
BALKAN JOURNAL 
OF APPLIED MATHEMATICS 

AND INFORMATICS

(BJAMI)

GOCE DELCEV UNIVERSITY - STIP, REPUBLIC OF MACEDONIA
FACULTY OF COMPUTER SCIENCE

ISSN 2545-479X print 
ISSN 2545-4803 on line

ISSN 2545-479X print 
ISSN 2545-4803 on line



BALKAN JOURNAL 
OF APPLIED MATHEMATICS 

AND INFORMATICS

(BJAMI)

GOCE DELCEV UNIVERSITY - STIP, REPUBLIC OF MACEDONIA
FACULTY OF COMPUTER SCIENCE

ISSN 2545-479X print 
ISSN 2545-4803 on line



Managing  editor
Biljana Zlatanovska Ph.D.

Editor in chief
Zoran Zdravev Ph.D.

Technical editor
Slave Dimitrov

Address of the editorial office
Goce Delcev University – Stip
Faculty of philology
Krste Misirkov 10-A 
PO box 201, 2000 Štip, 
R. of Macedonia

AIMS AND SCOPE:
BJAMI publishes original research articles in the areas of applied mathematics and informatics.

Topics:
1. Computer science;
2. Computer and software engineering;
3. Information technology;
4. Computer security;
5. Electrical engineering;
6. Telecommunication;
7. Mathematics and its applications;
8. Articles of interdisciplinary of computer and information sciences with education,  

economics, environmental, health, and engineering.

BALKAN JOURNAL 
OF APPLIED MATHEMATICS AND INFORMATICS (BJAMI), Vol 1

  ISSN 2545-479X print 
ISSN 2545-4803 on line
Vol. 1, No. 1, Year 2018



EDITORIAL BOARD

Adelina Plamenova Aleksieva-Petrova, Technical University – Sofia, 
Faculty of Computer Systems and Control, Sofia, Bulgaria

Lyudmila Stoyanova, Technical University - Sofia , Faculty of computer systems and control, 
Department – Programming and computer technologies, Bulgaria 

Zlatko Georgiev Varbanov, Department of Mathematics and Informatics, 
Veliko Tarnovo University, Bulgaria 

Snezana Scepanovic, Faculty for Information Technology, 
University “Mediterranean”,  Podgorica, Montenegro

 Daniela Veleva Minkovska, Faculty of Computer Systems and Technologies, 
Technical University, Sofia, Bulgaria

 Stefka Hristova Bouyuklieva, Department of Algebra and Geometry, 
Faculty of Mathematics and Informatics, Veliko Tarnovo University, Bulgaria

Vesselin Velichkov, University of Luxembourg, Faculty of Sciences, 
Technology and Communication (FSTC), Luxembourg

Isabel Maria Baltazar Simões de Carvalho, Instituto Superior Técnico, 
Technical University of Lisbon, Portugal 

Predrag S. Stanimirović, University of Niš, Faculty of Sciences and Mathematics, 
Department of Mathematics and Informatics, Niš, Serbia

Shcherbacov Victor, Institute of Mathematics and Computer Science, 
Academy of Sciences of Moldova, Moldova

Pedro Ricardo Morais Inácio, Department of Computer Science, 
Universidade da Beira Interior, Portugal

Sanja Panovska, GFZ German Research Centre for Geosciences, Germany
Georgi Tuparov, Technical University of Sofia Bulgaria 

Dijana Karuovic, Tehnical Faculty “Mihajlo Pupin”, Zrenjanin, Serbia
Ivanka Georgieva, South-West University, Blagoevgrad, Bulgaria

Georgi Stojanov, Computer Science, Mathematics, and Environmental Science Department 
The American University of Paris, France

Iliya Guerguiev Bouyukliev, Institute of Mathematics and Informatics, 
Bulgarian Academy of Sciences, Bulgaria

 Riste Škrekovski, FAMNIT, University of Primorska, Koper, Slovenia
 Stela Zhelezova, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria
 Katerina Taskova, Computational Biology and Data Mining Group, 

Faculty of Biology, Johannes Gutenberg-Universität Mainz (JGU), Mainz, Germany.
 Dragana Glušac, Tehnical Faculty “Mihajlo Pupin”, Zrenjanin, Serbia 
 Cveta Martinovska-Bande, Faculty of Computer Science, UGD, Macedonia
 Blagoj Delipetrov, Faculty of Computer Science, UGD, Macedonia
 Zoran Zdravev, Faculty of Computer Science, UGD, Macedonia
 Aleksandra Mileva, Faculty of Computer Science, UGD, Macedonia
 Igor Stojanovik, Faculty of Computer Science, UGD, Macedonia
 Saso Koceski, Faculty of Computer Science, UGD, Macedonia
 Natasa Koceska, Faculty of Computer Science, UGD, Macedonia
 Aleksandar Krstev, Faculty of Computer Science, UGD, Macedonia
 Biljana Zlatanovska, Faculty of Computer Science, UGD, Macedonia
 Natasa Stojkovik, Faculty of Computer Science, UGD, Macedonia
 Done Stojanov, Faculty of Computer Science, UGD, Macedonia
 Limonka Koceva Lazarova, Faculty of Computer Science, UGD, Macedonia
 Tatjana Atanasova Pacemska, Faculty of Electrical Engineering, UGD, Macedonia



4



5

C O N T E N T

Aleksandar, Velinov, Vlado, Gicev  
PRACTICAL APPLICATION OF SIMPLEX METHOD FOR SOLVING 
LINEAR PROGRAMMING PROBLEMS  ...................................................................................... 7

Biserka Petrovska , Igor Stojanovic , Tatjana Atanasova Pachemska
CLASSIFICATION OF SMALL DATA SETS OF IMAGES WITH 
TRANSFER LEARNING IN CONVOLUTIONAL NEURAL NETWORKS  ............................ 17

Done Stojanov
WEB SERVICE BASED GENOMIC DATA RETRIEVAL ............................................................. 25

Aleksandra Mileva, Vesna Dimitrova
SOME GENERALIZATIONS OF RECURSIVE DERIVATES 
OF k-ary OPERATIONS .................................................................................................................... 31

Diana Kirilova Nedelcheva
SOME FIXED POINT RESULTS FOR   CONTRACTION 
SET - VALUED MAPPINGS IN CONE METRIC SPACES .......................................................... 39

Aleksandar Krstev, Dejan Krstev, Boris Krstev, Sladzana Velinovska
DATA ANALYSIS AND STRUCTURAL EQUATION MODELLING 
FOR DIRECT FOREIGN INVESTMENT FROM LOCAL POPULATION .............................. 49

Maja Srebrenova Miteva, Limonka Koceva Lazarova 
NOTION FOR CONNECTEDNESS AND PATH CONNECTEDNESS IN 
SOME TYPE OF TOPOLOGICAL SPACES ................................................................................... 55

The Appendix

Aleksandra Stojanova , Mirjana Kocaleva , Natasha Stojkovikj , Dusan Bikov , 
Marija Ljubenovska , Savetka Zdravevska , Biljana Zlatanovska , Marija Miteva , 
Limonka Koceva Lazarova
OPTIMIZATION MODELS FOR SHEDULING IN KINDERGARTEN 
AND HEALTHCARE CENTES ........................................................................................................ 65

Maja Kukuseva Paneva, Biljana Citkuseva Dimitrovska, Jasmina Veta Buralieva, 
Elena Karamazova, Tatjana Atanasova Pacemska
PROPOSED QUEUING MODEL M/M/3 WITH INFINITE WAITING 
LINE IN A SUPERMARKET ............................................................................................................ 73 

Maja Mijajlovikj1, Sara Srebrenkoska, Marija Chekerovska, Svetlana Risteska, 
Vineta Srebrenkoska
APPLICATION OF TAGUCHI METHOD IN PRODUCTION OF SAMPLES
PREDICTING PROPERTIES OF POLYMER COMPOSITES  .................................................... 79

Sara Srebrenkoska, Silvana Zhezhova, Sanja Risteski, Marija Chekerovska 
Vineta Srebrenkoska Svetlana Risteska
APPLICATION OF FACTORIAL EXPERIMENTAL DESIGN IN 
PREDICTING PROPERTIES OF POLYMER COMPOSITES ..................................................... 85

Igor Dimovski, Ice Gjumandeloski, Filip Kochoski, Mahendra Paipuri, 
Milena Veneva , Aleksandra Risteska
COMPUTER AIDED (FILAMENT WINDING) TAPE PLACEMENT 
FOR ELBOWS. PRACTICALLY ORIENTATED ALGORITHM ................................................ 89



PRACTICAL APPLICATION OF SIMPLEX METHOD FOR SOLVING LINEAR 
PROGRAMMING PROBLEMS 

 
Aleksandar, Velinov1, Vlado, Gicev 1  

 
1Faculty of Computer Science, Goce Delcev University, Stip, Macedonia  

aleksandar.velinov@ugd.edu.mk 
vlado.gicev@ugd.edu.mk 

 
Abstract: In this paper we consider application of linear programming in solving optimization problems with 
constraints. We used the simplex method for finding a maximum of an objective function. This method is 
applied to a real example. We used the “linprog” function in MatLab for problem solving. We have shown, 
how to apply simplex method on a real world problem, and to solve it using linear programming. Finally we 
investigate the complexity of the method via variation of the computer time versus the number of control 
variables. 
Keywords: simplex method, linear programming, objective function, complexity. 
 
 

1. Introduction  
Linear programming was developed during World War II, when a system with which to maximize the efficiency 

of resources was of utmost importance. New war-related projects demanded optimization of constrained resources. 
“Programming” was used as a military term that referred to activities such as planning schedules efficiently or 
deploying men optimally [1].  

Mathematical programming is that branch of mathematics dealing with techniques for maximizing or minimizing 
an objective function subject to linear, nonlinear, and integer constraints on the variables. Special case of mathematical 
programming is a linear programming. Linear programming is concerned with the maximization or minimization of a 
linear objective function with many variables subject to linear equality and inequality constraints [2]. Linear 
programming can be viewed as a part of a great revolutionary development. It has the ability to define general goals 
and to find detailed decisions in order to achieve that goals. It can be faced with practical situations of great complexity. 
To formulate real-world problems, linear programming uses mathematical terms (models), techniques for solving the 
models (algorithms), and engines for executing the steps of algorithms (computers and software) [3].  

Optimization principles have important aspect in modern engineering design and system operations in various 
areas. Computers capable of solving large-scale problems contribute to the recent development of new optimization 
techniques. The main goal of these techniques is to optimize (maximize or minimize) some function f. This functions 
are called objective functions. As a case study we used the objective function f that represent the revenue of the 
production of electronic elements, more precisely graphics cards. We used methods for maximizing the revenue of 
the company. Using linear programming, we can model wide variety of objective functions as: yield per minute in a 
chemical process, revenue in a production of cars, the hourly number of customers served in a bank, the mileage per 
gallon of a certain type of car, the production of computers on monthly basis and so on. Sometimes we may want to 
minimize f if f is the cost per unit of producing certain graphics cards (opposite of our example where we maximize 
the revenue of production), the operating cost of some power plant, the time needed to produce a new type of car, the 
daily loss of heat in a heating system, the costs for IT infrastructure in some company and so on.  

In most optimization problems the objective function f depends on several variables:  

x1, x2,…..xn                                                                                                                                                                            

These variables are called “control variables” because we can control them, that is, we can choose their values. For 
example the production of some plant may depend on temperature x1, moisture content x2, nitrogen in the soil x3. The 
efficiency of a certain air-conditioning system may depend on air pressure x1, temperature x2, cross-sectional area of 
outlet x3, moisture content x4, and so on. The optimization theory develops methods for optimal choices of x1,…,xn, 



31

[6] Needleman, S.B., Wunsch, C.D. (1970). "A general method applicable to the search for similarities in the 
amino acid sequence of two proteins": Elsevier, Journal of Molecular Biology. 48(3): 443–453. 

[7] Smith, T.F., Waterman, M.S. (1981). "Identification of Common Molecular Subsequences": Elsevier, Journal 
of Molecular Biology. 147: 195–197. 

[8] Pearson, W.R. (1994). "Using the FASTA program to search protein and DNA sequence databases": 
Humana Press, Computer Analysis of Sequence Data. 307-331.  

Some Generalizations Of Recursive Derivates of
k-ary Operations

Aleksandra Mileva, Vesna Dimitrova
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Abstract. We present several results about recursive derivates of k-
ary operations defined on finite set Q. They are generalizations of some
binary cases given by Larionova-Cojocaru and Syrbu [7]. Also, we present
several experimental results about recursive differentiability of ternary
quasigroups of order 4. We also prove that the multiplication group of
k-ary quasigroups obtained by recursive differentiability of a given k-ary
quasigroup (Q, f) is a subgroup of the multiplication group of the (Q, f).

Keywords: Recursively t-differentiable quasigroups, k-ary operations
2010 Mathematics Subject Classification. 20N05, 20N15, 05B15,
94B60.

1 Introduction

Let Q be a nonempty set and let i and k be a positive integers, i ≤ k. We will

use (xk
i ) to denote the (k− i+1)-tuple (xi, . . . , xk) ∈ Q(k−i+1), and

k
x to denote

the k-tuple (x, . . . , x) ∈ Qk. A k−ary operation f on the set Q is a mapping
f : Qk → Q defined by f : (xk

1) → xk+1, for which we write f(xk
1) = xk+1. A k-

ary groupoid (k ≥ 1) is an algebra (Q, f) on a nonempty set Q as its universe and
with one k-ary operation f . A k-ary groupoid (Q, f) is called a k-ary quasigroup
(of order |Q| = q) if any k of the elements a1, a2, . . . , ak+1 ∈ Q, satisfying the
equality

f(ak1) = ak+1,

uniquely specifies the remaining one.
The k−ary operations f1, f2, . . . , fd, 1 ≤ d ≤ k, defined on a set Q are or-

thogonal if the system {fi(xk
1) = ai}di=1 has exactly qk−d solutions for any

a1, . . . , ad ∈ Q, where q = |Q| [4, 3]. There is one-to-one correspondence between
the set of all k-tuples of orthogonal k-ary operations < f1, f2, . . . , fk > defined
on a set Q and the set of all permutations θ : Qk → Qk ([4]), given by

θ(xk
1) → (f1(x

k
1), f2(x

k
1), . . . , fd(x

k
1)).

UDK:  512.548:517.22
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The k-ary operation Ij , 1 ≤ j ≤ k, defined on Q with Ij(x
k
1) = xj is called

the j-th selector or the j-th projection.
A system Σ = {f1, f2, . . . , fs}s≥k of k-ary operations is called orthogonal,

if every k operations of Σ are orthogonal. A system Σ = {f1, f2, . . . , fr}, r ≥ 1
of distinct k−ary operations defined on a set Q is called strong orthogonal
if the system {I1, . . . , Ik, f1, f2, . . . , fr} is orthogonal, where each Ij , 1 ≤ j ≤ k,
is j−th selector. It follows that each operation of a strong orthogonal system,
which is not a selector, is a k-ary quasigroup operation.

A code C ⊆ Qn is called a complete k-recursive code if there exists a
function f : Qk → Q (1 ≤ k ≤ n) such that every code word (u0, . . . , un−1) ∈ C
satisfies the conditions ui+k = f(ui+k−1

i ) for every i = 0, 1, . . . , n− k− 1, where
u0, . . . , uk−1 ∈ Q. It is denoted by C(n, f).

C(n, f) can be represented by

C(n, f) = {(xk
1 , f

(0)(xk
1), . . . , f

(n−k−1)(xk
1)) : (x

k
1) ∈ Qk}

where
f (0) = f (0)(xk

1) = f(xk
1),

f (1) = f (1)(xk
1) = f(xk

2 , f
(0))

. . .
f (k−1) = f (k−1)(xk

1) = f(xk, f
(0), . . . , f (k−2))

f (i+k) = f (i+k)(xk
1) = f(f (i), . . . , f (i+k−1)) for i ≥ 0

are recursive derivatives of f . The general form of the recursive derivatives
for any k-ary operation f is given in [6], and f (n) = fθn, where θ : Qk →
Qk, θ(xk

1) = (xk
2 , f(x

k
1)).

A k-quasigroup (Q, f) is called recursively t-differentiable if all its recur-
sive derivatives f (0), . . . , f (t) are k-ary quasigroup operations [5]. A k-quasigroup
(Q, f) is called t-stable if the system of all recursive derivatives f (0) . . . , f (t) of
f is an orthogonal system of k-ary quasigroup operations, i.e. C(k + t+ 1, f) is
an MDS code [5]. A k-ary quasigroup (Q, f) is called strongly recursively t-
differentiable if it is recursively t-differentiable and f (t+1) = I1 (introduced
for binary case in [1]). A k-ary quasigroup (Q, f) is strongly recursively 0-
differentiable if f (1) = I1.

It is clear that if (Q, f) is a recursively t-differentiable k-ary quasigroup
with recursive derivatives f (0) . . . , f (t), then its first recursive derivate f (1) is
a recursively (t − 1)-differentiable k-ary quasigroup with recursive derivatives
f (1) . . . , f (t) and (t−1)-th recursive derivate f (t−1) is a recursively 1-differentiable
k-ary quasigroup with recursive derivatives f (t−1), f (t).

2 Generalisation

The following results are generalisation of binary cases for recursive derivates
from [7].

Lemma 1. Let (Q, f) be a k-ary groupoid. For every (xk
1) ∈ Qk and n ∈ N the

following equalities hold:

f (n)(xk
1) = f (n−1)(xk

2 , f
(0)(xk

1))

Some Generalizations Of Recursive Derivates of k-ary Operations 3

Proof. Let f (i) = f (i)(xk
1), for all n ∈ N . For n = 1, f (1)(xk

1) = f (0)(xk
2 , f

(0)(xk
1)).

Let us suppose that f (n)(xk
1) = f (n−1)(xk

2 , f
(0)(xk

1)) for 0 ≤ n ≤ s−1 < k−1.
Then for n = s, using this assumption, we get:

f (s−1)(xk
2 , f

(0)(xk
1)) = f (s−2)(xk

3 , f
(0), f (0)(xk

2 , f
(0))) = f (s−2)(xk

3 , f
(0), f (1))

= f (s−3)(xk
4 , f

(0), f (1), f (0)(xk
3 , f

(0), f (1))) = f (s−3)(xk
4 , f

(0), f (1), f (2))

= . . . =

= f (s−s)(xk
s+1, f

(0), . . . , f (s−2), f (0)(xk
s , f

(0), . . . , f (s−1)))

= f (0)(xk
s+1, f

(0), . . . , f (s−2), f (s−1))

= f (s)(xk
1)

For n = k, we have

f (k−1)(xk
2 , f

(0)(xk
1)) = f (k−2)(xk

3 , f
(0), f (0)(xk

2 , f
(0))) = f (k−2)(xk

3 , f
(0), f (1))

= . . . =

= f (k−(k−1))(xk
k, f

(0), . . . , f (k−3), f (0)(xk
k−1, f

(0), . . . , f (k−3)))

= f (1)(xk, f
(0), . . . , f (k−3), f (k−2))

= f (0)(f (0), . . . , f (k−2), f (0)(xk, f
(0), . . . , f (k−3), f (k−2)))

= f (0)(f (0), . . . , f (k−2), f (k−1))

= f (k)(xk
1)

Now let suppose that f (n)(xk
1) = f (n−1)(xk

2 , f
(0)(xk

1)) for k + 1 ≤ n ≤ s− 1.
Then for n = s, using this assumption, we get:

f (s−1)(xk
2 , f

(0)(xk
1)) = f (s−2)(xk

3 , f
(0), f (0)(xk

2 , f
(0))) = f (s−2)(xk

3 , f
(0), f (1))

= f (s−3)(xk
4 , f

(0), f (1), f (0)(xk
3 , f

(0), f (1))) = f (s−3)(xk
4 , f

(0), f (1), f (2))

= . . . =

= f (s−(k−1))(xk
k, f

(0), . . . , f (k−3), f (0)(xk
k−1, f

(0), . . . , f (k−3)))

= f (s−(k−1))(xk, f
(0), . . . , f (k−3), f (k−2))

= f (s−k)(f (0), . . . , f (k−2), f (0)(xk, f
(0), . . . , f (k−3), f (k−2)))

= f (s−k)(f (0), . . . , f (k−2), f (k−1))

= f (s−(k+1))(f (1), . . . , f (k−1), f (0)(f (0), . . . , f (k−2), f (k−1)))

= f (s−(k+1)(f (1), . . . , f (k−1), f (k))

Aleksandra Mileva, Vesna Dimitrova
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The k-ary operation Ij , 1 ≤ j ≤ k, defined on Q with Ij(x
k
1) = xj is called

the j-th selector or the j-th projection.
A system Σ = {f1, f2, . . . , fs}s≥k of k-ary operations is called orthogonal,

if every k operations of Σ are orthogonal. A system Σ = {f1, f2, . . . , fr}, r ≥ 1
of distinct k−ary operations defined on a set Q is called strong orthogonal
if the system {I1, . . . , Ik, f1, f2, . . . , fr} is orthogonal, where each Ij , 1 ≤ j ≤ k,
is j−th selector. It follows that each operation of a strong orthogonal system,
which is not a selector, is a k-ary quasigroup operation.

A code C ⊆ Qn is called a complete k-recursive code if there exists a
function f : Qk → Q (1 ≤ k ≤ n) such that every code word (u0, . . . , un−1) ∈ C
satisfies the conditions ui+k = f(ui+k−1

i ) for every i = 0, 1, . . . , n− k− 1, where
u0, . . . , uk−1 ∈ Q. It is denoted by C(n, f).

C(n, f) can be represented by

C(n, f) = {(xk
1 , f

(0)(xk
1), . . . , f

(n−k−1)(xk
1)) : (x

k
1) ∈ Qk}

where
f (0) = f (0)(xk

1) = f(xk
1),

f (1) = f (1)(xk
1) = f(xk

2 , f
(0))

. . .
f (k−1) = f (k−1)(xk

1) = f(xk, f
(0), . . . , f (k−2))

f (i+k) = f (i+k)(xk
1) = f(f (i), . . . , f (i+k−1)) for i ≥ 0

are recursive derivatives of f . The general form of the recursive derivatives
for any k-ary operation f is given in [6], and f (n) = fθn, where θ : Qk →
Qk, θ(xk

1) = (xk
2 , f(x

k
1)).

A k-quasigroup (Q, f) is called recursively t-differentiable if all its recur-
sive derivatives f (0), . . . , f (t) are k-ary quasigroup operations [5]. A k-quasigroup
(Q, f) is called t-stable if the system of all recursive derivatives f (0) . . . , f (t) of
f is an orthogonal system of k-ary quasigroup operations, i.e. C(k + t+ 1, f) is
an MDS code [5]. A k-ary quasigroup (Q, f) is called strongly recursively t-
differentiable if it is recursively t-differentiable and f (t+1) = I1 (introduced
for binary case in [1]). A k-ary quasigroup (Q, f) is strongly recursively 0-
differentiable if f (1) = I1.

It is clear that if (Q, f) is a recursively t-differentiable k-ary quasigroup
with recursive derivatives f (0) . . . , f (t), then its first recursive derivate f (1) is
a recursively (t − 1)-differentiable k-ary quasigroup with recursive derivatives
f (1) . . . , f (t) and (t−1)-th recursive derivate f (t−1) is a recursively 1-differentiable
k-ary quasigroup with recursive derivatives f (t−1), f (t).

2 Generalisation

The following results are generalisation of binary cases for recursive derivates
from [7].

Lemma 1. Let (Q, f) be a k-ary groupoid. For every (xk
1) ∈ Qk and n ∈ N the

following equalities hold:

f (n)(xk
1) = f (n−1)(xk

2 , f
(0)(xk

1))

Some Generalizations Of Recursive Derivates of k-ary Operations 3

Proof. Let f (i) = f (i)(xk
1), for all n ∈ N . For n = 1, f (1)(xk

1) = f (0)(xk
2 , f

(0)(xk
1)).

Let us suppose that f (n)(xk
1) = f (n−1)(xk

2 , f
(0)(xk

1)) for 0 ≤ n ≤ s−1 < k−1.
Then for n = s, using this assumption, we get:

f (s−1)(xk
2 , f

(0)(xk
1)) = f (s−2)(xk

3 , f
(0), f (0)(xk

2 , f
(0))) = f (s−2)(xk

3 , f
(0), f (1))

= f (s−3)(xk
4 , f

(0), f (1), f (0)(xk
3 , f

(0), f (1))) = f (s−3)(xk
4 , f

(0), f (1), f (2))

= . . . =

= f (s−s)(xk
s+1, f

(0), . . . , f (s−2), f (0)(xk
s , f

(0), . . . , f (s−1)))

= f (0)(xk
s+1, f

(0), . . . , f (s−2), f (s−1))

= f (s)(xk
1)

For n = k, we have

f (k−1)(xk
2 , f

(0)(xk
1)) = f (k−2)(xk

3 , f
(0), f (0)(xk

2 , f
(0))) = f (k−2)(xk

3 , f
(0), f (1))

= . . . =

= f (k−(k−1))(xk
k, f

(0), . . . , f (k−3), f (0)(xk
k−1, f

(0), . . . , f (k−3)))

= f (1)(xk, f
(0), . . . , f (k−3), f (k−2))

= f (0)(f (0), . . . , f (k−2), f (0)(xk, f
(0), . . . , f (k−3), f (k−2)))

= f (0)(f (0), . . . , f (k−2), f (k−1))

= f (k)(xk
1)

Now let suppose that f (n)(xk
1) = f (n−1)(xk

2 , f
(0)(xk

1)) for k + 1 ≤ n ≤ s− 1.
Then for n = s, using this assumption, we get:

f (s−1)(xk
2 , f

(0)(xk
1)) = f (s−2)(xk

3 , f
(0), f (0)(xk

2 , f
(0))) = f (s−2)(xk

3 , f
(0), f (1))

= f (s−3)(xk
4 , f

(0), f (1), f (0)(xk
3 , f

(0), f (1))) = f (s−3)(xk
4 , f

(0), f (1), f (2))

= . . . =

= f (s−(k−1))(xk
k, f

(0), . . . , f (k−3), f (0)(xk
k−1, f

(0), . . . , f (k−3)))

= f (s−(k−1))(xk, f
(0), . . . , f (k−3), f (k−2))

= f (s−k)(f (0), . . . , f (k−2), f (0)(xk, f
(0), . . . , f (k−3), f (k−2)))

= f (s−k)(f (0), . . . , f (k−2), f (k−1))

= f (s−(k+1))(f (1), . . . , f (k−1), f (0)(f (0), . . . , f (k−2), f (k−1)))

= f (s−(k+1)(f (1), . . . , f (k−1), f (k))
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= . . . =

= f (s−(k+s−k))(f (s−k), . . . , f (s−2), f (0)(f (s−k−1), . . . , f (s−3), f (s−2)))

= f (0)(f (s−k), . . . , f (s−2), f (s−1))

= f (s)(xk
1)

⇒ Lemma 1 is true for every n ∈ N .

Proposition 1. Let (Q, f) be a k-ary groupoid. For every (xk
1) ∈ Qk and for

every j = k − 1, . . . , n− 1, where n ≥ k, the following equalities hold:

f (n)(xk
1) = f (n−j−1)(f (j−k+1)(xk

1), . . . , f
(j)(xk

1))

Proof. Let f (i) = f (i)(xk
1), for all n ∈ N . For n = k and j = k − 1, we have

f (k)(xk
1) = f (0)(f (0)(xk

1), . . . , f
(k−1)(xk

1))

Suppose that f (i)(xk
1) = f (i−j−1)(f (j−k+1)(xk

1), . . . , f
(j)(xk

1)) for every j = k −
1, . . . , i− 1, i = n. For i = n+ 1, we have:

f (n+1)(xk
1) = f (0)(f (n−k+1), . . . , f (n))

= f (0)(f (n−k+1)−j−1(f (j−k+1), . . . , f (j)), . . . , f (n−j−1)(f (j−k+1), . . . , f (j)))

f ((n+1)−j−1)(f (j−k+1)(xk
1), . . . , f

(j)(xk
1))

⇒ Proposition 1 is true for every n ≥ k and j = k − 1, . . . , n− 1.

Proposition 2. If two k-ary groupoids (Q1, f) and (Q2, g) are isomorphic, then
(Q1, f

(n)) ∼= (Q2, g
(n)) for every n ≥ 1.

Proof. Let ϕ be an isomorphism from (Q1, f) to (Q2, g). Then ϕ(f(xk
1)) =

g(ϕ(x1), . . . , ϕ(xk)) for every (xk
1) ∈ Qk

1 . For n = 1, we have

ϕ(f (1)(xk
1)) = ϕ(f(xk

2 , f(x
k
1)) = g(ϕ(x2), . . . , ϕ(xk), ϕ(f(x

k
1))) =

g(ϕ(x2), . . . , ϕ(xk), g(ϕ(x1), . . . , ϕ(xk))) = g(1)(ϕ(x1), . . . , ϕ(xk)))

Suppose that ϕ(f (i)(xk
1)) = g(i)(ϕ(x1), . . . , ϕ(xk)) for 2 ≤ i ≤ n− 1. Because

f (0) = f , we have

ϕ(f (n)(xk
1)) = ϕ(f (n−1)(xk

2 , f
(0)(xk

1))) = g(n−1)(ϕ(x2), . . . , ϕ(xk), ϕ(f
(0)(xk

1)))

= g(n−1)(ϕ(x2), . . . , ϕ(xk), g
(0)(ϕ(x1), . . . , ϕ(xk))) = g(n)(ϕ(x1), . . . , ϕ(xk))

So, we have (Q1, f
(n)) ∼= (Q2, g

(n)) for every n ≥ 1.

Proposition 3. If (Q, f) is a k-ary groupoid, then the following holds:

Aut(Q, f) ≤ Aut(Q, f (n)), ∀n ≥ 1

Some Generalizations Of Recursive Derivates of k-ary Operations 5

Proof. If ϕ ∈ Aut(Q, f), then ϕ(f(xk
1)) = f(ϕ(x1), . . . , ϕ(xk)) for every (xk

1) ∈
Qk. For n = 1, we have

ϕ(f (1)(xk
1)) = ϕ(f(xk

2 , f(x
k
1)) = f(ϕ(x2), . . . , ϕ(xk), ϕ(f(x

k
1))) =

f(ϕ(x2), . . . , ϕ(xk), f(ϕ(x1), . . . , ϕ(xk))) = f (1)(ϕ(x1), . . . , ϕ(xk)))

So, ϕ ∈ Aut(Q, f (1)). Suppose that ϕ ∈ Aut(Q, f (k)) for every 2 ≤ k ≤ n− 1.

ϕ(f (n)(xk
1)) = ϕ(f (n−1)(xk

2 , f
(0)(xk

1))) = f (n−1)(ϕ(x2), . . . , ϕ(xk), ϕ(f
(0)(xk

1)))

= f (n−1)(ϕ(x2), . . . , ϕ(xk), f
(0)(ϕ(x1), . . . , ϕ(xk))) = f (n)(ϕ(x1), . . . , ϕ(xk))

So, ϕ ∈ Aut(Q, f (n)).

The center of a k-ary quasigroup (Q, f), denoted by C(Q, f), consists of all
those elements, c, such that

f(xi−1
1 , c, xk

i+1) = f(xj−1
1 , c, xk

j+1)

for all (xk
1) ∈ Qk ([2]).

Proposition 4. If (Q, f) is a recursively 1-differentiable k-ary quasigroup, then
the following holds:

C(Q, f) ≤ C(Q, f (1))

Proof. Let c ∈ C(Q, f), then f (0)(xi−1
1 , c, xk

i+1) = f (0)(xj−1
1 , c, xk

j+1) for all

(xk
1) ∈ Qk. We have

f (1)(xi−1
1 , c, xk

i+1) = f (0)(xi−1
2 , c, xk

i+1, f
(0)(xi−1

1 , c, xk
i+1)) =

= f (0)(xi−1
2 , c, xk

i+1, f
(0)(xj−1

1 , c, xk
j+1)) = f (0)(xj−1

2 , c, xk
j+1, f

(0)(xj−1
1 , c, xk

j+1)) =

= f (1)(xj−1
1 , c, xk

j+1))

Corollary 1. If (Q, f) is a recursively t-differentiable k-ary quasigroup, then
the following holds:

C(Q, f) ≤ C(Q, f (n)), 1 ≤ n ≤ t

Let (ak−1
1 ) be an arbitraty element of Qk−1. The mapping Li,(ak−1

1 ) : Q → Q

(i = 1, . . . , k) defined by

Li,(ak−1
1 )(x) = f(ai−1

1 , x, ak−1
i )

is called i-translation of the k-ary groupoid (Q, f) with respect to (ak−1
1 ). If

(Q, f) is k-ary quasigroup, the group generated by the set of all i-translations
of the (Q, f) is called the multiplication group of a quasigroup (Q, f), and can
be represented by:

M(Q, f) = 〈Li,(ak−1
1 )|(a

k−1
1 ) ∈ Qk−1, i = 1, . . . , k〉.
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= . . . =

= f (s−(k+s−k))(f (s−k), . . . , f (s−2), f (0)(f (s−k−1), . . . , f (s−3), f (s−2)))

= f (0)(f (s−k), . . . , f (s−2), f (s−1))

= f (s)(xk
1)

⇒ Lemma 1 is true for every n ∈ N .

Proposition 1. Let (Q, f) be a k-ary groupoid. For every (xk
1) ∈ Qk and for

every j = k − 1, . . . , n− 1, where n ≥ k, the following equalities hold:

f (n)(xk
1) = f (n−j−1)(f (j−k+1)(xk

1), . . . , f
(j)(xk

1))

Proof. Let f (i) = f (i)(xk
1), for all n ∈ N . For n = k and j = k − 1, we have

f (k)(xk
1) = f (0)(f (0)(xk

1), . . . , f
(k−1)(xk

1))

Suppose that f (i)(xk
1) = f (i−j−1)(f (j−k+1)(xk

1), . . . , f
(j)(xk

1)) for every j = k −
1, . . . , i− 1, i = n. For i = n+ 1, we have:

f (n+1)(xk
1) = f (0)(f (n−k+1), . . . , f (n))

= f (0)(f (n−k+1)−j−1(f (j−k+1), . . . , f (j)), . . . , f (n−j−1)(f (j−k+1), . . . , f (j)))

f ((n+1)−j−1)(f (j−k+1)(xk
1), . . . , f

(j)(xk
1))

⇒ Proposition 1 is true for every n ≥ k and j = k − 1, . . . , n− 1.

Proposition 2. If two k-ary groupoids (Q1, f) and (Q2, g) are isomorphic, then
(Q1, f

(n)) ∼= (Q2, g
(n)) for every n ≥ 1.

Proof. Let ϕ be an isomorphism from (Q1, f) to (Q2, g). Then ϕ(f(xk
1)) =

g(ϕ(x1), . . . , ϕ(xk)) for every (xk
1) ∈ Qk

1 . For n = 1, we have

ϕ(f (1)(xk
1)) = ϕ(f(xk

2 , f(x
k
1)) = g(ϕ(x2), . . . , ϕ(xk), ϕ(f(x

k
1))) =

g(ϕ(x2), . . . , ϕ(xk), g(ϕ(x1), . . . , ϕ(xk))) = g(1)(ϕ(x1), . . . , ϕ(xk)))

Suppose that ϕ(f (i)(xk
1)) = g(i)(ϕ(x1), . . . , ϕ(xk)) for 2 ≤ i ≤ n− 1. Because

f (0) = f , we have

ϕ(f (n)(xk
1)) = ϕ(f (n−1)(xk

2 , f
(0)(xk

1))) = g(n−1)(ϕ(x2), . . . , ϕ(xk), ϕ(f
(0)(xk

1)))

= g(n−1)(ϕ(x2), . . . , ϕ(xk), g
(0)(ϕ(x1), . . . , ϕ(xk))) = g(n)(ϕ(x1), . . . , ϕ(xk))

So, we have (Q1, f
(n)) ∼= (Q2, g

(n)) for every n ≥ 1.

Proposition 3. If (Q, f) is a k-ary groupoid, then the following holds:

Aut(Q, f) ≤ Aut(Q, f (n)), ∀n ≥ 1

Some Generalizations Of Recursive Derivates of k-ary Operations 5

Proof. If ϕ ∈ Aut(Q, f), then ϕ(f(xk
1)) = f(ϕ(x1), . . . , ϕ(xk)) for every (xk

1) ∈
Qk. For n = 1, we have

ϕ(f (1)(xk
1)) = ϕ(f(xk

2 , f(x
k
1)) = f(ϕ(x2), . . . , ϕ(xk), ϕ(f(x

k
1))) =

f(ϕ(x2), . . . , ϕ(xk), f(ϕ(x1), . . . , ϕ(xk))) = f (1)(ϕ(x1), . . . , ϕ(xk)))

So, ϕ ∈ Aut(Q, f (1)). Suppose that ϕ ∈ Aut(Q, f (k)) for every 2 ≤ k ≤ n− 1.

ϕ(f (n)(xk
1)) = ϕ(f (n−1)(xk

2 , f
(0)(xk

1))) = f (n−1)(ϕ(x2), . . . , ϕ(xk), ϕ(f
(0)(xk

1)))

= f (n−1)(ϕ(x2), . . . , ϕ(xk), f
(0)(ϕ(x1), . . . , ϕ(xk))) = f (n)(ϕ(x1), . . . , ϕ(xk))

So, ϕ ∈ Aut(Q, f (n)).

The center of a k-ary quasigroup (Q, f), denoted by C(Q, f), consists of all
those elements, c, such that

f(xi−1
1 , c, xk

i+1) = f(xj−1
1 , c, xk

j+1)

for all (xk
1) ∈ Qk ([2]).

Proposition 4. If (Q, f) is a recursively 1-differentiable k-ary quasigroup, then
the following holds:

C(Q, f) ≤ C(Q, f (1))

Proof. Let c ∈ C(Q, f), then f (0)(xi−1
1 , c, xk

i+1) = f (0)(xj−1
1 , c, xk

j+1) for all

(xk
1) ∈ Qk. We have

f (1)(xi−1
1 , c, xk

i+1) = f (0)(xi−1
2 , c, xk

i+1, f
(0)(xi−1

1 , c, xk
i+1)) =

= f (0)(xi−1
2 , c, xk

i+1, f
(0)(xj−1

1 , c, xk
j+1)) = f (0)(xj−1

2 , c, xk
j+1, f

(0)(xj−1
1 , c, xk

j+1)) =

= f (1)(xj−1
1 , c, xk

j+1))

Corollary 1. If (Q, f) is a recursively t-differentiable k-ary quasigroup, then
the following holds:

C(Q, f) ≤ C(Q, f (n)), 1 ≤ n ≤ t

Let (ak−1
1 ) be an arbitraty element of Qk−1. The mapping Li,(ak−1

1 ) : Q → Q

(i = 1, . . . , k) defined by

Li,(ak−1
1 )(x) = f(ai−1

1 , x, ak−1
i )

is called i-translation of the k-ary groupoid (Q, f) with respect to (ak−1
1 ). If

(Q, f) is k-ary quasigroup, the group generated by the set of all i-translations
of the (Q, f) is called the multiplication group of a quasigroup (Q, f), and can
be represented by:

M(Q, f) = 〈Li,(ak−1
1 )|(a

k−1
1 ) ∈ Qk−1, i = 1, . . . , k〉.
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Proposition 5. If (Q, f) is a recursively 1-differentiable k-ary quasigroup, then
the following holds:

M(Q, f (1)) ≤ M(Q, f)

Proof. For i = 1, we have

L
(1)

1,(ak−1
1 )

(x) = f (1)(x, ak−1
1 ) = f (0)(ak−1

1 , f (0)(x, ak−1
1 ))

= f (0)(ak−1
1 , L1,(ak−1

1 )(x)) = Lk,(ak−1
1 ) ◦ L1,(ak−1

1 )(x)

⇒ L
(1)

1,(ak−1
1 )

∈ M(Q, f)

For 2 ≤ i ≤ k, we have

L
(1)

i,(ak−1
1 )

(x) = f (1)(ai−1
1 , x, ak−1

i ) = f (0)(ai−1
2 , x, ak−1

i , f (0)(ai−1
1 , x, ak−1

i ))

= f (0)(ai−1
2 , x, ak−1

i , Li,(ak−1
1 )(x))

= Li−1,(ak−1
2 ,L

i,(a
k−1
1 )

(x))(x)

Because Li,(ak−1
1 )(x) ∈ Q ⇒ (ak−1

2 , Li,(ak−1
1 )(x)) ∈ Qk−1 ⇒ L

(1)

i,(ak−1
1 )

∈ M(Q, f).

So, M(Q, f (1)) ≤ M(Q, f).

Corollary 2. If (Q, f) is a recursively t-differentiable k-ary quasigroup, then
the following holds:

M(Q, f (n)) ≤ M(Q, f), 1 ≤ n ≤ t

An element e ∈ Q is called an i-th unit of the k-ary groupoid (Q, f) if the
following equation holds:

f(
i−1
e , x,

k−i
e ) = x

for any x ∈ Q.

Lemma 2. If (Q, f) is a recursively 1-differentiable k-ary quasigroup with 1-th

unit, then the mapping x → f(
k
x) is a bijection.

Proof. If the k-ary quasigroup (Q, f) has the 1-th unit e, then

f (1)(e,
k−1
x ) = f(

k−1
x , f(e,

k−1
x ) = f(

k−1
x , x) = f(

k
x)

for every x ∈ Q, so the mapping x → f(
k
x) is a bijection on Q.

Some Generalizations Of Recursive Derivates of k-ary Operations 7

In general, the two converse statements are not always true. First, if (Q, f)

is a k-ary quasigroup with 1-th unit, and the mapping x → f(
k
x) is a bijection

on Q, than (Q, f) is not always a recursively 1-differentiable k-ary quasigroup.
For example, the quasigroup (Z5, ·), where x · y = x + 3y + 3z(mod 5), is a
ternary quasigroup with 1-th unit 0 and x → f(x, x, x) is a bijection on Q, but
(Z5, ·) is not a recursively 1-differentiable ternary quasigroup. Second, if (Q, f)

is a recursively 1-differentiable k-ary quasigroup, and the mapping x → f(
k
x) is

a bijection on Q, than (Q, f) does not have always a 1-th unit. For example,
the quasigroup (Z5, ·), where x · y = 2x + 2y + 2z(mod 5), is a recursively 1-
differentiable ternary quasigroup and x → f(x, x, x) is a bijection on Q, but
(Z5, ·) does not have a 1-th unit.

Corollary 3. If (Q, f) is a recursively t-differentiable k-ary quasigroup (1 ≤ t ≤
k) with the same 1-th to t-th unit e, then the mapping x → f(

k
x) is a bijection.

Corollary 4. If (Q, f) is a recursively t-differentiable k-ary loop (1 ≤ t ≤ k),

then the mapping x → f(
k
x) is a bijection.

Corollary 5. If (Q, f) is a recursively t-differentiable k-ary group (1 ≤ t ≤ k),

then the mapping x → f(
k
x) is a bijection.

3 Some results for ternary quasigroups

By experiments, we obtained the following results:

– there are 96 recursively 1-differentiable ternary quasigroups of order 4, and
all are 1-stable

– there are no recursively t-differentiable ternary quasigroups of order 4, for
t ≥ 2,

– there are 64 strongly recursively 0-differentiable ternary quasigroups of order
4,

– there are 8 strongly recursively 1-differentiable ternary quasigroups of order
4.

Bellow is example of strongly recursively 1-differentiable and 1-stable ternary
quasigroups of order 4.

{{{1, 2, 3, 4}, {3, 4, 1, 2}, {4, 3, 2, 1}, {2, 1, 4, 3}}, {{2, 1, 4, 3}, {4, 3, 2, 1}, {3, 4, 1, 2}, {1, 2, 3, 4}},

{{3, 4, 1, 2}, {1, 2, 3, 4}, {2, 1, 4, 3}, {4, 3, 2, 1}}, {{4, 3, 2, 1}, {2, 1, 4, 3}, {1, 2, 3, 4}, {3, 4, 1, 2}}}
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Proposition 5. If (Q, f) is a recursively 1-differentiable k-ary quasigroup, then
the following holds:

M(Q, f (1)) ≤ M(Q, f)

Proof. For i = 1, we have

L
(1)

1,(ak−1
1 )

(x) = f (1)(x, ak−1
1 ) = f (0)(ak−1

1 , f (0)(x, ak−1
1 ))

= f (0)(ak−1
1 , L1,(ak−1

1 )(x)) = Lk,(ak−1
1 ) ◦ L1,(ak−1

1 )(x)

⇒ L
(1)

1,(ak−1
1 )

∈ M(Q, f)

For 2 ≤ i ≤ k, we have

L
(1)

i,(ak−1
1 )

(x) = f (1)(ai−1
1 , x, ak−1

i ) = f (0)(ai−1
2 , x, ak−1

i , f (0)(ai−1
1 , x, ak−1

i ))

= f (0)(ai−1
2 , x, ak−1

i , Li,(ak−1
1 )(x))

= Li−1,(ak−1
2 ,L

i,(a
k−1
1 )

(x))(x)

Because Li,(ak−1
1 )(x) ∈ Q ⇒ (ak−1

2 , Li,(ak−1
1 )(x)) ∈ Qk−1 ⇒ L

(1)

i,(ak−1
1 )

∈ M(Q, f).

So, M(Q, f (1)) ≤ M(Q, f).

Corollary 2. If (Q, f) is a recursively t-differentiable k-ary quasigroup, then
the following holds:

M(Q, f (n)) ≤ M(Q, f), 1 ≤ n ≤ t

An element e ∈ Q is called an i-th unit of the k-ary groupoid (Q, f) if the
following equation holds:

f(
i−1
e , x,

k−i
e ) = x

for any x ∈ Q.

Lemma 2. If (Q, f) is a recursively 1-differentiable k-ary quasigroup with 1-th

unit, then the mapping x → f(
k
x) is a bijection.

Proof. If the k-ary quasigroup (Q, f) has the 1-th unit e, then

f (1)(e,
k−1
x ) = f(

k−1
x , f(e,

k−1
x ) = f(

k−1
x , x) = f(

k
x)

for every x ∈ Q, so the mapping x → f(
k
x) is a bijection on Q.

Some Generalizations Of Recursive Derivates of k-ary Operations 7

In general, the two converse statements are not always true. First, if (Q, f)

is a k-ary quasigroup with 1-th unit, and the mapping x → f(
k
x) is a bijection

on Q, than (Q, f) is not always a recursively 1-differentiable k-ary quasigroup.
For example, the quasigroup (Z5, ·), where x · y = x + 3y + 3z(mod 5), is a
ternary quasigroup with 1-th unit 0 and x → f(x, x, x) is a bijection on Q, but
(Z5, ·) is not a recursively 1-differentiable ternary quasigroup. Second, if (Q, f)

is a recursively 1-differentiable k-ary quasigroup, and the mapping x → f(
k
x) is

a bijection on Q, than (Q, f) does not have always a 1-th unit. For example,
the quasigroup (Z5, ·), where x · y = 2x + 2y + 2z(mod 5), is a recursively 1-
differentiable ternary quasigroup and x → f(x, x, x) is a bijection on Q, but
(Z5, ·) does not have a 1-th unit.

Corollary 3. If (Q, f) is a recursively t-differentiable k-ary quasigroup (1 ≤ t ≤
k) with the same 1-th to t-th unit e, then the mapping x → f(

k
x) is a bijection.

Corollary 4. If (Q, f) is a recursively t-differentiable k-ary loop (1 ≤ t ≤ k),

then the mapping x → f(
k
x) is a bijection.

Corollary 5. If (Q, f) is a recursively t-differentiable k-ary group (1 ≤ t ≤ k),

then the mapping x → f(
k
x) is a bijection.

3 Some results for ternary quasigroups

By experiments, we obtained the following results:

– there are 96 recursively 1-differentiable ternary quasigroups of order 4, and
all are 1-stable

– there are no recursively t-differentiable ternary quasigroups of order 4, for
t ≥ 2,

– there are 64 strongly recursively 0-differentiable ternary quasigroups of order
4,

– there are 8 strongly recursively 1-differentiable ternary quasigroups of order
4.

Bellow is example of strongly recursively 1-differentiable and 1-stable ternary
quasigroups of order 4.

{{{1, 2, 3, 4}, {3, 4, 1, 2}, {4, 3, 2, 1}, {2, 1, 4, 3}}, {{2, 1, 4, 3}, {4, 3, 2, 1}, {3, 4, 1, 2}, {1, 2, 3, 4}},

{{3, 4, 1, 2}, {1, 2, 3, 4}, {2, 1, 4, 3}, {4, 3, 2, 1}}, {{4, 3, 2, 1}, {2, 1, 4, 3}, {1, 2, 3, 4}, {3, 4, 1, 2}}}
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