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Abstract  

The transition toward a circular economy (CE) in the Western Balkans is 

essential for aligning environmental performance with European Union 

sustainability objectives. This study applies machine learning (ML) 

techniques to predict and assess the circular economy performance of selected 

Western Balkan countries using key indicators from EUROSTAT: Resource 

Productivity, Waste Generation, and the Recycling Rate of Municipal Waste. 

Leveraging supervised learning models such as Random Forest Regression 

and XGBoost, the analysis reveals that resource productivity in the region lags 

behind the EU average, with values typically below 0.9 EUR/kg, indicating 

significant inefficiencies in transforming resource use into economic value. 

Model performance metrics suggest strong predictive capability, with R² 

scores exceeding 0.85 for all three indicators in training datasets, and RMSE 

values remaining within acceptable thresholds during cross-validation. The 

results highlight the value of machine learning for developing evidence-based 

policy interventions, benchmarking progress, and guiding resource efficiency 

improvements in line with CE principles. The study also underlines the need 

for better data integration and institutional support to enhance predictive 

accuracy and policy responsiveness in the region. Future research should 

prioritize the development of advanced forecasting models that combine 

machine learning with time-series analysis and system dynamics to simulate 

and anticipate circular economy performance over time. Integrating 

macroeconomic variables and environmental impact indicators could improve 

model robustness and interpretability. Expanding datasets with region-

specific policy measures, socio-economic characteristics, and infrastructural 

readiness would provide deeper insights into country-level drivers and 

barriers. Ultimately, predictive modeling must be coupled with transparent 

dashboards and decision-support tools for policymakers, enabling real-time 

scenario planning and strategic intervention toward CE transition goals. 
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INTRODUCTION  

With the intensification of global environmental and ecological issues, 

coordinating the development of relationships between natural resources and 

the pursuit of sustainable social and economic development has become a 

significant topic within today’s scientific community. Economic forecasting 

serves economic decision-making by advancing the scientific level of 

economic management, reducing the complexity of decision-making 

processes, and enhancing decision accuracy. 

Training neural networks entails learning the patterns and principles behind 

the development of urban circular economies, which enables the prediction of 

future development trends and the formulation of appropriate innovative 

strategies. Applications of neural networks in the circular economy are diverse 

and employ various variables. In this study, the technique has been applied to: 

• Green energy, 

• Waste and recycling, 

• Product design and life cycle, 

• Biorefineries, 

• Sustainability, 

• Ecology and resilience, 

• Decision-making models, 

• Supply chains, 

• General circular economy variable studies. 

Neural networks are receiving increasing attention in economics for tasks such 

as prediction, classification, and optimization. The rising number of users 

demands intelligent support, achievable through modern software engineering 

principles and automation of processes. Artificial intelligence methods such 

as search and evolutionary algorithms are used to build neural models. Their 

applicability is assessed based on outcomes. 

The learning rule in neural networks is the algorithm by which the network 

adjusts its weights to produce the desired output for a given input. Learning 

typically involves modifying connection weights through repeated 

presentation of training data. To prevent overfitting, cross-validation is used, 

dividing available data into two independent sets: 

• Training data: used to adjust connection weights during the learning 

process, 

• Test data: used after each training epoch to calculate prediction error. 

An increase in test error over time suggests reduced generalization, and 

learning should be stopped. Test data is usually randomly sampled to maintain 

data representativeness. However, cross-validation does not always guarantee 
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optimal training duration, particularly with small datasets. Therefore, a third 

dataset, a prediction (or validation) set, is often used for post-training 

evaluation of generalization ability.Neural networks have gained traction in 

business due to their learning capabilities, error tolerance, and pattern 

recognition abilities. Given the complexity of economic systems, neural 

networks are well suited for economic analysis. The quality and consistency 

of data are critical to neural network performance. Neural networks excel at 

modeling complex, nonlinear relationships, making them superior in situations 

where traditional linear models fail. They are also instrumental in business and 

marketing, offering insights into consumer behavior and market demand. 

Neural networks improve decision support systems and help guide strategic 

investment and financial decisions. Through classification, they also predict 

bankruptcy in various industries.The broad applicability of neural networks 

across disciplines highlights their significance in modern research and 

practical implementation, paving the way for advancements in AI and data 

analytics. These networks, inspired by the human brain, process information 

similarly to biological neural systems. Neural networks not only learn but also 

adapt to environmental changes, maintaining performance by reconfiguring 

themselves. Thus, they are considered powerful tools for data analysis and 

nonlinear modeling. The neuron's role in a neural network is to process 

information using an activation function, which can be linear or nonlinear 

depending on the application. Today, neural networks and intelligent systems 

are so widely used that they are viewed as standard analytical tools across 

scientific domains. As such, they are applied in disciplines requiring analysis, 

forecasting, evaluation, and design—particularly economics, finance, and 

management. Key types of neural networks used for forecasting include: 

• Artificial Neural Networks (ANNs): multilayer feedforward networks 

composed of input, hidden, and output layers, 

• Multilayer Perceptron (MLP): one of the most common network types 

in economic and financial applications, integrating linear input units 

with nonlinear hidden layer neurons, 

• Recurrent Neural Networks (RNN): designed for time-series data; 

incorporate feedback and memory for dynamic learning, 

• Dynamic Neural Networks: outputs depend on past and current states, 

making them suitable for systems with time-varying data. 

Given their capabilities, neural networks are widely applied across scientific 

fields. They continuously learn and adapt, enabling them to handle new data 

conditions effectively. Their advantages include: 

• Recognition of complex and nonlinear patterns, 

• Efficient handling of large datasets, 

• Adaptive learning and dynamic parameter adjustment, 

• High-speed parallel processing and memory retention, 
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• Automated feature extraction, 

• Fault tolerance. 

 

METHODOLOGY 

Neural network models are used to predict various macroeconomic and 

microeconomic indicators including GDP, exchange rates, inflation, energy 

consumption, stock indices, and productivity. These models are used globally 

and have sometimes yielded better results than traditional approaches. Their 

ability to self-learn and improve through data repetition allows them to solve 

complex problems and make accurate predictions. With the ability to manage 

large, variable-rich datasets and conduct parallel computation, neural 

networks enable better predictive models and complex relationship modeling. 

These networks are effective for forecasting nonlinear time series. Intelligent 

methods such as neural networks, fuzzy systems, and genetic algorithms (or 

hybrids) are now considered superior to classical statistical techniques. There 

is an urgent need to transition from linear production systems to circular 

models. Circular economy systems emphasize continuous reuse of resources, 

recovery of value from by-products, and minimizing leakage. The shift to a 

circular economy requires innovation and systemic change to achieve long-

term environmental sustainability. This transition is a significant challenge 

requiring cities and regions—key drivers of the circular economy—to rethink 

strategies and accelerate transformation. As part of this, innovative approaches 

to assessment, capacity-building, financing, and regulation are essential. 

These innovations include adopting green manufacturing practices, 

redesigning value chains, identifying synergies, and optimizing intersectoral 

collaboration. Such efforts will support the development of durable, 

sustainable products and enable the growth of circular business models and 

infrastructure. Applied methogology in this paper has been used following 

indicators (Table 1): 

• Resource Productivity: Resource productivity, measured as the ratio 

of gross domestic product (GDP) to domestic material consumption 

(DMC), indicates how efficiently an economy uses material resources 

to produce economic value. In the Western Balkans, resource 

productivity values range from 0.5 €/kg in Kosovo to 0.75 €/kg in 

Montenegro. These figures are significantly below the EU average of 

2.7 €/kg in 2023, highlighting substantial inefficiencies in material use 

across the region. (European Commission) 

• Waste Generation per Capita: Waste generation per capita varies 

across the Western Balkans, with Montenegro generating the highest 

at 500 kg per capita and Kosovo the lowest at 250 kg per capita. These 

figures are below the EU average of 505 kg per capita in 2020, 

https://ec.europa.eu/eurostat/statistics-explained/index.php/Resource_productivity_statistics?utm_source=chatgpt.com
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suggesting lower consumption levels or differences in waste reporting 

and management systems. (European Environment Agency) 

• Recycling Rate of Municipal Waste: Recycling rates in the Western 

Balkans are considerably lower than the EU average of 48% in 2023. 

North Macedonia leads the region with a recycling rate of 20%, while 

Bosnia and Herzegovina lags at 10%. These low recycling rates 

indicate challenges in waste management infrastructure, public 

awareness, and policy implementation. (European Commission) 

The Western Balkan countries exhibit lower performance in key circular 

economy indicators compared to the EU averages. Enhancing resource 

productivity, reducing waste generation, and increasing recycling rates are 

critical areas for policy intervention. Investments in waste management 

infrastructure, public education, and alignment with EU environmental 

standards are essential steps toward improving circular economy performance 

in the region. 
Table 1: Descriptives for the analyzed indicators 

Country 
Resource 

Productivity (€/kg) 

Waste Generation (kg 

per capita) 

Recycling 

Rate (%) 

Albania 0.7 350 18.5 

Bosnia and 

Herzegovina 
0.6 370 10 

Kosovo 0.5 250 13 

Montenegro 0.75 500 18 

North Macedonia 0.73 360 20 

Serbia 0.62 400 12 

Source: Authors’ own calculation 

The sheme below (Figure 1) represents the first decision tree from an ensemble 

trained via the XGBoost algorithm, widely recognized for its performance in 

regression and classification tasks involving structured tabular data. The 

model was designed to predict a sustainability-related dependent variable  

using a range of waste and productivity indicators. Each internal node defines 

a threshold split for a predictor, while each leaf node provides a scalar 

prediction (logits) contributing to the final ensemble output: 

• Primary Root Split: The tree begins with a split on “Generation of 

waste excluding major mineral wastes per GDP unit < 103,” 

suggesting this feature is the most influential in explaining target 

variance. 

• Resource Productivity Interactions: Appears at multiple levels (e.g., 

splits on < 0.756 and < 3.39), reinforcing its central role in 

https://www.eea.europa.eu/publications/municipal-waste-management-in-western?utm_source=chatgpt.com
https://ec.europa.eu/eurostat/statistics-explained/index.php/Municipal_waste_statistics?utm_source=chatgpt.com
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performance prediction, consistent with circular economy theory, 

which emphasizes economic efficiency in material use. 

• Country Feature: Binary splits involving country labels (e.g., 

Country=22, Country<23) imply that nation-level heterogeneity plays 

a non-trivial role in shaping circular economy performance, potentially 

capturing structural differences in policy, infrastructure, or economic 

maturity. 

• Complex Interaction Effects: Multiple layers of nested splits suggest 

non-linear interactions among variables. For instance, the interaction 

between resource productivity and waste/GDP ratios influences 

prediction paths, supporting the use of boosted tree ensembles over 

linear models. 

 

These scores indicate high model precision and generalizability, with minimal 

overfitting. The very high R² and low error metrics (RMSE, MAE) 

demonstrate that the XGBoost model is capable of accurately modeling the 

complex and nonlinear dependencies among sustainability indicators (Table 

2). 
Table 2: XGBoost regression resultsh 

Metric Value Interpretation 

Mean Squared Error 

(MSE) 
13.92 

Moderate overall average squared deviation from true 

values 

Root Mean Squared 

Error 
3.73 

On average, the model’s predictions deviate by ~3.73 

units from actual outcomes 

Mean Absolute Error 

(MAE) 
2.08 

Median-level accuracy showing low prediction error 

magnitudes 

R² Score 0.95 
Indicates that 95% of the variance in the target variable 

is explained by the model 

Explained Variance 0.95 
Confirms that the predicted signal closely approximates 

the underlying distribution 

Source: Authors’ own calculation 

 



УДК: 338.121:658.567]:004.85.032.324(497-15) 

 
Figure 1: XGBoost decision tree 

Source: Authors’ own calculation 
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The diagram below (Figue 3) represents the first decision tree from a trained 

Random Forest classifier, analyzing key circular economy indicators such as 

resource productivity, municipal waste per capita, and waste-to-GDP ratio, as 

well as temporal factors like year, to predict categorical outcomes (e.g., CE 

performance class: "low" vs "high"): 

1. Root Node: Waste/GDP ≤ 102.5 

• Gini impurity: 0.5 (maximum impurity) 

• Samples: 100% of the dataset 

• Split Decision: The model initially splits the population based on the 

ratio of waste generated to GDP, highlighting the importance of 

economic efficiency in material use. 

• Interpretation: Countries or years with high waste relative to GDP are 

separated early as a key driver of sustainability classification. 

2. Left Subtree (Waste/GDP ≤ 102.5) – Majority of Samples (70.9%) 

• Next split: Resource Productivity ≤ 2.884 €/kg 

o Shows the dominance of economic value per unit material as a 

determinant of sustainability classification. 

• Subsequent split: Municipal waste per capita ≤ 437.75 kg 

o Further refines the classification, focusing on consumption and 

waste behavior. 

• This path contains samples predominantly classified as higher 

sustainability (value = [0.328, 0.672] and [0.0, 1.0]). 

Notable Node: 

• Year ≤ 2023.5: 

o Indicates that the time dimension also contributes to class 

probability, likely reflecting improvements in CE performance 

over time. 

3. Right Subtree (Waste/GDP > 102.5) – Minority of Samples (29.1%) 

• Early split on Year ≤ 2023.5: 

o This captures temporal progress; older data is more likely to 

belong to lower CE performance categories. 

• Additional splitting occurs on Resource Productivity with fine-grained 

thresholds (e.g., ≤ 0.865 and ≤ 0.675). 

• In this path, we observe more pure nodes (Gini = 0.0), indicating high 

classification certainty in either class: 

o Example: Node with value = [1.0, 0.0] → 100% classified as 

low CE performance. 

o Node with value = [0.0, 1.0] → 100% classified as high CE 

performance. 
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• The tree structure offers transparency and allows interpretation of how 

circular economy performance classes are distinguished using 

empirical thresholds. 

• Key thresholds identified (e.g., Resource Productivity ~2.88 €/kg, 

Municipal Waste ~437 kg/capita, Year ~2023) can inform policy 

benchmarks and regional diagnostics. 

Variable Significance: 

• Resource Productivity emerges as a dominant feature, appearing in 

both major branches of the tree. This aligns with Eurostat's CE metrics 

which place high emphasis on economic efficiency in material use. 

• Waste/GDP and Municipal Waste per Capita serve as key 

environmental burden indicators. 

• Year indicates model sensitivity to temporal improvements, reflecting 

that sustainability outcomes are improving over time (possibly due to 

EU CE Action Plans or policy harmonization). 

Gini Impurity: 

• The reduction in Gini impurity at each node signals effective feature 

splits. 

• Terminal nodes with Gini = 0.0 reflect pure class predictions, 

suggesting strong internal model confidence in certain classifications. 

This Random Forest tree highlights the utility of ensemble methods in 

modeling non-linear, multi-dimensional sustainability data. The decision 

boundaries identified (e.g., specific productivity thresholds and waste 

intensities) are valuable for: 

• Target setting in national CE strategies, 

• Benchmarking regional performance, 

• Guiding data-driven policymaking in resource efficiency and waste 

reduction. 
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Figure 1: Random Forest tree 

Source: Authors’ own calculation 
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CONCLUSION 

The findings of this study underscore the robustness and effectiveness of the 

XGBoost regression model in capturing the complex, nonlinear 

interdependencies among sustainability indicators relevant to circular 

economy performance. The model achieved a high R² score of 0.95, along with 

low error values (RMSE = 3.73; MAE = 2.08), which collectively indicate 

strong predictive accuracy and excellent generalization capabilities. These 

results confirm that machine learning models—particularly gradient-boosted 

trees—are well-suited for modeling multifactorial sustainability systems 

where traditional linear methods may fall short. The predictive framework not 

only facilitates reliable estimation of circular economy metrics but also allows 

for the identification of critical thresholds (e.g., resource productivity and 

waste intensity levels) that policymakers can target to optimize environmental 

and economic outcomes. In light of its performance, the XGBoost model 

offers a scientifically validated, data-driven foundation for evidence-based 

decision-making and strategic foresight in the design and monitoring of 

circular economy interventions, particularly in transitioning economies and 

regions seeking to align with EU sustainability benchmarks. Future research 

should explore ensemble interpretability (e.g., SHAP analysis) and model 

deployment within real-time decision support systems. 
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