHPpoOpMaTuka, YHUBep3uTeT ,,l one Jemaes™ — lItun
Yearbook 2014 Faculty of Computer Science, Goce Delcev University — Stip

I %8 & @& % BE

File: M=

rt.java

>

Zrublic class Mergesort
1

[rublic static void mainiString[] args)

— final String BLANES = " ";
b inc i;

o blanks

— intl[] data = { 10, 20, 15, 30, 80, 50 };

ire original array:");

System.out.print{data[i] + BLANKS):
— System.out.println(};

Sort the numbers, and print the result with two blanks after sach number
— mergesort (data, 1, data.length-2);:
— System.out.println("I have all but the first and last numbers."):
— System.out.println("The nu are now:");
for (i = 0; i < data.length; i++)
_ﬂ— System.out.print(data[i] + BLANKS]:
— System.out.println{);
Ly

rt

Figure 7. Static visualization (Control Structure Diagrams — CSD) of merge-sort with jGrasp.

The same kind of visualization is obtained for C/C++ programs. All program elements are presented in
different ways. This helps user to see where program begins and where ends, which are local and which global
variables or where cycles and program brunches are. This minimize possible syntax errors or facilities their
finding if there are any.

Dynamic visualization obtained in jGrasp is on high level of abstraction and it is connected with data
structures and their change during running a program. This kind of visualization offers better understanding of
traditional data structures. Also helps understanding operations, like: creating data structure, adding element,
finding element or removing element from the structure. We decided to use program that uses stack data
structure implemented with arrays and binary tree for illustrating dynamic visualization of jGrasp.

In Figure 8 is given part of dynamic and static visualization of program using stack structure implemented
with arrays, obtained during debugging the program with Jgrasp.

rs 1f the stack is

Aviewer O
can 1sEmpey(|l B stack

public
, pefurn counter == -l Ivne‘Stack [Current] ‘V‘ \ﬂewel‘l’resemal.._
@O Ogf width == 40 scale =)= 10

size m Bl

/ Debugging Outpu 3
System.out.println

** Test Nethod *

public static veid main ﬁ [

[

® Stack stack v § =
=53 FiEee i int L ol=
a7
| EFFFT Line:7d Col:28 Coder32 Top:70
HAEArAraf A AR AR AL AR AL ARAL AR AR AR AR ARARARAEARAEARAEAFALAFALA

[CJ& stack > (obj 350: Stack) Stack : ion - Structure Ide
I

Figure 8. Part of jGrasp’s dynamic and static visualization of program using stack structure implemented with
arrays.

In Figure 9 the same kind of visualization is shown. Difference here is using simple program working with
binary trees for illustration.

Topumren 36opauk 2014 ®dakynrer 3a nHPOpMarnka, YaHusep3urer ,,l oue Jlemger — Hltumn
Yearbook 2014 Faculty of Computer Science, Goce Delcev University — Stip

Hie Ean View Buld Debug Project Setungs 100ls VWINGow Help File Edit View Run Debug Help

EEEEEREEERBENEEIEE EEE 0 @ ooy O

DL I m o» ; = BinaryTreelode node = neg
if {(root == null) {
Delay 0.50 sec root = node;
Threads : size++;
Call Stack —elss |
[3] joraspvex.BinaryTree.add (BinaryTr | [0 — add(root, node];
[2] joraspvex.BinaryTree.add (BinaryTr| -1
[1] BinaryTreeExample.main (BinaryTrd L
< Il I D
T T [rrivacs void add(BinaryTres]
Variables - = int cmp = branch.value.co
if femp > 0) {
o [l this = (obj 355 : joraspuex Bir, if (branch.left == nul
¢ [Arguments : branch.left = node;
o [l branch --= (ohj 364 : jgrasp : sizett+;
°-.mde~>(um 441 [joraspvey : }1 [
: else
¢ [Locas : i add (branch. l=ft, no
W crmp=-1cint Loy
)
=3 (relse If jemp < 0)
: if (branch.right == nuy
B branch.right = nods
: sized+;
1
[l Il I D] el

ml\ — |— BPEF¥ Line: 40 Col:33 Code:0 Tom:1
UL nto | Workbench | 18] 6] o) o)) ol ol B 6l) el g
r;r.r.m.i.l.e.. P rJGHASP e rRunm rlmeranm“s| RIS,
raa

Clear ;33; ;:

Figure 9. Part of jGrasp’s dynamic and static visualization of program using binary tree.

jGrasp can offer different kind of static visualization for object oriented programs automatically creating
UML class diagrams and also can produce Complexity Profile Graph-CPG for all Java programs. Complexity
Profile Graph and UML class diagram for the program using binary trees are given in Figure 10.

Scale: | 4] |l] ==
B
. BinaryTreeExample
B {main}
f 2y
o : BinaryTree
Jgraspvex
= \
Z 4
2 : BinaryTreeNode
! Jgraspvex
3
i [Project class ------ > Other [raference, ic.)
+
1
]D T T T T T T T T T T [4 |
12 3 4 5 B 7 B 8 10 11 12 13 14 15 |Bciasses (nterfaces: 3
Segment
a BEEEERREEER

Figure 10.jGrasp’s Complexity Profile Graph and UML class diagram as part of static visualization of program
using Binary tree.

jGrasp can be easily found and download. Because it is platform independent it can work with any
operating system. It offers good interaction with user during editing the code or during debugging and forming
dynamic visualization. The user decides which elements will be shown during animation.

All static visualizations are easily and automatically generated and there is a little more effort for generating
animation or dynamic visualization.

53

54

lonumen 36opauk 2014 dakynret 3a nHPpoOpMaTuka, YHUBep3uTeT ,,l one Jemaes™ — lItun
Yearbook 2014 Faculty of Computer Science, Goce Delcev University — Stip

2.4 DDD

DDD (Data Display Debugger) is tool for debugging programs written in C/C++ Java or Perl. More
precisely DDD is graphical user interface for command line debuggers like GDB,

DBX, WDB, JDB, XDB, Perl, bash and Python [1]. DDD displays data structures as graphs. Something that
makes this debugger different from the others like gdb, is that it offers graphical presentation of data structures
and it is specially suitable for representation of pointers in C/C++ programs. Pointers especially double pointers
are part from programming which can be difficult to be understood and this tool can help in process of their
learning and understanding.

For illustrating visualizations that this tool offers we decided to use program written in C which uses
pointers and also list as data structures. In Figure 11 is shown part of dynamic and static visualizations of
program with list using DDD.

Graphical interface here looks like DOS environment. There are different views: code view, assembler and
machine code view, view of potential error and messages and graphical display view.

Dynamic visualization here is obtained during program debugging.

User can’t edit code in this tool but his interaction here consists of debugging and managing display of
dynamic visualization. User decides what program segment will be shown on graphical display view.

[@] DDD: /home/Administratorlist.c BEEREN I

File Edit View Program Commands Status Source Data

():|start—>next—>next—>pr‘av—>pr‘e\i ‘R rﬁ 3 fg »1..,@;. a/mx % l&
me = 0x402080 "L Torvalds™ /(91';&‘)\‘
nal = DX nus lorv: S
age = 30 20: *(start->next) |
gl next = Ox4e9a70 - “Aan Cox |
15: start prev = 0x0 e ggg\e = (;TAtOZOSf Alan Cox
PP gy =
(person_t *) Ox4e9a58 'w/ next = Ox4e9a88
name = 0x402098 "Rik van Riel" prev = Ox4e9a58
age = 32 (e
next = 0x1f0000 M
prev = 0x4e9a70

pers->next = temp;
temp—>prev = pers;:
pers = temp;

+
> temp—>next = NULL;

printf("Data structure created\n");i
return 0!

B 0x00401252 <+226>: mov 0x38(%esp) ,%eax
0x00401256 <+230>: mov1 $0x0,0x8(%eax)

0x0040125d <+237>: mov1 $0x4020a5, (¥esp)
0x00401264 <+244>: call 0x4012e8 <puts>

(gdb) step

(gdb) graph display *(start->next->next) dependent on 20
(gdb) graph undisplay 30

(gdb) graph display *(start->next->next->prev) dependent on 32

Figure 11. DDD’s static and dynamic visualization of program using pointers and list data structure.

Programs that can be visualized with DDD are simple console applications written in pure java or C/C++
code. But DDD offers better dynamic visualization only for C/C++ programs.

DDD can be easily found on web but its installation can be a problem especially if there is a need for
installing this program on Windows system. For its installation and making it works more software packages are
needed. That can be a disadvantage of this tool.

3. Conclusion

Software visualization is an important part of studying and using software. There are many tools which
visualize software but we decided to analyze four of them because they represent whole systems. They give user
a freedom to write their own programs in some program language, without inserting additional elements in code
and then watch their generated visualization.

By using this tools and by visualizations we obtained using tham, we can conclude that all of them can be
used for visualizing programs from different aspects and can be used in different situations, but their mutual
feature is that they all can be used for easily learning and understanding parts of code and finding possible errors
in code. Visualization they produce is clear and understandable for simple programs. They are all free to use and
need a little effort from user for making them work.

Topumren 36opauk 2014 ®dakynrer 3a nHPOpMarnka, YaHusep3urer ,,l oue Jlemger — Hltumn
Yearbook 2014 Faculty of Computer Science, Goce Delcev University — Stip

References

[1] A. Zeller, “DDD-A Free Graphical Front-End for UNIX Debuggers” ACM SIGPLAN Notices, Pages 22-27, Volume
31, January 1996.

[2] A. Moreno, N. Myller, E. Sutinen “Visualizing Programs with Jeliot 37, AVI’04 Proceedings of the workingconference
on Advanced visual interfaces, Pages 373-376, ACM New York, NY, USA ,2004.

[3] A. Pérez-Carrasco, J. A. Velazquez-Iturbide, J. Urquiza-Fuentes, “SRec: An animation system of recursion for algorithm
courses”, 13rd Annual Conference on Innovation and Technology in Computer Science Education, ACM Press, 2008

[4] A. Zeller “Visual Debugging with DDD” Dr. Dobb's Journal, Pages 21-28, Volume 322, March 2001

[5] A. Zeller “Animating data structures in DDD” Proc. SIGCSE/SIGCUE Program Visualization Workshop,
Finland, July 2000

[6] C. Halverson, Jason B. Ellis, C. Danis, Wendy A. Kellogg ,, Designing Task Visualizations to Support the Coordination
of Work in Software Development “, ACM New York, NY, USA, 2006.

[7] C. M. Kehoe, J. T. Stasko “Using Animations to learn about Algorithms: An Ethnographic Case Study”- Technical
Report GIT -GVU-96-20, September 1996.

[8]1J. A. Velazquez-Iturbide, A. Pérez-Carrasco, J. Urquiza-Fuentes, “Interactive visualization of recursion with SRec”, 14th
Annual Conference on Innovation and Technology in Computer Science Education, ACM Press, 2009

[9] J.H.Cross “Using the new jGrasp canvas of dynamic viewers for program understanding and debugging in Java courses”
Journal of Computing Sciences in Colleges, ACM, Volume 29 Issue 1, October 2013

[10] J.H.Cross, T.D. Hendrix “jGRASP: an integrated development environment with visualizations for teaching Java in
CS1, CS2, and beyond”, ACM, Journal of Computing Sciences in Colleges, Volume 23 Issue 3, January 2008.

[11] N. Myller, R.Bednarik and A. Moreno “Integrating Dynamic Program Visualization into Bluel: the Jeliot 3 Extension”,
Seventh IEEE International Conference on Advanced Learning Technologies, ICALT 2007.

[12] R. Bednarik, A.Moreno and N.Myller “Jeliot 3, an Extensible Tool for Program Visualization”, 5th Annual Finnish /
Baltic Sea Conference on Computer Science Education. November 17 - November 20, 2005.

[13] T. Khan, H. Barthel,A.Ebert, and P.Liggesmeyer, "Visualization and Evolution of Software Architectures"-
Visualization of Large and Unstructured Data Sets Workshop 2011

[14] http://www.gnu.org/software/ddd/

[15] http://www.jgrasp.org/

[16] http://www.lite.etsii.urjc.es/srec/
[17] http://cs joensuu.fi/jeliot/

55

