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Abstract  

This paper investigates the Crawford-Sobel model as cheap talk model where communication between 

players does (not) directly affect the payoffs of the game. Partition equilibrium and equilibrium actions 

do not converge with bias in beliefs. Green-Stoke model of information transmission showed that BNE 

differs from Cournot, Nash and Stackelberg and while Cournot is agent and principal best response, 

BNE is principal best response. Stackelberg equilibrium is outside of principals’ or agents' BR. Kripke 

model of partial separation with mixed strategy equilibrium show that if the world is 𝑤𝐻𝑚𝐻 

beliefs/payoff ratio is higher than that of 𝑤𝐿𝑚𝐻 and if the world is 𝑤𝐻 𝑚𝐿  beliefs/payoff ratio is higher 

than in 𝑤𝐿𝑚𝐿 world. In the common knowledge frame communication does not change the structure of 

knowledge in the model. Deterministic and bursting bubbles differ in the movement of dividend/price 

and capital gain. Whether investors coordinate for collective optimality Kantian equilibrium or not 

(Nash equilibrium) matters for asset bubble size.Dot.com bubble and 2008 financial crisis with Case-

Shiller measure for housing bubble and S&P movements are investigated as some indicators for asset 

bubbles and cheap talk. 
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1.Introduction  

In the standard cheap talk model informed sender sends message to uninformed receiver. The problem 

here is that receivers’ action affects the payoffs of both parties. Talk is cheap because the payoffs of the 

players do not depend directly on the Sender’s message1, see  Chen, Sobel (2008).Key features of cheap 

talk are: Costless i.e.  Sending a message has no cost to the sender. Non-binding: The sender is not 

committed to follow through on what they say. Non-verifiable: The receiver can't verify the truth of the 

message beforehand. Even though it seems “cheap,” cheap talk can convey useful information if 

incentives are aligned or if repeated interactions build reputation. In some equilibriums, truthful 

communication can emerge even when players could lie. Equilibrium often demands considerable 

coordination: a problem seen most clearly in games of pure coordination, but present in most games. 

So, one can expect Nash outcomes due to informal pre-play communication, see Farrel (1998).Like in 

Aumann (1974), one can suppose that players can talk before choosing their actions, but cannot bind 

themselves. Aumann suggests that they will reach some agreement on how to play, and that since no 

external enforcement is available, they can only consider self-enforcing, or Nash, outcomes2. Crawford 

and Sobel (1982) henceforth CS model, show that cheap talk extends the set of outcomes that can be 

 
1 Cheap talk is a concept in game theory that refers to costless, non-binding, and non-verifiable communication 
between players before they take any action in a game. It doesn’t directly affect the payoffs, but it can influence 
beliefs and subsequent strategies. 
2 A Nash equilibrium is a strategy profile such  that each person’s strategy is optimal (for himself) given the 
inertness of others’ strategies, See Roemer(2019). 
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implemented in equilibrium by allowing for partial revelation of information. Several articles have 

extended the original CS model. For instance, Morgan and Stocken (2003) extend the CS model to the 

case where there is uncertainty regarding the difference between the preferences of the sender and 

receiver. Blume et al. (2007) modify the CS setup where communication errors (or noise) can occur. 
Andreu Mas-Colell (1987, 659) writes: “The typical starting point [of cooperative game theory] is the 

hypothesis that, in principle, any subgroup of economic agents (or perhaps some distinguished 

subgroups) has a clear picture of the possibilities of joint action and that its members can communicate 

freely before the formal play starts. Obviously, what is left out of cooperative theory is very 

substantial.”, see Roemer (2019). Cooperation may be the only means of satisfying one’s own self-

interested preferences, see Roemer (2019)3. In Nash equilibrium, one chooses one’s own strategy to 

maximize one’s own utility holding others’ strategies fixed at the equilibrium. In contrast, in the Kantian 

equilibrium, one chooses the common strategy to be adopted by everyone to maximize one’s own utility. 

Modern economics asks how private information is shared through the market and other mechanisms, 

see Farrell, Rabin (1996). In previous study Farrell, Rabin (1996), author’s suspected that most 

information sharing is not done through Spence-style signaling (Spence (1974)),through the price 

system, nor through carefully crafted Hurwicz-style(see Hurwicz (1973)) incentive-compatible 

mechanisms: it is done through ordinary, informal talk. Farrell, Rabin (1996) believe that talking is 

cheap (it does not directly affect payoffs), but, given that people respond to it, talking affects payoffs4.In 

Crawford, Sobel model (1982) ,where sender sends costless message to the receiver, receiver cannot 

verify any of the information sent by the sender and the interests of the sender and the receiver do not 

necessarily coincide, see Rubinstein, Glaser (2006). The typical question in this literature is whether an 

informative sequential equilibrium exists. So, in CS model we investigate partitioning equilibrium (also 

called partial pooling equilibrium) in a cheap talk game which is a type of Bayesian Nash Equilibrium 

where the sender's type space is divided into intervals (or "partitions"), and each type within a partition 

sends the same message. So rather than fully revealing their type (as in a separating equilibrium) or 

sending the same message regardless of type (as in a pooling equilibrium), the sender group types 

together and communicates coarse information5.Cheap talk presuppose strategic, non-binding messages 

affecting beliefs6.The game with communication always has a subgame perfect equilibrium that 

replicates any Nash equilibrium without communication: at the stage of actual play the receiver ignores 

the communication, and rolling back, the   sender sends any arbitrary message. This is called a 

“babbling” equilibrium; the focus of interest is on whether non-babbling equilibria are possible. Kripke 

Semantics models agents' knowledge and belief about types and messages. Here we assume that the 

receiver does not ignore the sender’s message, and the sender does convey any information—message 

is informative7. Common Knowledge is necessary for coordination, trust, and interpreting messages. 
Talk is a useful way to communicate private information in strategic situations, as formalized by 

Crawford and Sobel (1982) and Green and Stokey (2003). These early papers recognized, however, that 

their equilibrium analysis is generally indeterminate. Models of cheap talk have multiple equilibria 

some of them uninformative, see Sidartha et al. (2023).As an assumption there must be some exogenous 

ordering of messages and it is common knowledge that they will behave in a way that is consistent with 

this ordering. Furthermore, the sequences are monotonic and converge to equilibria8. We will provide 

two loosely cheap talk real life examples too.  

 
3 There is growing attention to the claim that humans are a cooperative species, see Bowles, S. and Gintis, H. 
(2011), and Henrich, N., and J. Henrich (2007). 
4 A misinformed listener will do something that is not optimal for himself and, if their interests are sufficiently 
aligned, this is bad for the speaker too. 
5 Coarse information refers to imprecise, aggregated, or simplified information that does not fully reveal the 
underlying details, but still conveys some useful knowledge.In the context of cheap talk or signaling, coarse 
information means the receiver learns something about the sender’s type, but not exactly what it is. 
6 See https://www.davidreiley.com/GameTheoryAEA/AEAContEd_I.pdf Avinash Dixit lecture notes on Game 
theory. 
7 For babbling equilibrium and example see Appendix 1 Babbling equilibrium. 
8 see  Appendix 2 Cheap Talk with Noise or Non-Monotonic Strategies  

https://www.davidreiley.com/GameTheoryAEA/AEAContEd_I.pdf
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2.Crawford -Sobel model (CS model) 
This model formalizes the idea that the amount of information which can be transmitted depends on 

how well aligned preferences are. In this model, better informed sender 𝑆 sends a message to a receiver 

𝑅, who then takes action that determines the wealth of both. 𝑆 observes the value of random variable 𝑚 

with differentiable CDF 𝐹(𝑚) and PDF 𝑓(𝑚), supported in range [0,1]. Utility function is VNM9 twice 

differentiable. In this model signaling rule (chosen by 𝑆): 𝑞(𝑛|𝑚) such that if 𝑚 is observed, message 

𝑛 is sent with probability 𝑞(𝑛|𝑚) ,action rule (chosen by 𝑅) y(n) such that if 𝑛 is observed, 𝑦 is chosen, 

the rules must satisfy:𝑅′𝑠 rule is optimal given 𝑆′𝑠,if 𝑛′ is taken with positive probability in 𝑚 then: 

equation 1 

𝑛′ ∈ arg max
𝑛

𝑈𝑆(𝑦(𝑛), 𝑚, 𝑏) 

𝑆’𝑠 rule optimal given 𝑅’𝑠: 

equation 2 

𝑦(𝑛) ∈ arg max
𝑦

∫ 𝑈𝑅(𝑦, 𝑚)𝑝(𝑚|𝑛) 

Where 𝑝(𝑚|𝑛): 

equation 3 

𝑝(𝑚|𝑛) =
𝑞(𝑛|𝑚)𝑓(𝑚)

∫ 𝑞(𝑛|𝑚)𝑓(𝑚)
1

0

 

in a canonical example these players are same but differ in 𝑏: 

equation 4 

𝑈𝑅(𝑚, 𝑦) = −(𝑦 − 𝑚)2

𝑈𝑆 (𝑚, 𝑦) = −(𝑦 − (𝑚 +  𝑏))
2 

 

9 The Von Neumann-Morgenstern (VNM) utility function is a way to represent an individual's preferences over risky choices 

(lotteries) in expected utility theory. It assumes that people make decisions based on the expected utility of different 

outcomes rather than just the expected value of monetary payoffs. For a utility function u(x)u(x)u(x) to be a VNM utility 

function, the preferences it represents must satisfy four key axioms:  Completeness: The decision-maker can always compare 

two lotteries and state a preference (or indifference).Transitivity: If lottery 𝐴 is preferred to 𝐵, and 𝐵 is preferred to 𝐶, then 

𝐴 must be preferred to 𝐶. Independence: If a decision-maker prefers 𝐴 to 𝐵, then for any probability 𝑝, they should also 

prefer a lottery that gives 𝐴 with probability 𝑝 and some other outcome 𝐶 with probability 1 − 𝑝, over a similar lottery that 

gives 𝐵 with probability 𝑝 and 𝐶 with probability 1 − 𝑝. Continuity: If 𝐴 is preferred to 𝐵, and 𝐵 is preferred to 𝐶, then there 

exists some probability 𝑝 where the decision-maker is indifferent between 𝐵 and a lottery that gives 𝐵 with probability 𝑝 and 

𝐶 with probability 1 − 𝑝. If a person’s preferences satisfy these four axioms, then their preferences over lotteries can be 

represented by a VNM utility function 𝑢(𝑥), such that the expected utility of a lottery ℒ = (𝑥1, 𝑝1, 𝑥2, 𝑝2, … , 𝑥𝑛 , 𝑝𝑛) and 

𝐸𝑈(ℒ) = 𝑝1𝑢(𝑥1) + 𝑝2𝑢(𝑥2) + ⋯ + 𝑝𝑛𝑢(𝑥𝑛).Where :𝑥𝑖 are possible outcomes,𝑝𝑖 are probabilities of each outcome 

occurring,𝑢(𝑥) is the utility assigned to outcome 𝑥. VNM utility function allows for risk attitudes, if concave 𝑢′′(𝑥) < 0 the 

agent is risk averse, if 𝑢′′(𝑐) = 0 is risk neutral, and if 𝑢(𝑥) is convex 𝑢′′(𝑥) > 0 the agent is risk-seeking. The function is 

ordinal, meaning it only represents rankings of preferences—any positive affine transformation 𝑎(𝑢)𝑥 + 𝑏 where 𝑎 > 0 

represents the same preferences, see von Neumann, J., Morgenstern, O., & Rubinstein, A. (1944). 
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If Sender says his ’bliss point’ 𝑛 =  𝑚 +  𝑏, then Receiver would discount that and consider state y = 

n − b. But the Sender would try to fool him and say n = m... and so on precise messages indeed non-

credible. But if we allow for some slack, cheap talk becomes meaningful. Now, let : 

equation 5 

𝑦𝑖(𝑚;  𝑏) = arg max 𝑈𝑖(𝑦, 𝑚, 𝑏)  

Lemma 1   If 𝑦𝑆(𝑚, 𝑏) ≠ 𝑦𝑅(𝑚) ∀𝑚 → ∃𝜖 > 0 such that if 𝑢 and 𝑣 are actions induced in 

equilibrium,|𝑢 − 𝑣| > 𝜖. Further, the set of actions induced in equilibrium is finite. 

We can recall here that 
𝑈𝑆 = −(𝑦 − 𝑚)2

𝑈𝑅  = −(𝑦 − (𝑚 +  𝑏))
2   then𝑦𝑅 = 𝑚; 𝑦𝑆(𝑚, 𝑏) = 𝑚 + 𝑏 and Lemma 

holds. 

Proof 1  Let 𝑦𝑆(𝑚, 𝑏) > 𝑦𝑅(𝑚) ∀𝑚 (as in canonical example) in particular ∃𝜖 𝑦𝑆 − 𝑦𝑅 > 𝜖. Suppose 

type mu induce 𝑢 and type 𝑚𝑣 induces 𝑣, with  𝑣 >  𝑢.Then: 

inequality 1 

𝑈𝑆(𝑢; 𝑚𝑢;  𝑏)  ≥  𝑈𝑆(𝑢; 𝑚𝑣;  𝑏

𝑈𝑆(𝑣; 𝑚𝑣;  𝑏)  ≥  𝑈𝑆(𝑢; 𝑚𝑢;  𝑏) 
) (by optimality) 

and by continuity   

equation 6 

∃𝑚̅, 𝑈𝑆(𝑢, 𝑚̅, 𝑏) = 𝑈𝑆(𝑣, 𝑚̅, 𝑏) 

Since 𝑈𝑦𝑦
𝑆 (∙ ) < 0, 𝑈𝑦𝑚

𝑖 (∙) > 0 then: 

inequality 2 

𝑢 < 𝑦𝑆(𝑚̅, 𝑏) < 𝑣  

𝑢  is not induced by any 𝑚 > 𝑚̅ ,𝑣 is not induced by any 𝑚 < 𝑚̅  with that follows: 

inequality 3 

𝑢 < 𝑦𝑅(𝑚̅, 𝑏) < 𝑣  

inequality 4 

𝑢 < 𝑦𝑅(𝑚̅) < 𝑦𝑅(𝑚̅) + 𝜖 < 𝑦𝑆(𝑚̅, 𝑏) < 𝑣 ⇒ 𝑣 − 𝑢 > 𝜖  

We will continue with construction of equilibrium: Let 0 = 𝑎0 < 𝑎1 … < 𝑎𝑁 = 0 denote 

partition{0,1}. 

equation 7 

𝑦̅(𝑎𝑖 , 𝑎𝑖+1) = arg max ∫ 𝑈𝑅(𝑦, 𝑚)𝑓(𝑚)∀𝑛 ∈ [𝑎𝑖 , 𝑎𝑖+1]
𝑎𝑖+1

𝑎𝑖

 

Theorem 1  suppose 𝑏  is such that 𝑦𝑆(𝑚, 𝑏) ≠ 𝑦𝑅(𝑚), ∀𝑚.Then ∃𝑎 positive integer 𝑁(𝑏) such that 

for any 𝑁  1 ≤ 𝑁 ≤ 𝑁(𝑏) , ∃ and equilibrium with 𝑁  distinct messages i.e. 𝑛 = 𝑛𝑖 if 𝑛𝑖 ∈ (𝑎𝑖, 𝑎𝑖+1) 

and 𝑛𝑖 ≠ 𝑛𝑗 for 𝑖 ≠ 𝑗. Moreover, every equilibrium is essentially equivalent to one of this class.  

Proof 2 
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We model the sender's communication as a partitioning of the state space. The sender groups their 

types into 𝑁 intervals: 

inequality 5 

0 = 𝜃0 < 𝜃1𝑀 < ⋯ < 𝜃𝑁 = 1 

∀𝜃𝑖−1, 𝜃𝑖 𝑆 sends message 𝑚𝑖 and the receiver chooses action 𝑦𝑅(𝑚𝑖) based on expectation: 

equation 8 

𝑦𝑅(𝑚𝑖) = 𝔼[𝜃|𝜃 ∈ (𝜃𝑖−1, 𝜃𝑖)] 

Using the sender’s incentive compatibility, the optimality conditions yield a recurrence relation for 

partition endpoints: 

equation 9 

𝜃𝑖 − 𝜃𝑖−1 = 2𝑏 + (𝜃𝑖−1 − 𝜃𝑖−2) 

This implies a finite number of partitions bounded by: 

equation 10 

𝑁(𝑏) ≈
1

√𝑏
 

This follows from the fact that if 𝑁 were too large, the incentive constraints would be violated, as the 

sender would prefer to deviate. Any equilibrium is essentially equivalent to one of these partition 

equilibria because any deviation would collapse into a partitioned structure due to the sender’s optimal 

strategy.Given 𝑁(𝑏) ∀𝑁 ≤ 𝑁(𝑏), we can construct equilibrium with 𝑁  messages. Since all equilibria 

must satisfy the same incentive compatibility conditions, no fundamentally different equilibrium exists 

beyond these partitions. Thus, the theorem follows: 

inequality 6 

∃𝑁(𝑏) > 0; ∀ 1 ≤ 𝑁 ≤ 𝑁(𝑏); 𝑎𝑛 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑖𝑟𝑢𝑚  𝑤𝑖𝑡ℎ 𝑁 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝑒𝑥𝑖𝑠𝑡𝑠  

This will be represented graphically in the following graph. The plot contains four types of bias in 

range [0.025 − 2.2] with private information spanning from  [0,1].  

Figure 1 Equilibrium partitions and maximum 𝑁(𝑏) in Crawford-Sobel model  

 

Source: Author’s own calculations 
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• X-axis (𝜃): Represents the sender's private information, which lies in the interval [0,1] 
• Y-axis (𝑏): Represents different bias values (misalignment between sender and receiver). 

• Markers (∘): Represent equilibrium partition points, which are the cutoff points where the 

sender switches between messages. 

Theorem 2  Crawford,Sobel (1982)  For any cheap talk game, there exists an integer 𝑁 such that, for 

any 𝑝 ≤ 𝑁 , there is a partition equilibrium of the game with 𝑝 partitions. 

Proof 3 : 

We consider a cheap talk game where a sender (𝑆) with private information 𝜃 ∈ [0,1] communicates 

with a receiver (𝑅) who takes an action 𝑎. The sender and receiver have aligned but not identical 

preferences, modeled as follows: 

• Senders’ utility:𝑈𝑠(𝑎, 𝜃) 

• Receivers’ utility 𝑈𝑅(𝑎, 𝜃) 

• Bias: 𝑏 Captures the misalignment between their preferred actions. 

The sender can send messages to the receiver, but these messages are costless and non-binding (cheap 

talk). The receiver observes the message and selects an action. A partition equilibrium means the 

sender divides the state space [0,1into 𝑝 intervals, and within each interval, the sender sends the same 

message. That is, there exist points 

inequality 7 

0 = 𝜃0 < 𝜃1 … … < 𝜃𝑝 = 1 

∀𝜃 ∈ (𝜃𝑖−1, 𝜃𝑖) the sender sends the same message, and the receiver responds with an optimal action 

𝑎𝑖.The sender’s strategy is thus a coarse communication strategy, and the receiver infers the sender's 

type up to the corresponding partition range. The sender chooses a partition strategy based on 

incentives. The partition equilibrium satisfies: 

✓ Indifference at Boundaries: The sender must be indifferent between revealing truthfully 

and deviating within each partition. This yields a difference equation that determines the 

equilibrium partition structure. 

✓ Monotonicity and Refinement: As the misalignment bias 𝒃 increases, the number of 

partitions decreases, meaning the equilibrium gets coarser.Using these conditions, we derive 

that the number of partitions satisfies: 

equation 11 

𝑁 ∼
1

𝑏
 

where 𝑁 is the maximum number of partitions in equilibrium. There exists a largest integer 𝑁 beyond 

which further partitioning is not incentive-compatible for the sender.  For any 𝑝 ≤ 𝑁, a 

corresponding equilibrium exists, where the sender partitions the state space into 𝑝 regions. 

Thus, the theorem follows: 

There exists an integer 𝑵 such that for any 𝒑 ≤ 𝑵 there is a partition equilibrium with 𝒑 

partitions  □. 

We will now construct an example of a partition equilibrium for the quadratic case: 

equation 12 

𝑈𝑆(𝑦, 𝑚) = −(𝑦 − 𝑚)2

𝑈𝑅(𝑦, 𝑚) = −(𝑦 − 𝑚 − 𝑎)2 
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𝑦  is an action and 𝑚 ∈ (0,1) is the state of the world. Signal 𝑛 ∈ [0,1]. Receiver initially has a prior 

given by cdf 𝜇. Updates it based on signal to 𝑟(∙ |𝑛).We will construct partition equilibrium for 𝑝 = 3. 

Remember that in equilibrium they (recipients) know ‘the strategy of the sender. So, they know upon 

receiving 𝑛1 that 𝑚 is uniformly distributed between 𝑚𝑖−1 and 𝑚𝑖. 

equation 13 

𝑟∗(𝑚|𝑛𝑖) = 𝑈[𝑚𝑖−1, 𝑚𝑖] 

Objective function is therefore: 

equation 14 

∫ −(𝑦 − 𝑚 − 𝑎)2 (
1

𝑚𝑖 − 𝑚𝑖−1
) 𝑑𝑚

𝑚𝑖

𝑚𝑖−1

    

Taking derivatives with respect to 𝑦 gives: 

equation 15 

∫ −2(𝑦 − 𝑚 − 𝑎) (
1

𝑚𝑖 − 𝑚𝑖−1
) 𝑑𝑚 = 0 ⇒ [−2 ((𝑦 − 𝑎)𝑚 −

𝑚2

2
)]

𝑚𝑖−1

𝑚𝑖𝑚𝑖

𝑚𝑖−1

= 0

⇒ (𝑦 − 𝑎)(𝑚𝑖 − 𝑚𝑖−1) − (
𝑚𝑖

2 − 𝑚𝑖−1
2

2
) = 0 ⇒ (𝑦 − 𝑎)(𝑚𝑖 − 𝑚𝑖−1)

=
(𝑚𝑖 − 𝑚𝑖−1) − (𝑚𝑖 + 𝑚𝑖−1)

2
⇒ 𝑦∗(𝑛𝑖) =

𝑚𝑖 + 𝑚𝑖−1

2
+ 𝑎 

And for the sender they prefer to send message 𝑛𝑖 to any other message for any 𝑚 in [𝑚𝑖−1, 𝑚𝑖] : 

inequality 8 

𝑈𝑆(𝑦𝑖, 𝑚) ≥ 𝑈𝑆(𝑦𝑗, 𝑚) ∀ 𝑚 ∈ [𝑚𝑖−1, 𝑚𝑖] 

The boundary point at 𝑚𝑖 is where sender is indifferent between sending signals 𝑛𝑖 and 𝑛𝑖+1.This 

means that for 𝑚 > 𝑚𝑖 then 𝑛𝑖+1   will be strictly preferred. For 𝑚 < 𝑚𝑖, 𝑛𝑖 is strictly preferred. So, 

the conditions become: 

𝑈𝑆(𝑦∗(𝑛𝑖), 𝑚𝑖) = 𝑈𝑆(𝑦∗(𝑛𝑖+1, 𝑚𝑖) 

So, if we plug in 𝑈𝑆(𝑦, 𝑚) = −(𝑦 − 𝑚)2 and 𝑦∗(𝑛𝑖) =
𝑚𝑖+𝑚𝑖−1

2
+ 𝑎 will give: 

equation 16 

(
𝑚𝑖−1 + 𝑚𝑖

2
+ 𝑎 − 𝑚𝑖)

2

= (
𝑚𝑖+1 + 𝑚𝑖

2
+ 𝑎 − 𝑚𝑖)

2

 

as
𝑚𝑖−1+𝑚𝑖

2
<

𝑚𝑖+1+𝑚𝑖

2
  this requires LHS to be negative and RHS to be positive: 

equation 17 

𝑚𝑖−1 + 𝑚𝑖

2
+ 𝑎 − 𝑚𝑖 = 𝑚𝑖 − 𝑎 −

𝑚𝑖+1 + 𝑚𝑖

2
⇒ 𝑚𝑖+1 = 2𝑚𝑖 − 𝑚𝑖−1 − 4𝑎  

The solution for difference equations is : 

equation 18 

𝑚𝑖 = 𝜆𝑖
2 + 𝜇𝑖 + 𝑣 
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Plugging into : 

equation 19 

𝑚3 = 2𝑚2 − 𝑚1 − 4𝑎 ⇒ 9𝜆 + 3𝜇 + 𝑣 = 2(4𝜆 + 2𝜇 + 𝑣) − (𝜆 + 𝜇 − 𝑣) − 4𝑎 

So 𝜆 = −2.We also know that 𝑚0 = 0.Which implies that : 

equation 20 

𝑚2 = 2𝑚1 − 4𝑎 ⇒ 4𝜆 + 2𝜇 + 𝑣 = 2𝜆 + 2𝜇 + 2𝑣 − 4𝑎 ⇒ −8𝑎 + 𝑣 = −4𝑎 + 2𝑣 − 4𝑎 ⇒ 𝑣 = 0 

And we know that 𝑚𝑝 = 1, which implies that 𝑚𝑝 = 1.And: 

equation 21 

𝑚𝑖 = 𝜆𝑖
2 + 𝜇𝑖 + 𝑣 ⇒ 1 = −2𝑎𝑝2 + 𝜇𝑝 ⇒ 𝜇 =

1

𝑝
+ 2𝑎𝑝  

And if 𝑝 = 3: 

equation 22 

𝑚0 = 0

𝑚1 =
1

3
+ 4𝑎

𝑚2 =
2

3
+ 4𝑎 

𝑚3 = 0

 

So how many partitions can we support? By rewriting 𝑚𝑖+1 = 2𝑚𝑖 − 𝑚𝑖−1 − 4𝑎: 

equation 23 

𝑚𝑖+1 − 𝑚𝑖 = 𝑚𝑖 − 𝑚𝑖=1 − 4𝑎 

We get: 

equation 24 

𝑚2 − 𝑚1 = 𝑚1 − 𝑚0 − 4𝑎
𝑚3 − 𝑚2 = 𝑚1 − 𝑚0 − 8𝑎

∙
∙
∙

𝑚𝑝 − 𝑚𝑝−1 = 𝑚1 − 𝑚0 − 4𝑎

 

So, for the sequence to be increasing we need: 

inequality 9 

𝑚1 − 𝑚0 > (𝑝 − 1)4𝑎  

Or, plugging back in: 

inequality 10 

1

𝑝
+ 2𝑎(1 − 𝑝) > 0 
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As lim
𝑝→∞

= −∞  this defines the maximal possible 𝑝 that can be supported. And it is decreasing in 

𝑎,we Notice that the actual nature of the signal is meaningless. Formally equilibrium consists of set of 

signaling rules for𝑆denoted 𝑞(𝑛|𝑚) and an action rule for 𝑅 denoted 𝑦(𝑛): 

equation 25 

∀𝑚 ∈ [0,1], ∫ 𝑞(𝑛|𝑚)𝑑𝑛 = 1
𝑁

 

Borel set10 𝑁 is the set of feasible signals and if 𝑛∗ is the support of 𝑞(∙ |𝑚) then 𝑛∗ solves: 

equation 26 

max
𝑛∈𝑁

𝑈𝑆(𝑦(𝑛), 𝑚𝑏) 

∀𝑛, 𝑦(𝑛) solves: 

equation 27 

max
𝑦

∫ 𝑈𝑅(𝑦, 𝑚)𝑝(𝑚|𝑛)𝑑𝑚
1

0

 

Where 𝑝(𝑚|𝑛) =

𝑞(𝑛|𝑚)

𝑓(𝑚)

∫ 𝑞(𝑛|𝑡)𝑓(𝑡)𝑑𝑡
1

0

.  Now we will present graphic partition equilibrium for 𝑝 = 3.  

Figure 2 Partition equilibrium for 𝑝 = 3, 𝑎 = 0.05 

 

Source: Author’s own calculations 

This code computes and plots the partition equilibrium for 𝑝 = 3 and 𝑎 = 0.05. It follows the 

recursive equation to determine the boundary points mim_imi and the equilibrium actions 𝑦∗(𝑛𝑖). 

Now for example: 

 
10 A Borel set is an element of a Borel sigma-algebra. Roughly speaking, Borel sets are the sets that can be 
constructed from open or closed sets by repeatedly taking countable unions and intersections. Formally, the 
class 𝐵 of Borel sets in Euclidean ℝ𝑛 is the smallest collection of sets that includes the open and closed sets 
such that if 𝐸, 𝐸1, 𝐸2 … ..are in 𝐵, then so are ⋃ 𝐸𝑖 , ⋂ 𝐸𝑖 ,∧ ℝ𝑛\𝐸∞

𝑖=1
∞
𝑖=1 , where 𝐹\𝐸  is the set difference see, 

Croft et al.(1991).  
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equation 28 

𝑈𝑆(𝑦, 𝑚, 𝑏) = −(𝑦 − (𝑚 + 𝑏))
2

𝑈𝑅(𝑦, 𝑚) = −(𝑦 − 𝑚)2
 

Optimal choice is given as: 

equation 29 

𝑦𝑠(𝑚, 𝑏) = 𝑚 + 𝑏, 𝑦𝑅(𝑚) = 𝑚 

Best response is given as 𝑛𝑖 ∈ (𝑎𝑖, 𝑎𝑖+1): 

equation 30 

𝑦̅(𝑎𝑖 , 𝑎𝑖+1) =
𝑎𝑖 + 𝑎𝑖+1

2
 

In the equilibrium, the partition is constructed so that the Sender is indifferent between 𝑦̅(𝑎𝑖 , 𝑎𝑖+1) 

and 𝑦̅(𝑎𝑖−1, 𝑎𝑖)  at 𝑎𝑖 : 

equation 31 

(
𝑎𝑖 + 𝑎𝑖+1

2
− (𝑚 + 𝑏))

2

= (
𝑎𝑖−1 + 𝑎𝑖

2
− (𝑚 + 𝑏))

2

 

This only holds if they differ in sign: 

equation 32 

(
𝑎𝑖 + 𝑎𝑖+1

2
− (𝑎𝑖 + 𝑏))

2

= (
𝑎𝑖−1 + 𝑎𝑖

2
− (𝑎𝑖 + 𝑏))

2

 

That is: 

equation 33 

𝑎𝑖+1  −  𝑎𝑖  =  𝑎𝑖  −  𝑎𝑖−1  +  4𝑏 

 

 That is, each step size must increase by 4𝑏. As the partition depends on b, it also determines the 

maximal partition size: 

equation 34 

𝑁(𝑏) = [−
1

2
+

1

2
(1 +

2

𝑏
)

1
2

] 

To at least have some information in (one) equilibrium, 𝑏 <
1

4
 . As 𝑏 → 0, scope for more and more 

information transmission if preferences are closer, parties have more meaningful communication, 

even in cheap talk. 
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Figure 3 partition equilibrium with  bias 𝑏 = 0.05 

 

Source: Authors’ own calculations  

(array([0. , 0.7, 1.6]), [np.float64(0.35), np.float64(1.15)], 2) 

 

Figure 4 partition equilibrium with  bias 𝑏 = 0.005 

 

Source: Authors’ own calculations  

3.Green,Stokey (2003) framework :A two-person game of information transmission 

Here the two individuals will be called the agent and the principal. Their joint decision problem is to 

choose an action, 𝑎𝑘𝑘, from the set 𝐴 =  {𝑎1, . . . , 𝑎𝐾}. The von Neumann–Morgenstern utility levels of 

the two participants depend upon the chosen action and the realization of the state of nature, 𝜃𝑚, from 

the set Θ =  {𝜃1, . . . , 𝜃𝑀}. These utilities can be represented by 𝐾 × 𝑀 matrices 𝑈 =  [𝑢𝑘𝑚] and 𝑈′ =
 𝑢𝑘𝑚

′  for the principal and the agent, respectively, where the elements are the utilities realized if 𝑎𝑘 is 

chosen and 𝜃𝑚 occurs. The agent receives an observation which is statistically related to the true state 

in Θ, and transmits the observation to the principal. He might not do so truthfully. There are 𝑁 possible 
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observations, 𝑦𝑛, in the set 𝑌 =  {𝑦1, . . . , 𝑦𝑁}. Allowing randomizations, his strategies can be 

represented by an 𝑁 ×  𝑁 Markov matrix 𝑅 =  [𝑟𝑛𝑛′  ], where 𝑟𝑛𝑛′ is the probability that 𝑦𝑛′ is 

transmitted given that the actual observation is 𝑦𝑛. Now, the principal chooses action 𝑎𝑘 ∈ 𝑎  given that 

the observation 𝑦𝑛′ has been transmitted to him. Again, allowing randomization, his strategy is an 

𝑁 ×  𝐾 Markov matrix 𝑍 =  [𝑧𝑛′𝑘],where 𝑧𝑛′𝑘 is the probability that 𝑎𝑘is chosen given that 𝑦𝑛′ was 

transmitted. The statistical relationship between states and observations is called the information 

structure. It is represented by an 𝑀 ×  𝑁 Markov matrix Λ = [𝜆𝑚𝑛], where 𝜆𝑚𝑛 is the probability that 

𝑦𝑛 is observed if the true state is 𝜃𝑚. The interpretation of 𝑦𝑛 depends on the prior beliefs of the 

individual in question. We allow different beliefs, 𝜋 =  (𝜋1, . . . , 𝜋𝑀)  ∈ ∆𝑀 and 𝜋′ =  (𝜋1
′ , . . . , 𝜋𝑀

′ ) ∈
∆𝑀for the principal and agent, respectively, where ∆𝑀 is the set of all M-dimensional probability 

vectors. The principal’s posterior probabilities, given an observation, can be derived from 𝜋 and Λ by 

Bayes rule.These posteriors are denoted𝑝1, … , 𝑝𝑁 where 𝑝𝑛
𝑃 ∈ ∆𝑀 is his posterior if 𝑦𝑛 is observed, for 

𝑛 =  1, . . . , 𝑁. The probability of observing each 𝑦𝑛 is also implied by 𝜋 and Λ. Thus, we have a 

distribution of the posterior which is simply the measure over ∆𝑀 assigning the corresponding weight 

to each of the 𝑝𝑛
𝑃 . A similar argument applies for the agent. If the strategy choices are 𝑍 and 𝑅, the 

expected utilities for the principal and agent, respectively are11: 

equation 35 

𝑡𝑟 𝑈ΠΛ𝑅𝑍
𝑡𝑟 𝑈′Π′Λ𝑅𝑍 

 

An information structure (𝑌, Λ) is said to be more informative than (𝑌′, Λ′) if, for any 𝑈 and any 𝜋, 

the decision problem under the former has at least as high a value as that under the latter. Using the 

notation developed above, this can be restated as 

inequality 11 

max
𝑍

𝑡𝑟𝑈ΠΛ𝑍 ≧ max
𝑍′

𝑡𝑟𝑈ΠΛ′𝑍′  

Λ is more informative than Λ′ if and only if there exists a Markov matrix 𝐵 such that Λ′ = Λ𝐵. 

Figure 5 Effect of cheap talk on expected utilities  

 

Source: Authors’ own calculations  

 
11 Trace Operator (𝑡𝑟(⋅)): The trace of a matrix is the sum of its diagonal elements. 
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The plot illustrates how increasing cheap talk distortion affects the expected utilities of both the 

principal and the agent. As the distortion increases, the principal's expected utility generally decreases 

due to misinformation, while the agent's utility fluctuates depending on the strategic advantage gained 

from misrepresentation. 

 

Figure 6 BR and BNE  

 

Source: Authors’ own calculations  

The blue curve represents the best response for the principal and will be a non-linear curve. The green 

curve represents the best response for the agent and will also be a distinct non-linear curve. The red dot 

will show the Bayesian Nash Equilibrium (BNE), which is where the two curves intersect, ensuring that 

both the principal's and the agent's strategies are mutually best responses. Mathematical representation 

of previous starts with expected utilities: 

✓ 𝑈 ∈ ℝ𝐾×𝑀: the utility matrix for principal 

✓ 𝑈′ ∈ ℝ𝐾×𝑀: the utility matrix for agent 

✓ Π ∈ ℝ𝑀×1: the principal’s belief over states the world  

✓ Π′ ∈ ℝ𝑀×1: the agents’ belief over states the world 

✓ Λ ∈ ℝ𝑀×𝑁: the information structure (mapping states to observation). 

✓ R ∈ ℝ𝑁×𝑁: The agent's observation strategy. 

✓ Z ∈ ℝ𝑁×𝐾: The principal's action strategy. 

The principal's expected utility can be written as: 

equation 36 

𝐸𝑈𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 = 𝔼[𝑈] = Π𝑇 ∙ (Λ ∙ 𝑅 ∙ 𝑍) 

✓ Π𝑇 is the principal's belief distribution over states of the world, transposed to a row vector. 

✓ Λ ∙ 𝑅 ∙ 𝑍 is the transformation of the information structure (states to observations) combined 

with the agent's actions and the principal's strategies. 

Since the utility matrix 𝑈 is 𝐾 × 𝑀 and Π𝑇 ∙ (Λ ∙ 𝑅 ∙ 𝑍) will be 1 × 𝐾 , the expected utility is 

computed by summing element wise multiplication: 
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equation 37 

𝐸𝑈𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 = ∑ 𝑈(𝑘) ∙ Π𝑇 ∙ (Λ ∙ 𝑅 ∙ 𝑍)

𝑘

 

On the other hand, the agent’s expected utility is: 

equation 38 

𝐸𝑈𝑎𝑔𝑒𝑛𝑡 = 𝔼[𝑈′] = Π′𝑇 ∙ (Λ ∙ 𝑅 ∙ 𝑍) 

✓ Π′𝑇 is the agent's belief distribution. 

✓ Π′𝑇 ∙ (Λ ∙ 𝑅 ∙ 𝑍) is the transformation for the agent’s observation strategy and the principal's 

actions. 

The best response functions for both the principal and the agent can be derived from their 

expected utilities. These functions determine the optimal action for one agent, given the action 

taken by the other agent. 

Principal's Best Response Function: 

✓ We define the best response of the principal 𝐵𝑅𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙(𝑎𝑎𝑔𝑒𝑛𝑡) 

equation 39 

𝐵𝑅𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙(𝑎𝑎𝑔𝑒𝑛𝑡) = 0.6 ∙ 𝑎𝑎𝑔𝑒𝑛𝑡
2 + 0.4 

✓ We define the best response of the principal 𝐵𝑅𝑎𝑔𝑒𝑛𝑡 (𝑎𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙) 

 

𝐵𝑅𝑎𝑔𝑒𝑛𝑡 (𝑎𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙) = 0.4 ∙ 𝑎𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙
2 + 0.5 

 

Figure 7 BNE,Cournot,Stackelberg equilibria  

 

Source: Authors’ own calculations 
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The BNE is found by solving the system of best response functions for both agents simultaneously. 

This is done by setting the principal's and agent's best response functions equal to each other. 

BNE equilibrium: 

equation 40 

𝐵𝑅𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙(𝑎𝑎𝑔𝑒𝑛𝑡
∗ ) = 𝑎𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙

∗

𝐵𝑅𝑎𝑔𝑒𝑛𝑡 (𝑎𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙
∗ ) = 𝑎𝑎𝑔𝑒𝑛𝑡

∗
 

Using the best response functions: 

equation 41 

0.6(𝑎𝑎𝑔𝑒𝑛𝑡
∗ )

2
+ 0.4 = 𝑎𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙

∗

0.6(𝑎𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙
∗ )

2
+ 0.5 = 𝑎𝑎𝑔𝑒𝑛𝑡

∗
 

Cournot Equilibrium 

The Cournot equilibrium is characterized by the intersection of the best response functions for the 

principal and the agent, where each agent's action is optimal given the other’s action. It can be found 

by solving the system of equations that sets the best responses equal to each other. To find the Cournot 

equilibrium, solve the system of best responses: 

equation 42 

𝐵𝑅𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙(𝑎𝑎𝑔𝑒𝑛𝑡) = 𝑎𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙

𝐵𝑅𝑎𝑔𝑒𝑛𝑡 (𝑎𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙) = 𝑎𝑎𝑔𝑒𝑛𝑡

 

Or solve: 

0.6𝑎𝑎𝑔𝑒𝑛𝑡
2 + 0.4 = 𝑎𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙

∗

0.4𝑎𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙
2 + 0.5 = 𝑎𝑎𝑔𝑒𝑛𝑡

∗  

Stackelberg Equilibrium 

In the Stackelberg equilibrium, the principal moves first and the agent responds to the principal’s 

action. The principal’s best response is determined by the agent’s reaction to the principal’s actions. 

To find the Stackelberg equilibrium, solve the system where the principal chooses 𝑎𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙   first, and 

the agent reacts to this choice: 

equation 43 

𝑎𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 = 𝐵𝑅𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙(𝑎𝑎𝑔𝑒𝑛𝑡
∗ )

𝑎𝑎𝑔𝑒𝑛𝑡
∗ = 𝐵𝑅𝑎𝑔𝑒𝑛𝑡(𝑎𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙

∗ )
 

Or solve: 

𝑎𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙
∗ = 0.6(𝑎𝑎𝑔𝑒𝑛𝑡

∗ )
2

+ 0.4

𝑎𝑎𝑔𝑒𝑛𝑡
∗ = 0.4(𝑎𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙

∗ )
2

+ 0.5
 

See Dixon,H(2001) on these types of duopolies. The BNE, Cournot, and Stackelberg equilibria are 

derived from the best response functions, and their solutions represent the optimal actions for the 

principal and agent in the game. The BNE and Cournot equilibria are solved simultaneously, while in 

the Stackelberg model, the principal chooses first, and the agent responds accordingly. 
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4.Kripke semantics,classical and intuitionistic Kripke model, and Zermelo-Fraenkel set theory 

Kripke semantics is a formal system used to model modal logic—logics that involve modalities like 

necessity (□) and possibility (◊). These modalities express statements about what is necessarily true or 

possibly true, often in the context of knowledge, belief, or time. Kripke semantics provides a structure 

to interpret these modalities using possible worlds. The concept of Kripke model is due to Kripke 

(1959), Kripke(1962),Kripke (1963),Kripke (1965).  

Definition 1  A classical Kripke model (due to Ilik et al.(2010) is given by a quintuple (𝐾, ≤, 𝐷, ⊩𝑠, ⊩⊥ ), 

𝐾 inhabited, such that (𝐾, ≤)is a poset12of possible worlds,𝐷 is the domain function assigning sets to 

the elements of K such that: 

Well-formed formula 1 

∀𝑤, 𝑤′ ∈ 𝐾, (𝑤 ≤ 𝑤′ ⇒ 𝐷(𝑤) ⊆ 𝐷(𝑤′) 

i.e., 𝐷 is monotone. Let the language be extended with constant symbols for each element of 𝒟 ∶= ∪
{𝐷(𝑤) ∶  𝑤 ∈  𝐾}.And,(−): (−) ⊩𝑠 is a binary relation of “strong refutation” between worlds and 

atomic sentences in the extended language such that: 

Well-formed formula 2 

𝑤: 𝑋(𝑑1, … , 𝑑𝑛) ⊩𝑠⇒ 𝑑𝑖 ∈ 𝐷 (𝑤), ∀𝑖 ∈ {1, … , 𝑛}

𝑤: 𝑋(𝑑1, … , 𝑑𝑛) ⊩𝑠, 𝑤 ≤ 𝑤′: 𝑋(𝑑1, . . , 𝑑𝑛) ⊩𝑠
 

The relation  ⊩ is called the satisfaction relation, evaluation, or forcing relation13 Given a 

model 𝑀 (usually a transitive model of ZFC-Zermelo–Fraenkel set theory,see Zermelo (1930)), 

any poset (𝑃, <)in it is a notion of forcing and its elements forcing conditions. 

Definition 2  For ℙ ∈ 𝑉 a poset and 𝑝 ∈ ℙ,we say 𝑝 forces 𝜑 and write 𝑝 ⊩ 𝜑 iffor every generic over 

𝑉  filter 𝑋 containing, 𝑝, 𝑉[𝑋] = 𝜑.  

Definition 3 The relation (−): (−) ⊩𝑠 of strong refutation is extended to the relation between worlds 𝑤 

and composite sentences 𝐴 in the extended language with constants in 𝐷(𝑤), inductively, together with 

the two new relations. A sentence 𝐴 is forced in the world 𝑤 (notation 𝑤 ∶  𝐴 ⊩) if any world 𝑤′ ≥
 𝑤,which strongly refutes 𝐴, is exploding. A sentence 𝐴 is forced in the world 𝑤 (notation 𝑤 ∶  𝐴 ⊩) if 

any world 𝑤′ ≥  𝑤,which forces 𝐴, is exploding 

Definition 4   A modal  logic  𝛬 is a set of modal formulas that contains all propositional tautologies 

and has the following closure conditions: 

Well-formed formula 3 

(modus ponens)14  𝜙 ∈ Λ ; ∧ (𝜙 → 𝜓) ∈ Λ, → 𝜓 ∈ Λ 

(uniform substitution) if 𝜙 ∈ Λ then any complete substitution of propositional variables of 𝜙 is also a 

formula in Λ.If 𝜙 ∈ Λ we may say 𝜙 is a theorem of Λ ,or equivalently, ⊢Λ 𝜙 .Otherwise we have 

⊬Λ 𝜙. 

  

 
12 A partially ordered set (normally, poset) is a set, 𝐿, together with a relation, ≤, that obeys, ∀ 𝑎, 𝑏, 𝑐 ∈  𝐿: 
(reflexivity) 𝑎 ≤  𝑎; (anti-symmetry) if 𝑎 ≤  𝑏 and 𝑏 ≤  𝑎 then 𝑎 =  𝑏; and (transitivity) if 𝑎 ≤  𝑏 and 𝑏 ≤  𝑐 
then 𝑎 ≤  𝑐. The relation ≤ is called a partial order on 𝐿. See, Dickson (2007). 
13 In mathematics or set theory forcing is a technique for proving consistency and independence results. 
14 A valid form of argument in which the antecedent of a conditional proposition is affirmed, thereby entailing 
the affirmation of the consequent 

https://en.wikipedia.org/wiki/Forcing_(mathematics)


УДК: 005.57 316.776 

17 
 

Well-formed formula 4 

𝑤: 𝐴 ∧ 𝐵 ⊩s  𝑖𝑓 𝑤: 𝐴 ⊩ ⋁ 𝑤: 𝐵 ⊩  

𝑤: 𝐴 ∨ 𝐵 ⊩s  𝑖𝑓 𝑤: 𝐴 ⊩ ⋀ 𝑤: 𝐵 ⊩  

𝑤: 𝐴 → 𝐵 ⊩s  𝑖𝑓 𝑤: ⊩ 𝐴 ⋀ 𝑤: 𝐵 ⊩

𝑤: ∀𝑥𝐴(𝑥)𝑖𝑓 𝑤: 𝐴(𝑑) ⊩ 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑑 ∈ 𝐷(𝑤)

𝑤: ∃𝑥. 𝐴(𝑥) ⊩𝑠, ∀ 𝑤′ ≥ 𝑤⋀𝑑 ∈ 𝐷(𝑤′), 𝑤′: 𝐴(𝑑) ⊩; 
⊥ is always srongly refuted

⟙ is never strongly refuted

 

Lemma 2 Let  ℳ0, 𝛤 ⊩ 𝐵 ⇔ 𝐵 ∈ 𝛤 

This is called Main Semantic Lemma.  Or the Main Semantic Lemma states: 

1. If a formula 𝜙 is provable in the modal logic i.e. ⊢ 𝜙 , then 𝜙 is true in all models i.e. 𝑀 ⊨ 𝜙. 

2. If 𝜙 is true in all models, then 𝜙 is provable i.e. 𝑀 ⊨ 𝜙 implies ⊢ 𝜙. 

Lemma 3 This holds in classical Kripke semantics   

1. 𝑤: ⊩ 𝐴 ⇔ ¬𝐴 ⊩𝑠 

2. 𝑤: 𝐴 ⊩⇔ 𝑤: ⊩ ¬𝐴 

3. 𝑤: ¬𝐴 ⊩⇔ 𝑤: ⊩ 𝐴 

4. 𝑤: ¬𝐴 ⊩⇔ 𝑤: ¬𝐴 ⊩𝑠 

5. 𝑤: ⊩ 𝐴 ⇔ 𝑤: ⊩ ¬¬𝐴 

6. 𝑤: 𝐴 ⊩⇔ 𝑤: ⊩ ¬¬𝐴 ⊩ 

7. 𝑤: ¬𝐴 ⊩𝑠⇔ 𝑤: ⊩ ¬¬𝐴 ⊩⇔ 𝑤: ⊩ 𝐴 

Proof: under number 1 obvious because  𝑤: ⊥⊩; under second it is obvious because: 𝑤: ⊩ 𝐴 → 𝐵 ⇔
∀𝑤′ ≥ 𝑤, 𝑤′: ⊩ 𝐴 ⇒ 𝑤′: ⊩ 𝐵, 𝑤: ⊩ 𝐴 ∧ 𝐵 ⇔ 𝑤: ⊩ 𝐴 ∧ 𝑤: ⊩ 𝐵, 𝑤: ⊩ 𝐴 ∨ 𝐵 ⇐ 𝑤: ⊩ 𝐴 ∨ 𝑤: ⊩ 𝐴(𝑑), 

𝑤: ⊩ 𝐴 ∨ 𝐵 ⇐ 𝑤: ⊩ 𝐴 ∨ 𝑤: ⊩ 𝐵, 𝑤: ⊩ ∃𝑥𝐴(𝑥) ⇐ ∀𝑑 ∈ 𝐷(𝑤), 𝑤: ⊩ 𝐴(𝑑)∎, 

The Zermelo-Fraenkel axioms are the basis for Zermelo-Fraenkel set theory.  

1.Axiom of Extensionality: If 𝑋 and 𝑌 have the same elements, then 𝑋 = 𝑌. 

Well-formed formula 5 

∀𝑢(𝑢 ∈ 𝑋 ≡ 𝑢 ∈ 𝑌) ⇒ 𝑋 = 𝑌 

2. Axiom of the Unordered Pair (axiom of pairing): For any 𝑎 and 𝑏 there exists a set {𝑎, 𝑏} that contains 

exactly 𝑎 and 𝑏.  

Well-formed formula 6 

∀𝑎∀𝑏∃𝑐∀𝑥 (𝑥 ∈ 𝑐 ≡ (𝑥 = 𝑎 ⋁ 𝑥 = 𝑏)) 

3.  Axiom of subsets(Axiom of Separation or Axiom of Comprehension): If 𝜑 is a property (with 

parameter 𝑝), then for any 𝑋 and 𝑝 there exists a set 𝑌 = {𝑢 ∈ 𝑋: 𝜑(𝑢, 𝑝)} that contains all those  that 

have the property 𝜑 .  

4. Axiom of the sum of set (Axiom of Union): For any 𝑋 there exists a set 𝑌 = ⋃ 𝑋, the union of all 

elements of 𝑋.  

Well-formed formula 7 

∀𝑋∃𝑇∀𝑢(𝑢 ∈ 𝑌 ≡ ∃𝑧(𝑧 ∈ 𝑋 ⋀ 𝑢 ∈ 𝑧))  

https://mathworld.wolfram.com/AxiomofSubsets.html
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5. Axiom of the power set: For any 𝑋 there exists a set 𝑌 = 𝑃(𝑋), the set of all subsets of 𝑋. 

Well-formed formula 8 

∀𝑋∃𝑌∀𝑢(𝑢 ∈ 𝑌 ≡ 𝑢 ⊆ 𝑋) 

6. Axiom of Infinity: There exists an infinite set. 

Well-formed formula 9 

∃𝑆 [∅ ∈ 𝑆 ⋀(∀𝑥 ∈ 𝑆) [𝑥 ⋃{𝑥} ∈ 𝑆 ]] 

7. Axiom of Replacement: If 𝐹 is a function, then for any 𝑋 there exists a set 𝑌 = 𝐹[𝑋] = {𝐹(𝑥): 𝑥 𝑖𝑛 𝑋}. 

Well-formed formula 10 

∀𝑥∀𝑦∀𝑧 [𝜑(𝑥, 𝑦, 𝑝) ⋀ 𝜑(𝑥, 𝑧, 𝑝) ⇒ 𝑦 = 𝑧] ⇒ ∀𝑋∃𝑌∀𝑦[𝑦 ∈ 𝑌 ≡ (∃𝑥 ∈ 𝑋)𝜑(𝑥, 𝑦, 𝑝)] 

8. Axiom of Foundation: Every nonempty set has an ∈ in -minimal element. 

Well-formed formula 11 

∀𝑆 [𝑆 ≠ ∅ ⇒ (∃𝑥 ∈ 𝑆 )𝑆 ⋂ 𝑥 = ∅  ] 

9. Axiom of Choice: Every family of nonempty sets has a choice function. 

Well-formed formula 12 

∀𝑥 ∈ 𝑎∃𝐴(𝑥, 𝑦) ⇒ ∃𝑦∀𝑥 ∈ 𝑎𝐴(𝑥, 𝑦(𝑥)) 

Figure 8  Zermelo -Fraenkel Axioms of set theory  

 

Source: Author’s own calculation  

Each node is an axiom. Each edge shows a rough logical dependency or usefulness in building further 

axioms. Mathematical formulas (WFFs) are displayed under each axiom name. 
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Figure 9 

 

Source: Author’s own calculation 

 

Theorem 3  Kripke’s S5 system: 𝑁, 𝛺, {𝑇𝑖} ∈ 𝑁 is a knowledge space. And 𝐴 ∈ 2𝛺  is an event. Where, 

𝑁 is a set of players, 𝐴 is a finite set of actions,𝛺 is the space of the states of the world. We will assume 

here that Ω is finite.𝑇𝑖 is the space of possible types of player 𝑖.And, 𝑡𝑖: 𝛺 → 𝑇𝑖 is player i’s private 

signal or type. Information partitions is :𝑃𝑖(𝜔) = {𝜔′: 𝑡𝑖(𝜔′) = 𝑡𝑖(𝜔)}, that is 𝑃𝑖(𝜔) is the set of states 

of the world for which player 𝑖  has the same type as he/she does in 𝜔. And𝜔𝑖 ∈ 𝑃𝑖(𝜔) ,the set 
{𝑃𝑖(𝜔)}𝜔∈𝛺is easily seen to be a partition 𝛺, and s called i’s information partition. A knowledge space 

can thus be given as:(𝑁, 𝛺, {𝑃𝑖} ∈ 𝑁),see Tamuz (2024). 

1. 𝐾𝑖𝛺 = 𝛺 A player knows that some state of the world has occurred. And given  𝐾𝑖𝐴  a set of 

states of world in which 𝑖  knows 𝐴 and 𝐴 ∈ 2𝛺:  

equation 44 

𝐾𝑖𝐴 = {𝜔: 𝑃(𝜔) ⊆ 𝐴} ≡ 𝐾𝑖𝐴 = ⋃{𝜔: 𝑃(𝜔) ⊆ 𝐴} 

2. 𝐾𝑖𝐴 ∩ 𝐾𝑖𝐵 = 𝐾𝑖(𝐴 ∩ 𝐵). A player knows 𝐴 and a player knows 𝐵 if and only if he knows 𝐴 

and 𝐵.  

3. Axiom of knowledge:𝐾𝑖𝐴 ⊆ 𝐴 a player knows 𝐴 then 𝐴 has indeed occurred.  

4. Axiom of positive introspection: 𝐾𝑖𝐾𝑖𝐴 = 𝐾𝑖𝐴.If a player knows 𝐴 then he/she knows that 

he/she knows 𝐴. 

5. Axiom of negative introspection: (𝐾𝑖𝐴)𝑐 = 𝐾𝑖((𝐾𝑖𝐴)𝑐).If a player does not know 𝐴 then she 

knows that she does not know 𝐴.  

 

Proof:   

1. This follows from the definition 

2. 𝐾𝑖𝐴 ∩ 𝐾𝑖𝐵 = {𝜔: 𝑃𝑖(𝜔) ⊆ 𝐴} ∩ {𝜔: 𝑃𝑖(𝜔) ⊆ 𝐵 = {𝜔: 𝑃𝑖(𝜔) ⊆ 𝐴, 𝑃𝑖(𝜔) ⊆ 𝐵}} =
{𝜔: 𝑃𝑖(𝜔) ⊆ 𝐴 ∩ 𝐵} = 𝐾𝑖(𝐴 ∩ 𝐵) 
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3. If 𝜔 ∈ 𝐾𝑖𝐴,so that 𝑃𝑖(𝜔) ⊆ 𝐴,since ωi ∈ Pi(ω) ,it follows that 𝜔 ∈ 𝐴  and so𝐾𝑖𝐴 ⊆ 𝐴. 

4. By the previous we have that 𝐾𝑖𝐾𝑖𝐴 ⊆ 𝐾𝑖𝐴. Now, let 𝜔 ∈ 𝐾𝑖𝐴 so that 𝑃𝑖(𝜔′) = 𝑃𝑖(𝜔),so it 

follows that 𝜔′ ∈ 𝐾𝑖𝐴 ,and since 𝜔′ is an arbitrary element of 𝑃𝑖(𝜔) it was  shown that 𝑃𝑖(𝜔) ⊆
𝐾𝑖𝐴 , and hence by definition 𝜔 ∈ 𝐾𝑖𝐾𝑖𝐴  

5. The left-hand side (𝐾𝑖𝐴)𝑐 represents the event that agent 𝑖 does not know 𝐴. The right side, 

𝐾𝑖((𝐾𝑖𝐴)𝑐) represents the event that agent 𝑖 knows that they do not know 𝐴.In modal logic we 

apply positive introspection i.e. if an agent knows something, they know that they know 

it.Formally,  𝐾𝑖𝐴 ⇒ 𝐾𝑖𝐾𝑖𝐴. We also assume the negative introspection axiom i.e., if an agent 

does not know something, they know that they do not know it: (𝐾𝑖𝐴)𝑐 = 𝐾𝑖((𝐾𝑖𝐴)𝑐)∎ 

 

Intuitionistic propositional logic is sound w.r.t. Kripke semantics: 

Theorem 4  if ⊢𝐼𝑛𝑡 𝐴,then for every Kripke model ℳ = 〈𝑊, 𝑅, 𝑣〉 and for every possible world 𝑥 ∈
𝑊  of this model ℳ, 𝑥 ⊩ 𝐴.  

Proof: in order to prove soundness, one needs to prove that if 𝐴 is an axiomof Int,then ℳ, 𝑥 ⊩ 𝐴 and 

second if  ℳ, 𝑥 ⊩ 𝐴 → 𝐵 ⇒ ℳ, 𝑥 ⊩ 𝐵.The second part is easy: If 𝑥 ⊩ 𝐴 → 𝐵.then for every world 𝑦 ∈
𝑅(𝑥) we have either 𝑦 ⊮ 𝐴 or 𝑦 ⊮ 𝐵.Since 𝑦 = 𝑥by reflexivity of 𝑅 ,then given 𝑥 ⊩ 𝐴,we obtain 𝑥 ⊩

𝐵. Here, we need to prove 𝑥 ⊩ 𝐴 → (𝐵 → 𝐶) → ((𝐴 → 𝐵) → (𝐴 → 𝐶)).In order to establish that a 

formula of the form 𝐸 → 𝐹 is true in 𝑥 ,one needs o check that ∀𝑦 ∈ 𝑅(𝑥) if 𝑦 ⊩ 𝐸, then 𝑦 ⊩ 𝐹.Again 

,lets consider arbitrary 𝑧 ∈ 𝑅(𝑦), such that 𝑧 ⊩ 𝐴 → 𝐵.On this turn we need to show that 𝑧 ⊩ 𝐴 → 𝐶. 

Let 𝑤 be a world from 𝑅(𝑧), such that 𝑤 ⊩ 𝐴 and finally we need 𝑤 ⊩ 𝐶. So, now: 

Well-formed formula 13 

𝑤 ⊩ 𝐴
↑

𝑧 ⊩ 𝐴 → 𝐵
↑

𝑦 ⊩ 𝐴 → (𝐵 → 𝐶)

↑
𝑥

 

By monotonicity, since 𝑦𝑅𝑤, 𝑧𝑅𝑤 , the formulae 𝐴 → (𝐵 → 𝐶) and 𝐴 → 𝐵  are also true in 𝑤. Since 

modus ponens15 is applicable for ⊩ ,we have 𝑤 ⊩ 𝐵 → 𝐶 ,𝑤 ⊩ 𝐵, 𝑤 ⊩ 𝐶 which is our goal ∎ . 

5.Kripke model and cheap talk with partial and separating equilibrium  

Agent A has a private type: 𝜃 ∈ {𝐻, 𝐿}.Sender sends messages: 𝑚 ∈ {𝑚𝐻 , 𝑚𝐿} to receiver Agent A. 

Cheap talk: message is costless and non-binding. Receivers observe messages, not type, and chooses 

action 𝑎. in Kripke semantics each world corresponds to a full specification of: type 𝜃 and message 

𝑚.Let’s define: 

equation 45 

𝑊 = {𝑤𝐻 , 𝑚𝐻 , 𝑤𝐻 , 𝑚𝐿 , 𝑤𝐿 , 𝑚𝐻 , 𝑤𝐿, 𝑚𝐿} 

Each world 𝑤 ∈ 𝑊 has a structure: 

equation 46 

𝑤 = (𝜃(𝑤), 𝑚(𝑤))  

A Kripke frame 𝑖 ∈ {𝐴, 𝐵}  for the two agents is: 

 
15 It can be summarized as "P implies Q. P is true. Therefore, Q must also be true." Or 

𝑃→𝑄,    𝑃

𝑄
 see Stone (1996). 
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equation 47 

ℱ𝑖 = (𝑊, 𝑅𝑖) 

Agent A (Sender):Always knows their own type and message.Thus: 

equation 48 

𝑅𝐴 = {(𝑤, 𝑤)|𝑤 ∈ 𝑊 } 

Agent B receiver observes only the message 𝑚(𝑤), not the type. Hence, their epistemic accessibility 

is: 

equation 49 

𝑅𝐵 = {(𝑤, 𝑤′) ∈ 𝑊 × 𝑊|𝑚(𝑤) = 𝑚(𝑤′) } 

Receiver cannot distinguish between worlds with the same message. Propositional atoms 𝑝𝜃 are true if 

world has a type 𝜃 .𝑀𝑚 is true if message is 𝑚.𝐵𝑖𝜙 agent 𝑖 believes formula 𝜑.So in a world 𝑤𝐿𝑚𝐻
 

,𝑝𝐿 ∧ 𝑀𝑚𝐻
. Receiver's belief: 

Well-formed formula 14 

𝐵𝐵(𝑝𝐿)  ⊨ ∀𝑤′ ∈ 𝑅𝐵(𝑤), 𝑝𝐿(𝑤′) =⊨ 

But in partial separation: 𝑝𝐿  may be false in some 𝑅𝐵(𝑤) worlds.So instead we attach probabilistic 

beliefs: 

Well-formed formula 15 

𝜇𝐵(𝑝𝐻|𝑚𝐻) = 0.7

𝜇𝐵(𝑝𝐿|𝑚𝐻) = 0.3
 

These are posterior beliefs based on Bayes' Rule (if prior and sender's strategy are known). Now for 

Bayesian Semantics: 𝜇(𝐵) be a prior probability over types, 𝜎𝐴(𝑚|𝜃). Then the posterior of Receiver 

after message 𝑚 is: 

equation 50 

𝜇𝐵(𝜃|𝑚) =
𝜇(𝜃) ∙ 𝜎𝐴(𝑚|𝜃)

∑ 𝜇(𝜃′) ∙ 𝜎𝐴(𝑚|𝜃)𝜃′
 

Each world 𝑤 = {𝜃, 𝑚},gives payoff: to receiver 𝑢𝐵(𝜃, 𝑎(𝑚)). 

Separating equilibrium: 

inequality 12 

∀𝑤 ≠ 𝑤′ ∈ 𝑊
𝜃(𝑤) ≠ 𝜃(𝑤′) ⇒ 𝑚(𝑤) ≠ 𝑚(𝑤′) 

𝑅𝐵(𝑤) = {𝑤}
 

Pooling equilibrium:All types send the same message: 

equation 51 

𝑚(𝑤) = 𝑚∗∀𝑤 ∈ 𝑊  

Receiver's belief spread:  
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equation 52 

𝑅𝐵(𝑤) = {𝑤𝐻 ,𝑚∗, 𝑤𝐿 ,𝑚∗ }𝑅𝐵(𝑤) 

Partial Separation (Mixed Strategy): 

✓ Types send different messages with probability. 

✓ Receiver updates probabilistically 

✓ Receiver’s accessibility relation reflects epistemic uncertainty, i.e.: 

equation 53 

𝑅𝐵(𝑤𝐻 ,𝑚𝐿
) = {𝑤𝐻,𝑚𝐿

; 𝑤𝐿 ,𝑚𝐿
}

𝜇𝐵(𝐻|𝑚𝐿) < 1
 

Table 1 summary table  

World 𝑤 Type 𝜃 Message 𝑚 Accessible 

𝑅𝐵(𝑤) 

𝜇𝐵(𝐻|𝑚) 

𝑤𝐻 ,𝑚𝐻
 𝐻 𝑚𝐻 {𝑤𝐻 ,𝑚𝐻

, 𝑤𝐿 ,𝑚𝐻
} 0.7 

𝑤𝐿 ,𝑚𝐻
 𝐿 𝑚𝐿 {𝑤𝐻 ,𝑚𝐻

, 𝑤𝐿 ,𝑚𝐻
} 0.7 

𝑤𝐻 ,𝑚𝐿
 𝐻 𝑚𝐻 {𝑤𝐻 ,𝑚𝐿

, 𝑤𝐿,𝑚𝐿 
} 0.3 

𝑤𝐿 ,𝑚𝐿
 𝐿 𝑚𝐿 {𝑤𝐻 ,𝑚𝐿

, 𝑤𝐿 .𝑚𝐿
} 0.3 

Source: Author’s own calculation 

 

 

Figure 10 Kripke model: Partial separation with mixed strategy equilibrium  

 

Source: Author’s own calculation 

{'m_H': {'posterior': {'H': 0.75, 'L': 0.25}, 'best_action': 'a_H', 'expected_utilities': {'a_H': 0.75, 'a_L': 

0.25}}, 'm_L': {'posterior': {'H': 0.12500000000000003, 'L': 0.875}, 'best_action': 'a_L', 

'expected_utilities': {'a_H': 0.12500000000000003, 'a_L': 0.875}}} 
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6.Common knowledge  

Let the state of the world be represented by Ω, which is a set of possible states 𝜔 ∈ 𝛺. Each agent  𝑖 is 

associated with an information partition 𝒫𝑖 which is a partition of Ω . This partition represents the 

agent’s knowledge, i.e., what states of the world the agent can distinguish. If two states 𝜔, and 𝜔′ are 

in the same element of 𝒫𝑖 , then agent 𝑖 cannot distinguish between these two states. Now, knowledge 

can be represented as set theoretic concept, for each agent 𝑖, the information partition 𝒫𝑖 induces a 

knowledge operator 𝐾𝑖, where for any event 𝐸 ⊆ 𝛺, 𝐾𝑖(𝐸) is the set of states in which agent 𝑖 knows 

that 𝐸 has occurred. Formally we define this as: 

equation 54 

𝐾𝑖(𝐸) = {𝜔 ∈ Ω| ∀𝜔′ ∈ 𝒫𝑖(𝜔), 𝜔′ ∈ 𝐸 } 

In words agent 𝑖 knows that event 𝐸 occurs if, at state 𝜔 , all the states indistinguishable from 𝜔 i.e. 

those in same partition cell are also in 𝐸. Common knowledge among all agents can be derived using 

set theory. This is Geanakopolos (1992) model of common knowledge. 

 Definition 5 We can define common knowledge of an event 𝐸 as the event where everyone knows 𝐸, 

everyone knows that everyone knows 𝐸, and so on ad infinitum. 

This is captured by the common knowledge operator 𝐾∗(𝐸) which is the intersection of all iterated 

knowledge operators: 

equation 55 

𝐾∗(𝐸) = ⋂ ( ⋂ 𝐾𝑖1
, 𝐾𝑖2

, … , 𝐾𝑖𝑛
(𝐸)

𝑖1,𝑖2,…,𝑖𝑛∈𝑁

)   

∞

𝑛=1

   

This intersection represents the set of states where 𝐸 is common knowledge—i.e., where all agents 

know 𝐸, all agents know that all agents know 𝐸, and so on. Geanakoplos’s work often involves Bayesian 

updating, where agents revise their beliefs based on new information. In a set-theoretic framework, we 

can model this as follows. Each agent 𝑖 has a prior belief which is represented by probability distribution 

𝜇𝑖 ∈ Ω. When agent 𝑖 observes an event 𝐸, they update their belief using Bayes’ rule16. The updated 

belief 𝜇𝑖(𝐸|𝜔) is defined as : 

equation 56 

𝜇𝑖(𝐸|𝜔) =
𝜇𝑖(𝐸 ∩ 𝒫𝑖(𝜔))

𝜇𝑖(𝒫𝑖|𝜔)
 

 

 

 

16 𝑝(𝐴𝑖|𝐴) =
𝑃(𝐴𝑖)𝑃(𝐴|𝐴𝑖)

∑ 𝑃(𝐴𝑗)𝑃(𝐴|𝐴𝑗)𝑁
𝑗=1

 see Papoulis (1984).Previous: 𝑃(𝐵𝑗|𝐴) =
𝑃(𝐵𝑗)𝑃(𝐴|𝐵𝑗 )

𝑃(𝐴)
 , and 𝑆 = ⋃ 𝐴𝑖

𝑁
𝑖=1 . 
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Figure 11 knowledge and common knowledge in Geanakoplos model  

 

Source: Authors’ own calculations 

✓ Blue edges representing Agent 1’s knowledge. 

✓ Red edges representing Agent 2’s knowledge. 

✓ Green edges representing common knowledge (where both agents know the event). 

7.Common knowledge in Kripke frame  

 

Kripke frame with valuation function is: 

equation 57 

𝑀 = {𝑊, (𝑅𝑖)𝑖∈𝑁 , 𝑉} 

𝑉: 𝑃𝑟𝑜𝑝 → 2𝑊 is a valuation function that assigns a set of worlds to each proposition 𝑝 ∈
𝑃𝑟𝑜𝑝,∀𝑝, 𝑉(𝑝) ⊆ 𝑊 set of worlds where 𝑝 → 𝑡𝑟𝑢𝑒. Knowledge operator that we should define is 𝐾𝑖 

for each agent 𝑖.Now, given a Kripke model 𝑀 = {𝑊, (𝑅𝑖)𝑖∈𝑁 , 𝑉} and a world 𝑤 ∈ 𝑊 ,agent 𝑖 knows 

𝑝 at world 𝑤, if for ∀𝑤′ ⇒ 𝑤𝑅𝑖𝑤′ i.e. 𝑤′ is possible according to agent 𝑖′𝑠 knowledge in world 

𝑤,𝑝 holds in 𝑤′ or formally: 

Well-formed formula 16 

𝑀, 𝑤 ⊨ 𝐾𝑖𝑝 ⇔ ∀𝑤′ ∈ 𝑊, (𝑤𝑅, 𝑤′) ⇒ 𝑀, 𝑤′ ⊨ 𝑝  
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This means that agent 𝑖  knows 𝑝 at world 𝑤 if in all worlds they consider possible 𝑝 → 𝑡𝑟𝑢𝑒.We can 

define common knowledge17 here by using iterated knowledge operator over the agents. Now, let 𝐾𝑖 

denote the knowledge operator for agent 𝑖 and let 𝑁 be the set of all agents. The common knowledge 

operator can be defined recursively: 

equation 58 

𝐶𝑝 = ⋂ 𝐾1, 𝐾2, . . , 𝐾𝑛𝑝

∞

𝑛=1

 

Alternatively, we can define common knowledge by creating a new relation 𝑅𝐶called common 

knowledge relation, which is transitive closure of the union of the individual relations 𝑅𝑖: 

equation 59 

𝑅𝐶 = ⋂ 𝑅𝑖

𝑖∈𝑁 

 

Then the common knowledge operator 𝐶 can be defined as: 

 

Well-formed formula 17 

𝑀, 𝑤 ⊨ 𝐶𝑝 ⇔ ∀𝑤′ ∈ 𝑊 , (𝑤𝑅𝐶𝑤′) ⇒ 𝑀, 𝑤′ ⊨ 𝑝 

This means that common knowledge of 𝑝  hold at world 𝑤 if, ∀𝑤′ worlds that are reachable through the 

common knowledge relation 𝑅𝐶, 𝑝  holds: 

 

 

 

Figure 12 Kripke frame with knowledge relations  without and with cheap talk 

 

 
17 A very basic assumption of studies in game theory is that the game is common knowledge, see   Rubinstein 
(1989).Situations without common knowledge are labeled as games with incomplete information see Harsanyi 
(1967) part I, Harsanyi (1968)part II, Harsanyi (1968)part III. 
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Source:Author’s own calculations  

 

In the current example, agents in worlds 𝑤1, 𝑤2, 𝑤3 can communicate with agents in 𝑤4through cheap 

talk. This allows us to model a scenario where agents can talk to each other and share information, but 

this communication does not change the structure of knowledge in the model. 

8.Aumann’s agreement theorem  

Aumann (1976) posed the following question: could two individuals who share the same prior ever 

agree to disagree? See Levin (2016). That means if 𝑖, 𝑗 share common previous beliefs over states of the 

world, could it be that state arise at which it was commonly known that 𝑖 assigns probability of some 

evet 𝓅𝑖,and 𝑗 assigned probability of 𝓅𝑗 and𝓅𝑖 ≠ 𝓅𝑗. Aumann concluded that this sort of disagreement 

is impossible. Now, formally let 𝑝 be a probability measure on Ω which are agents’ prior belief. For any 

state 𝜔 and event 𝐸 , let 𝑝(𝐸|𝓅𝑖(𝜔)) denote 𝑖′𝑠 posterior belief, so that 𝑝(𝐸|𝓅𝑖(𝜔)) is obtained under 

Bayes’ rule.The event that agent 𝑖  assigns probability 𝓅𝑖 to 𝐸 is   {𝜔 ∈ Ω: 𝑝(𝐸|𝓅𝑖(𝜔) = 𝓅𝑖)} 

Proposition 1  Suppose two agents have the same prior belief over a finite set of states Ω. If each agent’s 

infomation function is partitional and it is common knowledge in some state 𝜔 ∈  Ω that agent 1 assigns 

probability𝓅1 to some event 𝐸 and agent 2 assigns probability 𝓅2 to E, then 𝓅1 = 𝓅2 

Proof: If the assumptions are satisfied then there is some self-evident event 𝐹 and 𝜔 ∈ 𝐹 : 

equation 60 

𝐹 ⊂ {(𝜔′ ∈ Ω: 𝑝(𝐸|𝓅1(𝜔′) = 𝓅1) ∩ {(𝜔′ ∈ Ω: 𝑝(𝐸|𝓅2(𝜔′) = 𝓅2)}} 

Since Ω is finite, so is the number of sets in each union and let 𝐹 =∪𝑘 𝐴𝑘 =∪𝑘 𝐵𝑘 and for a nonempty 

disjoint sets 𝐶, 𝐷 with with 𝑝(𝐸|𝐶) = 𝓅𝑖 and 𝑝(𝐸|𝐷) = 𝓅𝑖 we have that 𝑝(𝐸|𝐶 ∪ 𝐷) = 𝓅𝑖,and 

∀𝑘, 𝑝(𝐸|𝐴𝑘) = 𝓅1,then 𝑝(𝐸|𝐹) = 𝓅1 and similarly 𝑝(𝐸|𝐹) = 𝑝(𝐸|𝐵𝑘) = 𝓅2 ∎ 

 

9.Cheap talks and Asset bubbles  

 

Some endogenous variable 𝑦 obeys the following expectational difference equation: 
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equation 61 

𝑦𝑡 = 𝑎𝐸𝑡𝑦𝑡+1 + 𝑏𝑥𝑡 

Where 𝐸𝑡𝑦𝑡+1 ≡ 𝐸(𝑦𝑡+1|Ω) , Ω = {𝑦𝑡−𝑖, 𝑥𝑡−𝑖, 𝑖 = 0, … , ∞ }. 

Asset–pricing model: if 𝑝𝑡  be a price of stock, 𝑑𝑡 is dividend, and 𝑟  is the rate of return of riskless 

asset. assumed to be held constant over time. Standard theory of finance teaches us that if agents are 

risk neutral, then the arbitrage between holding stocks and the riskless asset should be such that the 

expected return on the stock — given by the expected rate of capital gain plus the dividend/price ratio 

— should equal the riskless interest rate: 

equation 62 

𝐸𝑡𝑝𝑡+1 − 𝑝𝑡

𝑝𝑡
+

𝑑𝑡

𝑝𝑡
= 𝑟 

or equivalently : 

equation 63 

𝑝𝑡 = 𝑎𝐸𝑡𝑝𝑡+1 + 𝑎𝑑𝑡 

Where 𝑎 ≡
1

1+𝑟
< 1 .Now we will assume that : 

equation 64 

𝑦̃ = 𝑦𝑡 + 𝑏𝑡 

Where 𝑦𝑡 is the solution and 𝑏𝑡 is bubble. Now if 𝑦̃ = 𝑦𝑡 + 𝑏𝑡 it has to be the case: 

equation 65 

𝐸𝑡𝑦̃𝑡+1 = 𝐸𝑡𝑦𝑡+1 + 𝐸𝑡𝑏𝑡+1 

Or : 

equation 66 

𝑏𝑡 = 𝑎𝐸𝑡𝑏𝑡+1 ⇒ 𝐸𝑡𝑏𝑡+1 = 𝑎−1𝑏𝑡 

The ever–expanding bubble: 𝑏𝑡 then simply follows a deterministic trend of the form: 

equation 67 

𝑏𝑡 = 𝑏0𝑎−𝑡 

In the asset price equation 
𝐸𝑡𝑝𝑡+1−𝑝𝑡

𝑝𝑡
+

𝑑𝑡

𝑝𝑡
= 𝑟 for simplicity we take 𝑑𝑡 = 𝑑∗no–bubble solution (the 

fundamental solution) takes the form: 

equation 68 

𝑝𝑡 = 𝑝∗ =
𝑑∗

𝑟
 

which sticks to the standard solution that states that the price of an asset  should be the discounted 

sum of expected dividends: 
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equation 69 

𝑑∗

𝑟
= ∑(1 + 𝑟)−𝑖𝑑∗

∞

𝑖=0

 

we now add a bubble of the kind we consider: 

equation 70 

𝑏𝑡 = 𝑏0𝑎−𝑡 = 𝑏0(1 + 𝑟)𝑡, 𝑏0 > 0 

the price of the asset will increase exponentially though the dividends are constant18. Next, we will 

plot and outline deterministic bubble. 

Figure 13 Deterministic asset bubble  

 

Source:Author’s own calculations  

Next, we will show the bursting–bubble: A problem with the previous example is that the bubble is 

ever–expanding whereas observation and common sense suggests that sometimes the bubble bursts. 

We may therefore define the following bubble: 

equation 71 

𝑏𝑡+1 = {
(𝑎𝜋)−1𝑏𝑡 + ζt+1

𝜁𝑡+1
 

 
18 Individuals are ready to pay a price for the asset greater than expected dividends because they expect 
the price to be higher in future periods, which implies that expected capital gains will be able to compensate 
for the low price to dividend ratio. 
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(𝑎𝜋)−1𝑏𝑡 + ζt+1 happens with probability 𝜋 , and 𝜁𝑡+1 happens with probability 1 − 𝜋.Now, with 

𝐸𝑡𝜁𝑡+1 = 0. So defined, the bubble keeps on inflating with probability 𝜋 and bursts with probability 

(1 −  𝜋).Now: 

equation 72 

𝑏𝑡 = 𝑎𝐸𝑡(𝜋(( 𝑎𝜋)−1𝑏𝑡 + 𝜁𝑡+1) + (1 − 𝜋)𝜁𝑡−1) = 𝑎𝐸𝑡𝜋(( 𝑎𝜋)−1𝑏𝑡 + 𝜁𝑡+1) + 𝜁𝑡+1) = 𝑎𝐸𝑡(𝑎−1𝑏𝑡)
= 𝑏𝑡 

Next, we will plot an example of such bubble. The vertical lines in the upper right panel of the figure 

corresponds to time when the bubble bursts. 

 

Figure 14 Example of a bursting bubble : The case of asset pricing (constant dividends) 

 

Source:Author’s own calculations  

Now we will include cheap talk to see the impact it has on asset price bubble. We can model the 

impact of cheap talk on asset bubbles using a simple rational expectations framework with noise 

traders and strategic speculators. The key idea is that cheap talk shifts beliefs and influences demand, 

leading to price deviations from fundamentals. Let the fundamental value of the asset be: 

equation 73 

𝑉𝑡 = 𝐸𝑡[𝐷𝑡+1] +
1

1 + 𝑟
𝐸𝑡[𝑃𝑡+1] 

𝐷𝑡+1-is the future dividend, 𝑃𝑡+1 is the future price, 𝑟 is the risk free interest rate. The price without 

speculation is simply: 
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equation 74 

𝑝𝑡 =
𝐸𝑡[𝐷𝑡+1]

𝑟
 

Now, let there be cheap talk signals 𝐶𝑡, which shift investors' expectations: 

equation 75 

𝐸𝑡[𝑃𝑡+1] = (1 + 𝜆𝐶𝑡)𝑉𝑡 

Where 𝜆 > 0 captures how strong investors respond to cheap talk: 

equation 76 

𝑝𝑡 =
𝐸𝑡[𝐷𝑡+1]

𝑟
+ 𝜆𝐶𝑡 

If 𝐶𝑡 is purely speculative (without fundamental backing), this extra term represents a bubble 

component. If investors believe that others will keep buying based on CtC_tCt, we get a self-fulfilling 

loop:  

equation 77 

𝑃𝑡 = (1 + 𝜆𝐶𝑡)𝑃𝑡−1 + 𝜖𝑡 

his recursive equation generates bubbles when 𝜆𝐶𝑡 is persistent. This will be illustrated on the 

following plot. 

Figure 15 Impact of cheap talk on asset price bubble  

 

Source:Author’s own calculations  

The plot illustrates how cheap talk (random but persistent signals) inflates asset prices beyond their 

fundamental value. Over time, speculative effects create deviations from fundamentals, forming a 

bubble-like pattern. The fundamental value remains stable, while the speculative price fluctuates and 

rises due to self-reinforcing expectations.  

9.1 Sender-Receiver Game (Crawford-Sobel Setup) 

Now, we will investigate the Sender-Receiver Game (Crawford-Sobel Setup): A sender (S) (e.g., 

analyst, media, or influential investor) observes a private signal about an asset’s fundamental value 𝑉𝑡. 
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The sender sends a cheap talk message 𝑚𝑡 to the market (receiver). The receiver (R) (e.g., investors) 

updates beliefs and sets a price 𝑃𝑡. Misaligned preferences: The sender may want to exaggerate 

information to boost asset demand. Let the fundamental value of the asset be: 

equation 78 

𝑉𝑡 = 𝜃 + 𝜖𝑡 

Where 𝜃 ∼ 𝑁(𝜇, 𝜎2) is the true fundamental and 𝜖𝑡 ∼ 𝑁(0, 𝜎𝜖
2). The sender sends a message: 

equation 79 

𝑚𝑡 = 𝑉𝑡 + 𝑏 

where 𝑏 represents bias (possibly strategic). The receiver interprets this and forms expectations: 

equation 80 

𝐸𝑡[𝑉𝑡|𝑚𝑡] = 𝛼𝑚𝑡 + (1 − 𝛼)𝐸𝑡[𝑉𝑡] 

where 𝛼 is the weight given to the signal. Thus, the asset price is updated as: 

equation 81 

𝑃𝑡 = (1 + 𝜆𝐶𝑡)𝑃𝑡−1 + 𝑣𝑡 

𝑣𝑡 is a noise term. 

✓ 𝜆𝐶𝑡 > 0 inflates the bubble. 

✓ 𝜆𝐶𝑡 < 0 market corrects.  

Next, we will simulate this model and visualize how strategic cheap talk influences asset bubbles. 

Figure 16 Crawford-Sobel model cheap talk and asset bubbles  

 

Source: Author’s own calculations 

The plot shows how cheap talk (biased signals) influences investor expectations and inflates asset 

prices beyond their fundamental value. While fundamentals 𝑉𝑡  evolve smoothly, expectations 𝐸𝑡(𝑉𝑡) 

and speculative pricing 𝑃𝑡 diverge, creating a bubble. The misalignment between sender and receiver 

amplifies deviations, making prices more volatile 
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9.2 Crawford-Sobel (CS) Cheap Talk Equilibrium, Aumann’s Common Knowledge Model, Nash 

Equilibrium, and Kantian Equilibrium in the context of asset bubbles 

Crawford-Sobel model is again as previous:   𝑉𝑡 = 𝜃 + 𝜖𝑡  Where 𝜃 ∼ 𝑁(𝜇, 𝜎2) is the true fundamental 

and 𝜖𝑡 ∼ 𝑁(0, 𝜎𝜖
2). The sender sends a message: 𝑚𝑡 = 𝑉𝑡 + 𝑏 where 𝑏 represents bias (possibly 

strategic). The receiver interprets this and forms expectations: 

equation 82 

𝐸𝑡[𝑉𝑡|𝑚𝑡] = 𝛼𝑚𝑡 + (1 − 𝛼)𝐸𝑡[𝑉𝑡] 

where 𝛼 is the weight given to the signal. Thus, the asset price is updated as: 

equation 83 

𝑃𝑡 = (1 + 𝜆𝐶𝑡)𝐸𝑡[𝑉𝑡|𝑚𝑡] + 𝑣𝑡 

Aumann's Aumann (1976) framework involves multiple investors who receive private signals and 

engage in cheap talk, but if common knowledge is not reached, mispricing emerges. Each trader 

receives private signal: 

equation 84 

𝑠𝑖 = 𝑉𝑡 + 𝜂𝑖 

Where 𝜂𝑖 ∼ 𝑁(0, 𝜎𝜂
2). Traders communicate: 

equation 85 

𝑚𝑡 = 𝑠𝑖 + 𝑏 

If traders fail to reach common knowledge, expectations diverge: 

equation 86 

𝑃𝑡 = (1 + 𝜆𝐶𝑡)𝐸𝑡[𝑉𝑡|𝑚𝑡] + 𝑣𝑡 

Nash Equilibrium (NE) assumes each investor optimizes based on others’ fixed strategies: 

equation 87 

𝑃𝑡
𝑁𝐸 = max 𝐸𝑡[𝑉𝑡|𝑚𝑎𝑟𝑘𝑒𝑡 𝑠𝑖𝑔𝑛𝑎𝑙𝑠] 

Leading to speculative mispricing. Now about Kantian equilibrium first we would have to define it: 

Definition 6 : 

A vector of strategies ℒ = (ℒ1, … , ℒ𝑛) is a multiplicative Kantian equilibrium of the game 𝐺 =
𝑆(𝑉1, … , 𝑉𝑛)  for ∀𝑖 = 1, … , 𝑛 

equation 88 

arg𝛼∈ℝ+
max 𝑉𝑖(𝛼ℒ) = 1 

Proposition 2: 

ℒ = (ℒ1, . . , ℒ𝑛) ∈ 𝑆𝑛 is a multiplicative Kantian equilibrium of the game 𝐺 = 𝑆(𝑉1, … , 𝑉𝑛)  if : 
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inequality 13 

(∀𝑖 = 1, . . , 𝑛)(∀𝛼 ∈ ℝ+)(𝑉𝑖(ℒ) ≧ 𝑉𝑖(𝛼ℒ) 

In previous 𝑆 is a common strategy space.  

Definition 7 

ℒ is 𝐺 -efficient if ∄ℒ′ ∈ 𝑆𝑛 that Pareto dominates ℒ ∈ 𝐺 . 

Definition 8 

Some game 𝐺 = 𝑆(𝑉1, … , 𝑉𝑛) is monotone increasing (decreasing) if (∀𝑖 = 1, . . , 𝑛)(𝑉𝑖(∙) is strictly 

increasing (decreasing) in ℒ−𝑖.  

Theorem 5 : 

Suppose  that 𝐺 = 𝑆(𝑉1, … , 𝑉𝑛) is monotone increasing (decreasing).And let ℒ∗ be Kantian equilibrium  

of 𝐺 with ℒ𝑖 > 0, ∀𝑖 = 1, . . , 𝑛,then ℒ∗ is 𝐺 efficient.  

Proof: Now, let 𝑉𝑖 be monotone increasing. Suppose now that ℒ∗ is Kantian but is not 𝐺 -efficient and 

is Pareto dominated by allocation ℒ̂ then: 

  

equation 89 

𝑟 = max
𝑖

 
ℒ̂𝑖

ℒ𝑖
∗ 

∃𝑗, 𝑟 >
ℒ̂𝑗

ℒ𝑗
∗ ; for if not then ℒ∗ is not Kantian equilibrium, because all agents would  weakly prefer to 

change to 𝑟 ℒ∗ and some would prefer the change ,and let 𝑖∗ be an agent for whom 𝑟ℒ𝑖
∗ = ℒ̂𝑖 .So now 

𝑟 ≠ 1 or else agent 𝑖∗ would be worse of at ℒ̂𝑖 than ℒ𝑖
∗ by 𝑉𝑖 as monotone increasing. Now by vector 

ℒ = 𝑟ℒ∗ and we have:  

equation 90 

𝑉𝑖∗(𝑟ℒ𝑖∗) > 𝑉𝑖∗(ℒ̂) ≥ 𝑉𝑖∗(ℒ𝑖∗) 

The first inequality follows from the fact that in 𝑟 ℒ∗, 𝑖∗ expends the same labor as the agent does in 

ℒ̂, while some other agents expend strictly more labor, and none expends less labor than in ℒ̂; the 

second inequality follows by Pareto domination. Previous This contradicts the assumption that 

𝛼𝑖∗(ℒ)  =  1, which proves the claim. About the effort similar argument applies for 𝑉𝑖(∙; 𝑒) and is 

monotone decreasing, 𝑟 = min 
ℒ̂𝑖

ℒ𝑖
∗ ∎  

For this part see more in  Roemer (2010), Roemer (2019). 

So, in our model Kantian equilibrium (Kantian Equilibrium (KE) assumes investors coordinate for 

collective optimality) is defined as: 

equation 91 

𝑃𝑡
𝐾𝐸 = 𝐸𝑡[𝑉𝑡|𝑠𝑜𝑐𝑖𝑎𝑙 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦] 

which reduces bubbles. 
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Figure 17comparison of asset prices under different equilibria 

 

Source: Author’s own calculations 

9.3 Dot-com bubble 

During the late 1990s, the rapid rise of the internet and technology companies led to excessive 

speculation in the stock market. Many executives, analysts, and media figures hyped internet startups 

with little to no profits, using buzzwords like "new economy" and "paradigm shift." Mechanism of 

Cheap Talk in the Bubble: 

1. Tech CEOs and Venture Capitalists 

✓ Startup founders overstated growth potential of their companies in media interviews and press 

releases. 

✓ Venture capitalists and investors talked up startups to drive hype and increase valuations. 

2. Stock Market Analysts and Investment Banks 

✓ Many financial analysts from top investment banks issued "buy" recommendations on stocks 

they privately doubted. 

✓ Henry Blodget of Merrill Lynch was caught in 2003 emails calling some dot-com stocks 

"junk" 

 

3.  Media and Public Sentiment 

✓ Financial news outlets like CNBC and newspapers constantly hyped internet stocks. 

✓ Investors, influenced by cheap talk rather than fundamentals, bought into the hype, driving 

prices higher. while publicly promoting them. 

Outcome: 

✓ The NASDAQ index quadrupled from 1995 to 2000 before crashing by nearly 78% from 

its peak. 

✓ Many hyped companies, like Pets.com, went bankrupt when reality set in. 

✓ Retail investors who bought into the hype suffered massive losses. 

Why This Is an Example of Cheap Talk? 
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✓ None of the claims were binding—executives, analysts, and media figures were not 

directly penalized for exaggerating growth potential. 

✓ Investors relied on signals from influential people rather than hard fundamentals, 

leading to an unsustainable price surge. 

This case illustrates how costless talk, even when misleading, can drive irrational exuberance and 

asset bubbles. 

 

Table 2  Cheap talk examples and their impact on NASDAQ 19 

 

Actor Cheap Talk Examples Impact on NASDAQ 

Startup CEOs 

“We're the next Amazon.” 

“This will revolutionize 

everything.” 

Raised expectations and stock 

prices of new IPOs 

Analysts 

“Buy! Strong growth 

ahead!” (even without 

profits) 

Boosted retail/institutional 

investment in NASDAQ firms 

Media 

“Tech is the future!” “Don’t 

miss out on the next 

Microsoft.” 

Created a narrative that tech 

stocks could only go up 

Politicians/Fed 

(indirectly) 

Alan Greenspan’s “irrational 

exuberance” speech (1996) 

was one of few dampening 

voices, but was mostly 

ignored 

Market still rallied as others 

hyped tech without 

accountability 

 

Source: Author’s own calculations 

 

 

19 𝑁𝐴𝑆𝐷𝐴𝑄𝑖𝑛𝑑𝑒𝑥 =
∑ 𝑃𝑖∙𝑄𝑖

𝑁
𝑖=1

𝐷
 ; where 𝑃𝑖-Price of stock 𝑖, 𝑄𝑖-number of outstanding shares,𝐷- divisor adjusted 

over time. Divisor is a value set by NASDAQ to normalize the index. It is adjusted for stock splits, dividends, or 
changes in the index components to keep the index consistent over time. The divisor in the NASDAQ index (and 
other market-cap weighted indexes) is a normalization factor that ensures continuity of the index value over 
time, especially when there are structural changes. t does not have a fixed mathematical formula but is 
adjusted to account for: Stock Splits and Reverse Splits, Dividends (Special Cash Dividends), Additions or 
Removals of Companies, Mergers, Acquisitions, and Spinoffs. 
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Figure 18 NASDAQ composite index 1995-2003 

 

Source: Author’s own calculations based on yfinance data  

The NASDAQ Composite Index rose from around 700 in 1995 to over 5,000 by March 2000 — an 

over 600% increase in five years.Much of this growth was not backed by profits, but by beliefs and 

narratives — classic results of cheap talk.When reality hit (i.e., when companies failed to deliver 

profits), the NASDAQ crashed — by 78% from peak to bottom between 2000–2002.The total losses 

from the Dot-com Bubble are estimated to be in the trillions of dollars. Market capitalization of tech 

stocks on NASDAQ fell from about $6.7 trillion to $1.6 trillion, meaning: Roughly $5 trillion in paper 

wealth was wiped out from the NASDAQ market alone. 

Table 3  different losses from Dot.com bubble  

 

 

 

  

 

 

 

 

 

Source: Different sources across internet  

See, Akerlof, Shiller (2009) for more on this topic. 

 

 

 

Sector Example Losses 

Retail Investors 

Many bought into 

IPOs like Pets.com 

or Webvan 

Lost 100% of investment as 

companies went bankrupt 

Venture Capital 

Firms 

Funded startups 

with no profits 
Billions in write-offs 

Institutional 

Investors 

Pension funds, 

mutual funds, etc. 

Huge losses on “next big 

thing” tech bets 

Employment 
Tech and finance 

sectors 

Hundreds of thousands of 

jobs lost 

Real Economy 
Slower growth in 

2001–2002 
U.S. recession in 2001 
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9.4 Cheap talk and financial crisis 2008  

 

Cheap talk was everywhere before — and it contributed to mispricing of risk, delayed corrective 

actions, and a general sense of complacency before the collapse. Here is a table of some of more 

notable examples of cheap talk pre crisis  

Table 4 Cheap talk type and S&P in 2008 

Actor Event / Statement 
Cheap Talk 

Type 
Impact on S&P 500 

Alan 

Greenspan 

(Fed Chair) 

Reassured public that 

housing prices are 

"unlikely to decline 

nationally" (2005) 

Downplaying 

systemic risk 

Fueled investor and consumer 

confidence → housing boom → 

rising S&P via financials and 

construction stocks 

Credit Rating 

Agencies 

Rated subprime 

mortgage-backed 

securities (MBS) as 

AAA despite known 

risks 

Misleading cheap 

talk via inflated 

ratings 

Encouraged massive investment 

in toxic assets → contributed to 

boom in financial stocks (e.g., 

Lehman, AIG) on S&P 

Investment 

Banks 

Promoted MBS as safe, 

low-risk products 

despite internal doubts 

(2003–2007) 

Strategic 

misrepresentation 

Attracted capital inflows → 

inflated balance sheets → 

boosted S&P 500 financial 

sector performance 

Ben Bernanke 

(Fed Chair) 

“The impact on the 

broader economy and 

financial markets of the 

problems in the 

subprime market seems 

likely to be contained” 

(2007) 

False reassurance 

Delayed market correction → 

prolonged overvaluation → 

greater crash impact on S&P 500 

when truth emerged 

Bush 

Administration 

Publicly stated the 

housing market was 

“strong” and “under 

control” (2006) 

Political 

optimism 

Helped sustain investor and 

consumer confidence → delayed 

policy responses → intensified 

the eventual market fall 

Financial 

Media 

CNBC, WSJ, etc. 

highlighted bullish 

analyst reports and 

downplayed concerns 

Herd-reinforcing 

commentary 

Amplified bubble sentiment → 

investors chased returns → 

overexposure to risky assets 

within S&P index 

Mortgage 

Brokers / 

Borrowers 

Widespread use of “liar 

loans” with no income 

verification (2004–

2006) 

Micro-level 

cheap talk (false 

signaling of 

creditworthiness) 

Allowed unqualified buyers to 

enter market → drove demand 

and speculation → fed into stock 

prices of S&P 500 financials 

 

Sources: Federal Reserve communications, Credit rating agencies and MBS misrepresentation, Bush 

Administration and public statements,  

 

✓ The boom phase (2002–2007) was inflated by optimistic but unfounded cheap talk from 

regulators, rating agencies, and banks. 

✓ The bust (late 2007–2009) was worsened when it became clear that prior communication 

was deceptive or uninformed. 

✓ The S&P 500 fell from a peak of ~1,565 in Oct 2007 to a low of ~676 in March 2009 — a 

~57% drop. 
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Figure 19 S&P 500 sector losses during 2008 Financial crisis (2007-2009) 

 

Source: Author’s calculations based on available historical data for S&P 500 

On the next table we present the worsening effects of cheap talk on crisis . 

Table 5 How Cheap Talk Worsened the Crisis 

Mechanism 
Cheap Talk 

Element 
Effect 

Misleading ratings 

& advice 

Unverifiable praise 

of toxic assets 
Inflated demand 

Regulatory 

communication 

Reassurance 

without 

accountability 

Delayed reaction 

Borrower-lender 

communication 

Misrepresentation 

of risk 
Overleveraging 

Market herd 

behavior 

Belief-based 

imitation 

Bubble 

amplification 

 

Source: Author’s own investigation through different relevant sources 

 

Since there was irrational exuberance leading up to the 2008 financial crisis, primarily in the U.S. 

housing market and related financial markets. The crisis was fueled by subprime mortgage lending, 

securitization of risky assets, and excessive speculation in housing prices. The S&P 500 Index and 

Case-Shiller U.S. National Home Price Index are commonly used to analyze this bubble. 
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Figure 20 S&P  index 2003 -2011  

 

Source: Author’s calculations based on available data at yfinance  

Now we will explain some of the asset bubble indicators. 

✓ The Case-Shiller Index is a widely used measure of U.S. residential real estate prices, tracking 

changes in the value of the housing market over time. It’s considered one of the most accurate 

gauges of U.S. home price trends.  
✓ Formally called the S&P CoreLogic Case-Shiller Home Price Index, it reflects the average 

change in home prices in a particular region or across the country, based on repeat sales of the 

same properties over time. 

The index is based on repeat sales regression: 

equation 92 

ln(𝑃𝑖𝑡) − ln(𝑃𝑖𝑠) = ∑ 𝛽𝑘𝐷𝑖𝑘 + 𝜀𝑖

𝑡

𝑘=𝑠+1

 

✓ 𝑃𝑖𝑡 is the price of house 𝑖  at time 𝑡  

✓ 𝑃𝑖𝑠 is the price of the same house 𝑖 at earlier time 𝑠 

✓ 𝛽𝑘 are coefficients representing the price change in period 𝑘 

✓ 𝐷𝑖𝑘 Dummy variable =1 if transaction occurred in period 𝑘 

✓ 𝜀𝑖 Error term  

The log difference in prices is regressed on time dummies to estimate the price change over time. 

Each pair of repeat sales (same home sold at different times) is treated as one observation. The 

difference in log prices gives the percentage change in price. A time series regression is run across all 

repeat sales to extract a smooth index of housing prices over time. The final Case-Shiller index is 

normalized: 

equation 93 

𝐶𝑆𝑖𝑛𝑑𝑒𝑥𝑡 = 100 × exp(𝛽̂𝑡) 

More on Case-Shiller index see in Case, Karl E. and Shiller, Robert J. (1987)  and at 

https://fred.stlouisfed.org/series/CSUSHPINSA . The model is based on a hedonic regression using 

repeat sales of the same home to control for quality and size. The regression takes the difference in the 

https://fred.stlouisfed.org/series/CSUSHPINSA
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logarithm of prices of a house sold at two points in time and regresses it against time dummies. This 

allows for estimating price changes over time without relying on average prices, which can be 

misleading due to changes in the mix of homes sold20. The VIX stands for the Volatility Index and is 

published by the Chicago Board Options Exchange (CBOE). It measures the market’s expectation of 

volatility over the next 30 days, based on the prices of options on the S&P 500 Index (SPX). The VIX 

doesn’t measure past volatility, but rather the market's expectation of how volatile the S&P 500 will be. 

It’s computed using a complex formula based on the Black-Scholes model, but in practice, it captures 

how much investors are paying for protection (options): 

✓ High VIX (e.g., 40+): Markets are expected to be highly volatile → fear/panic. 

✓ Low VIX (e.g., <15): Markets are expected to be calm → confidence/stability. 

Table 6 Approximate VIX level crashes and its normal range  

Event Approx. VIX Level 

Dot-com crash (2001) ~40–45 

Financial crisis (2008) ~80 

COVID crash (Mar 2020) ~82 

Normal range 12–20 

 

Source: CBOE (Chicago Board Options Exchange) They created and maintain the VIX index. Website: 

https://www.cboe.com/  

Figure 21 VIX Levels During Crashes (With Sources) 

Event 
Peak 
VIX 

Level 

Approx. 
Date Source 

Dot-com Bust ~40 2001–
2002 CBOE 

 9/11 Attacks ~49.35 Sep 
2001 CBOE 

 2008 
Financial 
Crisis 

~80.86 Oct 24, 
2008 CBOE 

 COVID-19 
Crash ~82.69 Mar 16, 

2020 CBOE 

 2022 
Inflation 
Panic 

~36.45 Mar 
2022 Yahoo 

Source: CBOE,Yahoo 

The CBOE VIX is calculated as: 

 
20 For S&P methodology see : S&P Methodology (Public PDF) 

https://www.cboe.com/
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equation 94 

𝑉𝐼𝑋 = 100 × √
2

𝑇
∑

∆𝐾𝑖

𝐾𝑖
2 𝑒𝑅𝑇𝑄(𝐾𝑖) −

1

𝑇
(

𝐹

𝐾0
− 1)

2

𝑖

 

VIX formula symbols meaning: 

Symbol Meaning 

𝑇 Time to expiration (in years) 

𝐾𝑖 Strike prices of out-of-the-money options 

∆𝐾𝑖 Interval between strike prices 

𝑄(𝐾𝑖) Average of bid-ask midpoints for each strike 

𝑅 Risk-free interest rate to expiration 

𝐹 Forward index level derived from option prices 

𝐾0 First strike below the forward index level 

Next, we will plot these indices. 

Figure 22 Financial crisis, S&P vs Housing market and VIX market fear  

 

Source: Standard & Poor’s (S&P) / FactSet 

In the Augmented Dickey–Fuller (ADF) test, the null hypothesis is that the time series has a unit 

root—that is, it is non-stationary. The "null statistic" you see in the output is the ADF test statistic 

computed from your data. This statistic is then compared against critical values (which are non-

standard) to decide whether to reject the null hypothesis. For example, if the test statistic is less (more 

negative) than the critical value at a given significance level (e.g., 1%, 5%, or 10%), you reject the 

null hypothesis and conclude that the series is stationary. Otherwise, you fail to reject the null 

hypothesis, suggesting the presence of a unit root (non-stationarity) and potentially a bubble in the 

context of asset pricing. Table of ADF tests is presented below. 
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Table 7 ADF test for: S&P 500, Case-Shiller, VIX 

 Test Statistic p-value Critical Value 

1% 

Critical Value 

5% 

Critical Value 

10% 

ADF Test for 

S&P 500: 
-2.6038 0.0922 -3.5336 -2.9064 -2.5907 

ADF Test for 

Case-Shiller: 
-2.3634 0.1523 -3.5405 -2.9094 -2.5923 

ADF Test for 

VIX: 
-3.0851 0.0277 -3.5289 -2.9044 -2.5897 

 

Source: Author’s own calculations based on data available from Standard & Poor’s (S&P) / FactSet  

 

When a price series exhibits explosive non-stationarity, that can be a statistical symptom of a bubble.  

 

✓ A random walk (unit root process) is a common non-stationary model of asset prices. 

✓ A bubble is more extreme — it’s a price process that grows faster than a random walk (called 

explosive behavior) 

equation 95 

𝑃𝑡 = 𝜌𝑃𝑡−1 + 𝜖𝑡 , 𝜌 > 0 

Table 8 Non-stationary, Bubble indicator, concept  

Concept 
Non-

stationary 

Bubble 

Indicator? 
Concept 

Random 

walk 
Yes 

Not necessarily 

a bubble 

Random 

walk 

 

Explosive 

process  

 

Yes 

Yes, could 

indicate a 

bubble 

 

Explosive 

process  
  

Structural 

breaks 
Yes 

Not 

necessarily, but 

may precede 

bubbles/crashes 

Structural 

breaks 
 

 

Source: Author’s own calculation  

VADER Sentiment Analysis. VADER (Valence Aware Dictionary and Sentiment Reasoner) is a 

lexicon and rule-based sentiment analysis tool that is specifically attuned to sentiments expressed in 

social media and works well on texts from other domains. 
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Figure 23 Sentiment analysis of sample 2008 Financial news headlines 

 

Source: Daily aggregated compound sentiment scores, these are not real-time scraped headlines from 

a news API or archive. They are representative dummy headlines, manually input to demonstrate how 

VADER sentiment analysis works on financial news from 2008. 

Table 9 News Headlines and their Sentiment Scores: 

Date                     Headline Sentiment                                                

2008-09-15 Lehman Brothers files for bankruptcy amid market panic                               -0.5106 

2008-10-01 Credit crisis deepens as banks tighten lending standards                                 -0.3612 

2008-10-15 Government steps in with bailout plans to rescue troubled banks                   -0.0258 

2008-11-01 Stock markets plummeted as investors lose confidence                                    0.1531 

2008-11-15 Economic recession fears intensify following major financial losses             -0.8214 

2008-12-01 New regulations announced to stabilize the financial system                          0.0000 

2008-12-15 Slow recovery expected as market remains volatile and uncertain                 -0.2960   

Source: Daily aggregated compound sentiment scores, these are not real-time scraped headlines from 

a news API or archive. They are representative dummy headlines, manually input to demonstrate how 

VADER sentiment analysis works on financial news from 2008. 

In sentiment analysis, VADER (Valence Aware Dictionary and Sentiment Reasoner) is a tool used to 

evaluate the sentiment of a given text. VADER provides a score that ranges from -1 to +1, with 

negative values indicating negative sentiment and positive values indicating positive sentiment. If the 

VADER score is negative, it means the text expresses a sentiment that is generally unfavorable or 

negative. The more negative the score, the stronger the negative sentiment detected in the text. A score 

close to -1 indicates a very strong negative sentiment. 

10. Conclusion  

The lower the bias equilibrium actions are closer to partition boundaries. In the Green,Stokey (2003) 

framework of two-person game of information transmission, principal’s expected utility is much higher 

than the agent’s. BNE equilibrium in previous game is in the intersection of principal’s and agent’s BR. 

If there are multiple sender’s and receiver’s BNE equilibrium is lower than Cournot equilibrium while 
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Stackelberg equilibrium (leader-follower model) does not stand neither on principal neither on agent 

Stackelberg BR. In the Kripke model with partial separation and mixed strategy equilibrium, if high 

quality sender sends high quality message beliefs and payoffs are higher than if world (agent) is low 

quality and he pretends to be high quality and sends high quality message. In the 𝑤𝐻𝑚𝐿(if agents 

pretend to be low quality), beliefs and payments are lower than if he is true to himself 𝑤𝐿𝑚𝐿. In the 

Kripke frame with knowledge relations without and with cheap talk, agents can talk to each other and 

share information, but this communication does not change the structure of knowledge in the model. 

Asset price movements, dividend/price ratio and capital gain move differently in deterministic and 

bursting asset price bubble. On short-run cheap talk raises the asset price value much above fundamental 

value (asset bubble) but on a long-run cheap talk leads to asset price value much lower than the 

fundamental value. But in the canonical Crawford-Sobel (CS) model cheap talk leads to inflated asset 

prices over fundamental value in the long run as well as short run, while the expected value is in 

between. Crawford-Sobel cheap talk price is almost the same as Aumann’s’ common knowledge price. 

Nash equilibrium is much above CS, and Aumann’s price which are identical with Kantian equilibrium 

price. Fundamental value is below all of them. Dot-com bubbe and financial crisis 2008 are a clear 

example of cheap talk and asset bubbles prove cheap talk as a boom-bust reason. ADF Test for :S&P 

500, Case-Shiller, VIX proved that simple econometrics tools are not reliable in identifying asset 

bubbles in the making(Case-Shiller index was barely stationary at 10% probability, while VIX and . 
Sender’s utility is higher in the partially informative equilibrium than in babbling equilibrium. This 

paper proved that cheap talk is not so cheap.  
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Appendix 1 Babbling equilibrium  

In a babbling equilibrium: The receiver ignores the sender’s message. The sender does not convey any 

information—message is uninformative. Actions are based on priority (not on the message). Setup here 

is as follows: A state space is Θ ⊆ ℝ with realizations 𝜃 ∈ Θ.A message space is 𝑀 ,an action space is 

𝐴 ⊆ 𝑅.Sender’s utility:𝑢𝑆(𝑎, 𝜃), receiver’s utility is:𝑢𝑅(𝑎, 𝜃). Sender observes 𝜃, sends message 𝑚 ∈

𝑀.Receiver observes 𝑚,chooses action 𝑎.  Messages are costless and non-binding (cheap talk). Sender 

and Receiver have common knowledge of: 

✓ The game structure 

✓ Preferences 𝑢𝑆 and 𝑢𝑅 

✓ Beliefs are common knowledge and updated via Bayes’ Rule (if possible) 

In a babbling equilibrium:The receiver ignores the sender’s message.The sender does not convey any 

information—message is uninformative.Actions are based on the prior (not on the message).Intuition 

here is that: The sender has an incentive to mislead due to misaligned preferences, so the receiver 

disregards the message altogether. Strategy profiles: 

equation 96 

𝜎: Θ → ∆(𝑀), 𝑚 ∈ 𝑀 , 𝑟𝑎𝑛𝑑𝑜𝑚 𝑚𝑒𝑠𝑠𝑎𝑔𝑖𝑛𝑔, 𝑠𝑒𝑛𝑑𝑒𝑟′𝑠 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦

𝜌: 𝑀 → ∆(𝐴), 𝜌(𝑚) = 𝛼, ∀𝑚, 𝑐ℎ𝑜𝑜𝑠𝑒𝑠 𝑠𝑎𝑚𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎∗ ∀𝑚 − 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟′𝑠 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦
 

Formal Babbling Equilibrium Conditions are: Receiver chooses 𝑎∗ to maximize expected utility given 

the prior 𝐹(𝜃): 

equation 97 

𝑎∗ ∈ arg max
𝑎∈𝐴

∫ 𝑢𝑅(𝑎, 𝜃)𝑑𝐹(𝜃)
Θ

 

Sender sends any message 𝑚 ∈ 𝑀 regardless of 𝜃, since: 

equation 98 

∀𝜃 ∈ Θ, 𝑚 ∈ arg max
𝑚′∈𝑀

𝑢𝑆(𝑎∗, 𝜃) 

Since 𝑎∗is fixed, sender has no incentive to send different messages, hence any message is equally 

optimal. Common Knowledge & Equilibrium 

✓ The fact that the receiver will ignore the message becomes common knowledge. 

✓ Thus, the sender knows it is pointless to signal truthfully. 

✓ The equilibrium becomes self-enforcing: no deviation is profitable. 

Example: Crawford and Sobel (1982) Setup 

Let: 

✓ 𝜃 ∈ [0,1]  
✓ 𝐴 = [0,1] 
✓ 𝑢𝑅(𝑎, 𝜃) = −(𝑎 − 𝜃)2 

✓ 𝑢𝑆(𝑎, 𝜃) = −(𝑎 − 𝜃 − 𝑏)2, for bias 𝑏 > 0 

Example: Crawford and Sobel (1982) Setup 
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equation 99 

𝑎∗ = arg max
𝑎∈[0,1]

∫ −(𝑎 − 𝜃)2𝑑𝜃 = 𝔼[𝜃] =
1

2

1

0

   

Sender has utility: 

equation 100 

𝑢𝑆(𝑎∗, 𝜃) = − (
1

2
− 𝜃 − 𝑏)

2

  

Sender cannot improve by sending another message since 𝑎∗  is fixed. Bias 𝑏 > 0 means sender 

prefers a higher action than the receiver.Now we will compare babbling and partially Informative 

Equilibria. Receiver picks action 𝑎∗ based on prior: 

equation 101 

𝑎∗ = arg max
𝑎∈[0,1]

∫ −(𝑎 − 𝜃)2𝑑𝜃 = arg min
𝑎

∫ (1 − 𝜃)2𝑑𝜃 ⇒ 𝑎∗
1

0

= 𝔼[𝜃] =
1

2

1

0

   

Sender again has utility: 𝑢𝑆(𝑎∗, 𝜃) = − (
1

2
− 𝜃 − 𝑏)

2
 . Partition the state space into 𝑁 intervals: 

equation 102 

[0, 𝜃1], [𝜃1, 𝜃2), … , [𝜃𝑁−1, 1] 

Sender reports which interval 𝜃 falls into.Receiver’s best response in each interval: 

equation 103 

𝑎𝑖 = 𝔼[𝜃|𝜃 ∈ [𝜃𝑖−1, 𝜃𝑖)] =
𝜃𝑖−1 + 𝜃𝑖

2
 

Sender prefers interval 𝑖 iff:𝜃 ∈ [𝜃𝑖−1, 𝜃𝑖) ⇒ 𝑎𝑖.This leads to the following indifference conditions at 

cutoff 𝜃𝑖: 

equation 104 

𝑢𝑆(𝑎𝑖, 𝜃𝑖) = 𝑢𝑆(𝑎𝑖+1, 𝜃𝑖) ⇒ (𝑎𝑖 − 𝜃𝑖 − 𝑏)2 = (𝑎𝑖+1 − 𝜃𝑖 − 𝑏)2 

This gives the fixed point equations for cutoffs 𝜃𝑖 and actions 𝑎𝑖.Next, we’ll: Simulate the sender's 

utility in both equilibria across the state space.  Two plots below contain: Sender utility functions, 

strategies (actions based on messages), message cutoffs. In the plot dashed line: Utility in the babbling 

equilibrium, where the receiver ignores the message and always chooses action 𝑎 = 0.5. Solid line: 

Utility in the 2-partition equilibrium, where the sender partially reveals their type using message 

intervals: 

equation 105 

𝑚1 → 𝜃 ∈ [0,0.5] → 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑝𝑖𝑐𝑘𝑠 𝑎 = 0.25 

𝑚2 → 𝜃 ∈ [0,0.5] → 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑝𝑖𝑐𝑘𝑠 𝑎 = 0.75 
 

One can see the sender’s utility is higher in the partially informative equilibrium than in babbling, 

since the receiver responds differently based on the message. 
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Figure 24  Sender Utility in babbling vs partially informative equilibrium  

 
Source: Author’s own calculation 

Figure 25 Receiver strategies in babbling vs 2paprtition equilibrium 

 

Source: Author’s own calculation 

Receiver Strategies 

✓ In babbling, the action is constant: 𝑎 = 0.5 

✓ In 2-partition, the action depends on the sender's message: 

✓ For 𝜃 ≤ 0.5, receiver chooses 𝑎 = 0.25 

✓ For 𝜃 > 0.5, receiver chooses 𝑎 = 0.75 

The vertical line at 𝜃 = 0.5 is the cutoff where the sender is indifferent between the two messages, 

derived from the indifference condition. 
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Figure 26 Message function 𝑚(𝜃) as a step function for 2-partition equilibrium  

 

Source: Author’s own calculation 

Here is the plot of the message function 𝑚(𝜃) as a step function for the 2-partition equilibrium: 

✓ For 𝜃 ≤ 0.5, the sender sends message 1  

✓ For 𝜃 > 0.5, the sender sends message 2 

This corresponds exactly to the cutoff 𝜃1 = 0.5, derived from the indifference condition where the 

sender is just willing to switch messages. 

Appendix 2 Cheap Talk with Noise or Non-Monotonic Strategies 

1. Cheap Talk with Noise 

The sender cannot perfectly control the message — with some probability 𝜖, the message flips or is 

distorted. 

2. Non-Monotonic Strategies 

The sender's message does not increase with the type 𝜃 — maybe high types imitate low types or send 

random messages. 

Let’s assume: 

The sender wants to send message 𝑚 ∈ {1,2} , but with probability w.p. 𝜖 ∈ (0,1),the message is 

flipped. 

Table 10 Cheap talk with noise  

True Type Range Intended Msg Actual Msg (with noise) 

𝜃 ≤ 𝜃1 1 1 𝑤. 𝑝. 1 − 𝜖, 2𝑤. 𝑝. 𝜖 

𝜃 > 𝜃1 2 2 𝑤. 𝑝. 1 − 𝜀, 1 𝑤. 𝑝. 𝜀 

Source: Author’s own calculation 

Now, Bayes' rule updates the receiver's belief: 

 

 



УДК: 005.57 316.776 

50 
 

equation 106 

𝔼[𝜃|𝑚 = 1] =
(1 − 𝜀)𝔼[𝜃|𝜃 ≤ 𝜃1]𝑃1 + 𝜀𝔼[𝜃 > 𝜃1]𝑃2

(1 − 𝜀)𝑃1 + 𝑃2
  

Where: 

equation 107 

𝑃1 = ℙ(𝜃 ≤ 𝜃1) = 𝜃1

𝑃2 = 1 − 𝜃1
 

This makes the receiver’s action more conservative — less responsive to the message due to 

uncertainty. Non-Monotonic Strategies. Here, imagine: 

✓ Types in the middle 𝜃 ∈ (0.4,0.6) send message 2 

✓ Low and high types send message 1 

Such behavior arises in signaling games with pooling or discontinuous preferences. In formulas: 

equation 108 

𝑚(𝜃) = {
1    𝜃 ∈ (0,0.4) ∪ (0.6,1)

2             𝜃 ∈ (0.4,0.6)
 

This causes non-monotonicity in 𝑚(𝜃) and non-monotonic belief updating by the receiver. This is 

plotted next.  

Figure 27 message functions:2-partition vs non-monotonic  

 

Source: Author’s own calculation 
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Figure 28 Receiver action with Noisy cheap talk  

 

Source: Author’s own calculation 

Figure 29 Sender utility under noisy cheap talk 𝜀 = 0.2 

 

Source: Author’s own calculation 

✓ Message Functions Compared 

✓ Dashed line: Standard 2-partition — monotonic: low types send Message 1, high types send 

Message 2. 
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✓ Solid line: Non-monotonic strategy — low and high types send Message 1, middle types send 

Message 2. 

✓ This could arise when mid-types want to differentiate from others or due to discontinuous 

incentives. 

With noise 𝜀 = 0.2, the message is less reliable. Receiver plays 𝑎 = 𝔼[𝜃|𝑚] but because of noise: 

✓ Beliefs are less extreme. 

✓ For Message 1: action moves upward 

✓ For Message 2: action moves downward 

✓ This reduces the information content of the message — moving us closer to babbling. 

Sender’s utility  

equation 109 

𝑢𝑆 = −(𝑎(𝜃) − 𝜃 − 𝑏)2 


