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SOME GENERALIZATIONS OF RECURSIVE DERIVATES OF k-ary OPERATIONS

Aleksandra Mileva!, Vesna Dimitrova?
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Abstract. We present several results about recursive derivates of k-
ary operations defined on finite set (). They are generalizations of some
binary cases given by Larionova-Cojocaru and Syrbu [7]. Also, we present
several experimental results about recursive differentiability of ternary
quasigroups of order 4. We also prove that the multiplication group of
k-ary quasigroups obtained by recursive differentiability of a given k-ary
quasigroup (Q, f) is a subgroup of the multiplication group of the (@, f).

Keywords: Recursively t-differentiable quasigroups, k-ary operations
2010 Mathematics Subject Classification. 20N05, 20N15, 05B15,
94B60.

1 Introduction

Let @ be a nonempty set and let ¢ and k£ be a positive integers, i < k. We will

use (z¥) to denote the (k — i+ 1)-tuple (z;,...,2;) € QF~+1 and % to denote
the k-tuple (z,...,2) € Q*. A k—ary operation f on the set @ is a mapping
f: Q% — Q defined by f: (z¥) = 2441, for which we write f(2) = xp41. A k-
ary groupoid (k > 1) is an algebra (@, f) on a nonempty set () as its universe and
with one k-ary operation f. A k-ary groupoid (Q, f) is called a k-ary quasigroup
(of order |Q| = q) if any k of the elements a1, as,...,ax41 € Q, satisfying the
equality
fa) = any1,

uniquely specifies the remaining one.

The k—ary operations f1, fo,..., fa,1 < d < k, defined on a set () are or-
thogonal if the system {f;(z}) = a;}%, has exactly ¢"~% solutions for any
ai,...,aq € Q, where ¢ = |Q| [4, 3]. There is one-to-one correspondence between
the set of all k-tuples of orthogonal k-ary operations < fi, fa, ..., fr > defined
on a set Q and the set of all permutations 6 : Q% — QF ([4]), given by

0(zt) = (fi(2}), fo(@1), .-, fa(al)).
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The k-ary operation I;, 1 < j < k, defined on Q with I;(z}) = z; is called
the j-th selector or the j-th projection.

A system X = {f1, fa,..., fs}s>k of k-ary operations is called orthogonal,
if every k operations of X are orthogonal. A system X' = {f1, fa,..., fr},r>1
of distinct k—ary operations defined on a set () is called strong orthogonal
if the system {I1,..., I, f1, f2,..., fr} is orthogonal, where each I;,1 < j <k,
is j—th selector. It follows that each operation of a strong orthogonal system,
which is not a selector, is a k-ary quasigroup operation.

A code C C Q" is called a complete k-recursive code if there exists a
function f: Q¥ — Q (1 < k < n) such that every code word (ug,...,u,_1) € C
satisfies the conditions u; 1 = f(uf%_l) for every i =0,1,...,n—k — 1, where
ug, - .., Up—1 € Q. It is denoted by C(n, f).

C(n, f) can be represented by

Cln, ) = {(r, fO @), ..., f7F D (@) - (F) € Q*)

where
0 = FO (k) = f(ah),

fO = fO () = f(a5, f)

FED = fED(@h) = flay, fO,..., fE2))

f(z'—l—k) _ f(i-l—k:)(x/lc) — f(f(i), el f(i+k—1)) for i > 0

are recursive derivatives of f. The general form of the recursive derivatives
for any k-ary operation f is given in [6], and f(") = 6" where 6 : Q*F —
Q" 0(a}) = (a5, f(aF)).

A k-quasigroup (Q, f) is called recursively t-differentiable if all its recur-
sive derivatives f(O, ..., f®) are k-ary quasigroup operations [5]. A k-quasigroup
(Q, f) is called t-stable if the system of all recursive derivatives f © .., f® of
f is an orthogonal system of k-ary quasigroup operations, i.e. C(k+t+ 1, f) is
an MDS code [5]. A k-ary quasigroup (@, f) is called strongly recursively t-
differentiable if it is recursively ¢-differentiable and ft+1) = I (introduced
for binary case in [1]). A k-ary quasigroup (Q, f) is strongly recursively 0-
differentiable if fM) = I;.

It is clear that if (@, f) is a recursively t-differentiable k-ary quasigroup
with recursive derivatives f(@ ..., f®  then its first recursive derivate f() is
a recursively (¢ — 1)-differentiable k-ary quasigroup with recursive derivatives
fO 0 f® and (t—1)-th recursive derivate f¢~1 is a recursively 1-differentiable
k-ary quasigroup with recursive derivatives f=1) f(®),

2 Generalisation

The following results are generalisation of binary cases for recursive derivates
from [7].

Lemma 1. Let (Q, f) be a k-ary groupoid. For every (z¥) € QF andn € N the
following equalities hold:

(k) = f U (@, FO(ah))
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Proof. Let f) = f) (k) foralln € N.Forn = 1, f()(ak) = fO (25, FO (2F)).

Let us suppose that f(™) (z%) = f=D(2k O (2h)) for0<n <s—1 < k—1.
Then for n = s, using this assumption, we get:

FED(ak, FO k) = Dk f O FO gk fO)) = =D (gh O r)y
— f(s_?’)(mfj,f(o),f(l),f(o)(x’g,f(o),f(l))) = fO=3) gk O ) £
= fEm @k, O e O gk p O psmDy)
= fO @@k, f O fem] plemD)y
= ) (})

For n = k, we have

FED @k, FO@h)) = fED(ak, fO fO (k] pOy) = fB=2) gk (O p1))

— f(k—(k—l))(xﬁ7f(0) f(k 3) f(O)( f(O) 7f(k—3))>
— f(l)(iUk,f 7‘.‘h’c(kf?))’f (k—2) )
- f(O)(f(O), o, fE=2) (0 (xk,f(o), o ’f(k—3)’f(k—2)))
— f(O)(f(O)7 e f(k—Z)7 f(k—l))
= [P (af)

Now let suppose that f()(z%) = fO=D(zk FO k) for k+1<n<s—1.
Then for n = s, using this assumption, we get:

FOTI @l fO @) = FO g, 1O, F O, £O) = £, 1O, 1Y)
= [k fOf O pO gk O p WYy = pls=3) gk O ) (2))

- f(sf(kfl))(xﬁ’ FO L pe=3)f(0) (zF_ ., o f(k*3)))
= [l (g f O p=3) p(k=2)y
- f(s—k)(f(0)7 o f(k—2)7 f(O)(m]w f(O)7 . f(k—3)7 f(k—2)))
- f(s—k)<f(0) f(k—Q) f(k—l))
= fls= (k+1))(f L D O (f(O) A f(k*1)>)
_ f s— (k+1)(f f(k 1) f(k )
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= f(s—(k+s—k))(f(s—k), o 7f(s—2)’ f(O)(f(s—k—1)7 . f(s—3)’ f(s—Q)))
= FOUEP e femh)
= )
= Lemma 1 is true for every n € N.

Proposition 1. Let (Q, f) be a k-ary groupoid. For every (z¥) € QF and for
every j=k—1,...,n— 1, where n > k, the following equalities hold:

F ) = fOImD (D@, 9 ())
Proof. Let f() = f()(x¥), for all n € N. For n = k and j = k — 1, we have
FE @) = FOF ), ... fED ()

Suppose that ) (zkF) = fO—I=D(fU=k+D) (kY @) (2h)) for every j = k —
1,...,2—1,2=mn. For i = n + 1, we have:

JOD @) = fO (D )
- f(O)(f(nfk+1)fjfl(f(jfk+1)’ N "f(j)), LTI (pURD ,f(j)))
fHD=ImD (R @), fO (@)
= Proposition 1 is true for every n > kand j=k—1,...,n— 1.

Proposition 2. If two k-ary groupoids (Q1, f) and (Q2, g) are isomorphic, then
(Q1..f™) = (Q2,9'™) for every n > 1.

Proof. Let ¢ be an isomorphism from (Q1, f) to (Q2,g). Then @(f(zF)) =
g(o(x1),...,p(xy)) for every (af) € Q¥. For n = 1, we have

p(fV (@) = o(f (a5, f(@)) = g(e(@a), ... p(an), o(f(21))) =

9(e(@2), ... (k). g(o(21), ..., 0(n))) = g (p(a1), ..., (1))

Suppose that o(f@(2F)) = ¢ (p(x1),...,o(zx)) for 2 <i < n— 1. Because
fO = £ we have

(M (ah) = o(f D (@f, FO ) = 9"V ((@2), - . (@), o(f O (21)))

= g(n_l)(¢($2)7 s 790(‘%/6)79(0) (So(xl)7 s 790(5676))) = g(n) (90($1)7 s 7‘70(Ik))
So, we have (Q1, f(™) = (Qq, g'™) for every n > 1.

Proposition 3. If (Q, f) is a k-ary groupoid, then the following holds:

Aut(Q, f) < Aut(Q, f™),¥n > 1
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Proof. If ¢ € Aut(Q, f), then ¢(f(z¥)) = f(p(x1),...,p(x1)) for every (z¥) €
QF. For n =1, we have

Qo(f(l)(xllc)) = (p(f(xlga f(xlf)) = f(@(Q:Q)? S 790(@%)7 @(f(xlf») =
f(QD(SU2), R 90('77/6)’ f(90($1)7 s ,(p(CCk))) = f(l)(cp(xl)a SRR (p(l‘k)))

So, ¢ € Aut(Q, fM). Suppose that ¢ € Aut(Q, f¥)) for every 2 < k <n — 1.
(M (ah) = o(f D (@f, FOh) = O (p(aa), - oan), o (FO(h)))
= f(n_l)(90($2)7 s 790(1‘1?)7 f(o)(90<x1)’ s 780(3316))) = f(n)((p($1>7 s 790($k’))

So, ¢ € Aut(Q, (™).

The center of a k-ary quasigroup (Q, f), denoted by C(Q, f), consists of all
those elements, ¢, such that

. 1
f(x’i 1707 x'];—‘,—l) = f(le , G, x?—&-l)

for all (%) € QF ([2]).

Proposition 4. If (Q, f) is a recursively 1-differentiable k-ary quasigroup, then
the following holds:

C(@, f) <C@, fY)

Proof. Let ¢ € C(Q, f), then f(o)(xi_l,c,xfﬂ) = f(o)(as{_l,c,xé‘?H) for all
(%) € QF. We have

f(l)( Ca mz—i—l) f(o ( Ca xz—i—l? f( )( Ca mz—i—l))
f(0)< Ty C7 37@+1:f ( jil:C; JT?H)) = f(o)@%ilaca $§+1,f(0)(${71707 x?+1)> =

= f(l) (l"{_l, c, x?—i—l))

Corollary 1. If (Q, f) is a recursively t-differentiable k-ary quasigroup, then
the following holds:

C(Q.f) <CQ,f™),1<n<t
Let (a®~') be an arbitraty element of Q*~'. The mapping L Q= Q
(t=1,...,k) defined by
L a-1)(2) = fla™ 2 af™h)

» "

is called i-translation of the k-ary groupoid (Q, f) with respect to (a¥~!). If
(Q, f) is k-ary quasigroup, the group generated by the set of all i-translations
of the (@, f) is called the multiplication group of a quasigroup (Q, f), and can
be represented by:

M(Q, f) = <Li7(a§71)\(a’f‘1) el i=1,... k).



Aleksandra Mileva, Vesna Dimitrova

Proposition 5. If (Q, f) is a recursively 1-differentiable k-ary quasigroup, then
the following holds:

M(Q, fM) < M@, f)

Proof. For i =1, we have

L s

o @) = T @, ab ™) = FO O (@, ab )

s\a@q

= FO@ Ly (@) = Ly a1y © D 1) (@)
Lt M

= Ly 1) € M(Q. )

For 2 <17 < k, we have

L0 @) = fV el = O w T O e w k)

i—l,(a};_l,Li’(a;f_”(z)) €9

Because Li’(a;ffl)(:c) €EQ=> (ag_l,LMa;ffl)(a:)) et = Lil()ak,l) e M(Q,f).
So, M(Q, fV) < M(Q, f)-

Corollary 2. If (Q, f) is a recursively t-differentiable k-ary quasigroup, then
the following holds:

M(Q. f™) < M(Q.f).1<n<t
An element e € @ is called an i-th unit of the k-ary groupoid (@, f) if the
following equation holds:
for any x € Q.

Lemma 2. If (Q, f) is a recursively 1-differentiable k-ary quasigroup with 1-th
unit, then the mapping x — f(%) is a bijection.

Proof. If the k-ary quasigroup (@, f) has the 1-th unit e, then

k—1

e 2y = 1" fle, ah) = 10t a) = £(8)

for every x € @, so the mapping = — f(g) is a bijection on Q.
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In general, the two converse statements are not always true. First, if (Q, f)
is a k-ary quasigroup with 1-th unit, and the mapping x — f (5:) is a bijection
on @, than (@, f) is not always a recursively 1-differentiable k-ary quasigroup.
For example, the quasigroup (Zs,-), where z -y = x + 3y + 3z(mod 5), is a
ternary quasigroup with 1-th unit 0 and x — f(x,z,x) is a bijection on @, but
(Zs,-) is not a recursively 1-differentiable ternary quasigroup. Second, if (Q, f)

is a recursively 1-differentiable k-ary quasigroup, and the mapping z — f (%) is
a bijection on @, than (Q, f) does not have always a 1-th unit. For example,
the quasigroup (Zs,-), where = -y = 2z + 2y + 2z(mod 5), is a recursively 1-
differentiable ternary quasigroup and z — f(z,z,x) is a bijection on @, but
(Zs,-) does not have a 1-th unit.

Corollary 3. If(Q, f) is a recursively t-differentiable k-ary quasigroup (1 <t <
k) with the same 1-th to t-th unit e, then the mapping x — f(%) is a bijection.

Corollary 4. If (Q, f) is a recursively t-differentiable k-ary loop (1 <t < k),
then the mapping x — f(g) is a bijection.

Corollary 5. If (Q, f) is a recursively t-differentiable k-ary group (1 <t < k),
then the mapping x — f(:?:) is a bijection.

3 Some results for ternary quasigroups

By experiments, we obtained the following results:

— there are 96 recursively 1-differentiable ternary quasigroups of order 4, and

all are 1-stable

there are no recursively t-differentiable ternary quasigroups of order 4, for

t>2,

— there are 64 strongly recursively O-differentiable ternary quasigroups of order
47

— there are 8 strongly recursively 1-differentiable ternary quasigroups of order
4.

Bellow is example of strongly recursively 1-differentiable and 1-stable ternary
quasigroups of order 4.

{{{1,2,3,4},{8,4,1,2},{4,3,2,1},{2,1,4,3}}, {{2, 1, 4,3}, {4,3,2,1},{3,4,1, 2}, {1, 2,3, 4} },
{{3,4,1,2},{1,2,3,4},{2,1,4,3},{4,3,2,1}},{{4,3,2,1},{2,1,4,3},{1,2,3,4},{3,4, 1,2} }}
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