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PRACTICAL APPLICATION OF SIMPLEX METHOD FOR SOLVING LINEAR 
PROGRAMMING PROBLEMS 

 
Aleksandar, Velinov1, Vlado, Gicev 1  

 
1Faculty of Computer Science, Goce Delcev University, Stip, Macedonia  

aleksandar.velinov@ugd.edu.mk 
vlado.gicev@ugd.edu.mk 

 
Abstract: In this paper we consider application of linear programming in solving optimization problems with 
constraints. We used the simplex method for finding a maximum of an objective function. This method is 
applied to a real example. We used the “linprog” function in MatLab for problem solving. We have shown, 
how to apply simplex method on a real world problem, and to solve it using linear programming. Finally we 
investigate the complexity of the method via variation of the computer time versus the number of control 
variables. 
Keywords: simplex method, linear programming, objective function, complexity. 
 
 

1. Introduction  
Linear programming was developed during World War II, when a system with which to maximize the efficiency 

of resources was of utmost importance. New war-related projects demanded optimization of constrained resources. 
“Programming” was used as a military term that referred to activities such as planning schedules efficiently or 
deploying men optimally [1].  

Mathematical programming is that branch of mathematics dealing with techniques for maximizing or minimizing 
an objective function subject to linear, nonlinear, and integer constraints on the variables. Special case of mathematical 
programming is a linear programming. Linear programming is concerned with the maximization or minimization of a 
linear objective function with many variables subject to linear equality and inequality constraints [2]. Linear 
programming can be viewed as a part of a great revolutionary development. It has the ability to define general goals 
and to find detailed decisions in order to achieve that goals. It can be faced with practical situations of great complexity. 
To formulate real-world problems, linear programming uses mathematical terms (models), techniques for solving the 
models (algorithms), and engines for executing the steps of algorithms (computers and software) [3].  

Optimization principles have important aspect in modern engineering design and system operations in various 
areas. Computers capable of solving large-scale problems contribute to the recent development of new optimization 
techniques. The main goal of these techniques is to optimize (maximize or minimize) some function f. This functions 
are called objective functions. As a case study we used the objective function f that represent the revenue of the 
production of electronic elements, more precisely graphics cards. We used methods for maximizing the revenue of 
the company. Using linear programming, we can model wide variety of objective functions as: yield per minute in a 
chemical process, revenue in a production of cars, the hourly number of customers served in a bank, the mileage per 
gallon of a certain type of car, the production of computers on monthly basis and so on. Sometimes we may want to 
minimize f if f is the cost per unit of producing certain graphics cards (opposite of our example where we maximize 
the revenue of production), the operating cost of some power plant, the time needed to produce a new type of car, the 
daily loss of heat in a heating system, the costs for IT infrastructure in some company and so on.  

In most optimization problems the objective function f depends on several variables:  

x1, x2,…..xn                                                                                                                                                                            

These variables are called “control variables” because we can control them, that is, we can choose their values. For 
example the production of some plant may depend on temperature x1, moisture content x2, nitrogen in the soil x3. The 
efficiency of a certain air-conditioning system may depend on air pressure x1, temperature x2, cross-sectional area of 
outlet x3, moisture content x4, and so on. The optimization theory develops methods for optimal choices of x1,…,xn, 
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NOTION FOR CONNECTEDNESS AND PATH CONNECTEDNESS IN SOME TYPE 
OF TOPOLOGICAL SPACES 

 
Maja Srebrenova Miteva1, Limonka Koceva Lazarova 1 
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Abstract: The notions of connectedness and path connectedness of topological spaces in the part of general 
topology are firmly related. In particular, path connectedness is a tougher condition of connectedness and reversal 
does not always apply. In a metric space, the notion of connectedness is more difficult to formulate precisely, 
while the path connectedness is a concept whose definition remains the same and easier to understand in these 
spaces. In this text, there are examples of connectedness, path-connectedness and simultaneously connected and 
path-connected topological spaces. Also, an additional condition is required for which the relation of the 
connected space is valid to be followed by a path connected. 
Keywords: connectedness; path connectedness; metric space; locally Euclidean space; Euclidean space; 
 

1. Introduction  
 
In [5], there are topology space that are connected but not path connected. There are some examples in 

which is explained that some space when topology is connected than they cannot be a path connected. The main 
result in this paper is given in the Theorem 2.1. The result refers to the strong relation between path connected space 
and connected space. The opposite relation between these two notions is given in the paper. Specifically, [5] 
explained connected space in which cannot be find a path. In [1], [2], [3] and [4] are given the main properties of 
these notion and in all of references are given an implication that some topology space when is path connected then 
that space is connected. In [6], some special properties for topology of a metric space are represented, specifically 
Euclidean metric space. This will help us for examples in a part of results and discussion. So, in this paper we will 
looking for examples in which will be explained the opposite relation i.e. if the space is connected that we can find a 
path, so it would be a path connected.  

 

2. Materials and methods 

Let X be a topology space. 

Definition 2.1. ([1]) Let Y X . The set Y is called connected in X if it cannot be represented as a union 
of two separated subsets of X.  

Definition 2.2. ([2]) A topological space X is said to be a connected if the only two subsets of X that are 
simultaneously open and closed are X itself and the empty set  .  

Theorem 2.1. ([1]) Let X be a topological space and let Y Z X  . A set Y is connected in topology 
space X if and only if is connected in topology space Z. 

Proof. ([1], pp. 61) 

Remark 2.1. A topological space X is connected if and only if cannot be a represent like a union of two 
open disjunct subsets of X.   

Theorem 2.2. The intervals from a real line  R are the only connected subsets. 

Let  ,X d  be a metric space. 

UDK:  515.124/.125
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Definition 2.3. ([6], Definition. 5.1.1) A metric space X is said to be connected if the only sets which are 
both open and closed in X are   and the full space X, when X is a metric space. 

Example 2.1. Intervals such as  ,a b  and  ,a b  are connected subsets of the real line R . As an example 

of a subset of the real line that is not connected, let    1,2 3,4X  .  1, 2 is relatively closed subset of X 

since  1, 2  is closed in R . At the same time  1, 2  is a relatively open subset of X, since 

  1 51,2 ,
2 2

X   
 

. Finally,  1,2    and  1,2 X , so hence X is not connected. By the same token, 

the ‘open interval’  3, 4  is also both relatively open and relatively closed in X. 

 

Example 2.2. A topological space  2 , , 0,1 ,xX R X x x n N
n

       
  

 is also connected space. 

This space is pictured below, and it’s called the deleted infinite broom. 

 

 

 

 

 

 

 

 

Figure 2.1. Topological space – the deleted infinite broom 

 

Example 2.3. A topological space    21,sin 0 1 0,0 ,Z x x Z R
x

       
  

  is connected space. 

This space is called topological sine curve and is pictured below. 

 

 

 

 

 

 

Figure 2.2. Topological sine curve 
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 Let X be a topological space. 

Definition 2.4. ([3]) A continuous function  : 0,1f X  is called a path in X. The path f   is said to be 

connected or join the point  0f to the point  1f .  0f  is called the initial point and  1f  is called the 

terminal point of the path  f.  

Definition 2.5. ([1]) Path in a topological space X is every continuous map  : , 0,1k I X I  . If 

   0 , 1k x k y   then  : , 0,1k I X I   is a path from point x to point y.  

Definition 2.6. ([1]) A topological space X is called line connected if for every two points ,x y X , then 

there exist a path in X from x to y.  

Let  ,X d  be a metric space. 

Definition 2.7. ([6], Definition. 5.2.1) A path in X is a continuous map  : 0,1 X   in X . If  0 x   

and  1 y  , then   is said to be a path joining the points x to y or simply a path from x to y. (Figure 3) 

 

Figure 2.3. Path between x and y 

 

Theorem 2.3. ([2]) Let X be a path connected topological space, then X is connected. 

Proof.([2], 164) 

 

Example 2.4. Any interval in R  is path connected. This is true because for every two real numbers ,a b R , 

the continuous map  : 0,1f R , is a path in R  defined by    f t a b a t    , for  0,1t  and we have 

a connection  0f a  and  1f b . 

Example 2.5. If X and Y are two topology space which is path connected, then the direct product X Y  is also 
path connected.  

Example 2.6. Path connected spaces are the spheres, , 0nS n  .  

 

Theorem 2.4. ([4], pg. 25-39) Let nR  be a Euclidean space. Let X be a connected open subset of n . Then X 
is path connected. 

Maja Srebrenova Miteva, Limonka Koceva Lazarova 
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NOTION FOR CONNECTEDNESS AND PATH CONNECTEDNESS 
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Proof. ([4])  Let a X . Let A X  be the subset of points in X which can be joined to a by a path in X. Let 

\B X A . Let x A . Then,  0 : B x X   , where  B x is the open   - ball of x. Given any 

 y B x , there is a (straight line) path g in  B x X  connecting x to y. But since x A , there is a path f 
in X joining a to x. From the Theorem for joining paths makes another path ([7]), traversing f and then g forms a 
path from a to y.  It follows that y A  and therefore  B x A  . Thus, A is open.  

By a similar argument, B is also shown to be open: If x B , then  B x X   for some 0  . If any point 

in  B x  can be joined to a by a path in X, then so could x.  

It is clear that A B   and A B X  by definition of set difference. As, trivially a A , we have 
A . Knowing that X is connected, if follows that B   and A X . 

 

 Theorem 2.5. ([6]) Let     2, , ,x y u v R . Then the continuous function   2: 0,1f R , defined by  

        , 1 , , 0,1f t u v t t x y t     

is called a path in 2R . 

 

3. Results and discussion 

In a part 2, of this paper are given the general properties of connected and path connected topology spaces. 
The notion of connectedness and path connectedness are so strongly by each other and it’s difficult to prove that in 
every space connectedness implies path connectedness. From general topology and topology on a metric space we 
saw that path connection is a tougher condition of connectedness and reversal does not always apply. In this part, we 
will see some examples that can show us when connected space can be and path connected. 

 In [7], by the theorem 12.10 

 Theorem 3.1. (Theorem 12.10, [7]) Any interval I in R  is connected. 

 Proof. ([7]) Suppose that I is an interval in R  and suppose for a contradiction that  ,A B  is a partition of 

I. Let ,a A b B   and suppose without loss of generality that a b . (Otherwise we may exchange the names of 

A and B).  Since ,a b I  and I is an interval,  ,a b I .  

 Let  ' ,A A a b and  ' ,B B a b . Since A and B are closed in I and  ,a b I , we have that 

'A  and 'B  are closed in  ,a b . Since also  ,a b  is closed in R  , it follows that 'A  and 'B  are closed in R . 

Let 'c A . Then 'c A  since 'A  is closed. Hence c b since 'b B  and ' 'A B  . But 'A  is open in 

 ,a b  for some 0   we have    , , 'c c a b A    . Since c b  there exist points in 

   , ,c c a b  greater then c and such points lie in 'A , contradicting the choice of c.  

Example 3.1. Any interval in R  is connected. Let we choose the interval   0,1 R . By the previous 

theorem 12.10 ([7]), it is supposed that  0,1 A B  with ,A B  disjoint non – empty closed subsets. Choose 

a A  and b B  with a b . Then let   be the least upper bound of the set   ,C a b A . This least 

upper bound exist by the standard properties of R . Since C is a closed subset it contains its limit points and so 
C   and hence is in A. Since A is open   has an   - neighborhood lying inside A and so unless b  it 

would both be an upper bound of C. But b   contradicts the fact that  0,1 \b B A  . 

Also, this interval  0,1 R  is path connected. This follows by the definition of path in R . This means, 

if  : 0,1f R is continuous map, then we define a path by    f t a b a t    , for  0,1t  and a 

connection  0f a  and  1f b . From the chosen interval, let 0 a  and 1 b . By definition of path, we 

have, 

     
     
0 0 0 1 0 0 0

1 1 0 1 0 1 1

f a b a

f a b a

      

      
 - 

So, we defined path between the two points on an interval i.e. path from 0 to 1. 

 

 Euclidean space R R  is connected and path connected. Connection follows by [8], Theorem 7.3, where 
the author says that every line segment in this space is always connected like a straight line who belong in connected 
R R  space made from vertical and horizontal slices. Path connection in this space clear follows by the definition 
on path in Euclidean space R R  (par 2, in this paper Theorem 2.5, taken by [6]). In [8], Theorem 7.3 says: 

 Theorem 3.2.([8])  Every line segment in 2R is connected.  

 Proof. ([8])  

 

 Example 3.2. An open connected subset of Euclidean space R R  is path connected. From previous part, 
from Theorem 7.3 in [8], we can say that: 

Recall that R  is connected and notice that it is homeomorphic to vertical and horizontal slices of the form  a R  

and  R b  so that these slices are also connected. Now fix the base point   20,0 R  and for any a R , 

consider the family of cross – shaped spaces of the form      0aX a R R   . By taking the union of all 

such cross – shaped space over all a R , we obtain the entire plane. Hence, since 2R  is the union of a collection 

of connected spaces that have a base point  0,0  in common, we conclude that 2R  must also be connected, as 

desired.  

To see that this space is also path connected, we choose two points. Let the first point is  1, 2 and second point is 

 4,5  This means     21,2 , 4,5 R . Definition on path in Euclidean space 2R  says that for every points 
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Proof. ([4])  Let a X . Let A X  be the subset of points in X which can be joined to a by a path in X. Let 
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        , 1 , , 0,1f t u v t t x y t     
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So, we defined path between the two points on an interval i.e. path from 0 to 1. 

 

 Euclidean space R R  is connected and path connected. Connection follows by [8], Theorem 7.3, where 
the author says that every line segment in this space is always connected like a straight line who belong in connected 
R R  space made from vertical and horizontal slices. Path connection in this space clear follows by the definition 
on path in Euclidean space R R  (par 2, in this paper Theorem 2.5, taken by [6]). In [8], Theorem 7.3 says: 
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 Proof. ([8])  
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from Theorem 7.3 in [8], we can say that: 

Recall that R  is connected and notice that it is homeomorphic to vertical and horizontal slices of the form  a R  
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consider the family of cross – shaped spaces of the form      0aX a R R   . By taking the union of all 

such cross – shaped space over all a R , we obtain the entire plane. Hence, since 2R  is the union of a collection 

of connected spaces that have a base point  0,0  in common, we conclude that 2R  must also be connected, as 

desired.  

To see that this space is also path connected, we choose two points. Let the first point is  1, 2 and second point is 

 4,5  This means     21,2 , 4,5 R . Definition on path in Euclidean space 2R  says that for every points 
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    2, , ,x y u v R there is exist a continuous map  2: , 0,1f I R I   which is a path defined by 

        , 1 , , 0,1f t u v t t x y t    . By our example, we have: 

        
        
0 4,5 0 1 0 1,2 1,2

1 4,5 1 1 0 1,2 4,5

f

f

   

   
 

Since this, we defined path between two points in 2R , where path starts in  1, 2  and ended in  4,5 . So, this can 

be and a straight line who connects this chosen two points.  

  

 The space in we are worked in Examples 3.1, 3.2 are metric space and it is easy to show that concept of 
connectedness is in relation with connectedness. 

Author Conrad K, in paper [5], with Theorem 3.7 says that: 

 

 Theorem 3.3. ([5]) The topologist’s sine curve is connected but not path connected.  

The prove of this theorem is given by author in [5], but for that we can define a new space represent in a next 
example 3.3. 

 

 Example 3.3.  The topological sine curve represents by the space 

      2 2 21, sin , 0 , 0, 1,1 ,S x y R y x x y R x y S R
x

          
 

 

is connected but not path connected. (Figure 1) 

 

 

 

 

 

 

Figure 3.1. Topological sine curve S 

 

This is a metric space by the definition in 2R .  Let 2S A B R  .   By [6] (ex. 5.2.23, pg. 119-121), the 
explanation on this example will go with: 

 Let  : 0,1f S be a path joining  0,0  to  1,0 . Then, we write       1 2,f t f t f t . Since B 

is closed in S, the inverse image  1f B  is closed,  10 f B . Let 0t  be the least upper bound of this closed 

and bounded set. Obviously,  1
0t f B . Note that 00 1t   and we claim that 2f  is not continuous at 0t . For 

any 0  , with 0 1t    we must have  1 0 0f t   . Hence there exist n N  such that 

   1 0 1 0
2

4 1
f t f t

n
  


. By the intermediate value theorem applied to the continuous function 1f , we can find 

t such that 0 0t t t     and such that  1
2

4 1
f t

n



. Hence  2 1f t   and    2 2 0 1f t f t  . We therefore 

conclude that 2f  is not continuous at 0t . 

Each of A and B are connected. Also, the point  0,0  is a limit point of the set A and hence 

  1 0,0A A A   is connected. Since B and 1A  have a point in common their union S is connected.  

In this space, represent in this example we cannot find a path between any two points from S.  

 

If this space is represented like the follow figure (figure 3.2), then we can find a path between two points 
so, the space S will be a path connected. The space pictured below is called topological sine circle.  

 

Figure 3.2. Topologist’s sine circle 

 

 The topological sine circle is path connected. This is true because we have a continuous path joining 

 0,0  and  1,0  namely the arc added to the topologist’s sine curve. Also, there is a continuous path joining 

 0,0  with any point of the segment    0 1,1   and we just have a straight line. Here, there is a continuous path 

joining  1,0  with any point 
1,sin , 0x x
x

   
 

. We can simply take part of the graph of continuous function 

1sinx
x

. Now, it is simple to combine the above to get a path joining any two points or we can argue that the 

above implies that any two points lie in the same path connected components. 

More than all, the topologies sine circle, pictured in figure 3.2 is line connected. So, if it line connected this space 
must be a connected and path connected. 
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    2, , ,x y u v R there is exist a continuous map  2: , 0,1f I R I   which is a path defined by 
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Since this, we defined path between two points in 2R , where path starts in  1, 2  and ended in  4,5 . So, this can 

be and a straight line who connects this chosen two points.  

  

 The space in we are worked in Examples 3.1, 3.2 are metric space and it is easy to show that concept of 
connectedness is in relation with connectedness. 

Author Conrad K, in paper [5], with Theorem 3.7 says that: 

 

 Theorem 3.3. ([5]) The topologist’s sine curve is connected but not path connected.  

The prove of this theorem is given by author in [5], but for that we can define a new space represent in a next 
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Each of A and B are connected. Also, the point  0,0  is a limit point of the set A and hence 
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 The topological sine circle is path connected. This is true because we have a continuous path joining 
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In all of this example, we saw that the notations of connectedness and path connectedness are in relation i.e. 
if some space is connected then we can find a path connection in that if the space is locally Euclidean1. In a metric 
space, the concept of connectedness it is difficult to estimate definite but understanding for it is to take just like a 
‘hole part’. Path connectedness is almost the same thing in metric space. So, depends of the dimension of the 
Euclidean space we can find relation between connectedness and path connectedness. 

 

 Example 3.4. If  ,X d  be a connected metric space. Assume that each point of X has an open set U such 

that x U  and U is path connected. Than X is path connected. 

 Example 3.5.  If A be a connected subset in nR  and 0  . Then it is clear that for   - neighborhood of 

A defined by     : n
AU A x R d x     is path connected. 

 

 

4. Concluding remarks 

In particular, spaces that are connected cannot be always path connected too. These notions are in the 
relation if the topology space has some properties. In this paper are represented some examples in which it can be 
easily seen that there are some connected topology spaces which can be path connected also. The conclusion from 
all of these is: if we are working with a metric space or we have a locally Euclidean space we can find a connected 
space in which also we can find a path between some pair of points. Metric spaces are interesting for work, because 
they are not so abstract and can be represented geometrically, so the concept of connectedness this space take like a 
‘hole part’ and concept of path connectedness is easier to see there. Implication of connectedness to path 
connectedness can be shown if the space for working is metric (Euclidean). Examples 3.1, 3.2, 3.3, 3.4 and 3.5 are 
given in metric space and for that this implication can be true.  
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A topological space X is called locally Euclidean if there is a non negative integer n such that every point in X  has a 
neighbourhood which is homeomorphic to the Euclidean space with specific dimension.  

In all of this example, we saw that the notations of connectedness and path connectedness are in relation i.e. 
if some space is connected then we can find a path connection in that if the space is locally Euclidean1. In a metric 
space, the concept of connectedness it is difficult to estimate definite but understanding for it is to take just like a 
‘hole part’. Path connectedness is almost the same thing in metric space. So, depends of the dimension of the 
Euclidean space we can find relation between connectedness and path connectedness. 

 

 Example 3.4. If  ,X d  be a connected metric space. Assume that each point of X has an open set U such 

that x U  and U is path connected. Than X is path connected. 

 Example 3.5.  If A be a connected subset in nR  and 0  . Then it is clear that for   - neighborhood of 

A defined by     : n
AU A x R d x     is path connected. 

 

 

4. Concluding remarks 

In particular, spaces that are connected cannot be always path connected too. These notions are in the 
relation if the topology space has some properties. In this paper are represented some examples in which it can be 
easily seen that there are some connected topology spaces which can be path connected also. The conclusion from 
all of these is: if we are working with a metric space or we have a locally Euclidean space we can find a connected 
space in which also we can find a path between some pair of points. Metric spaces are interesting for work, because 
they are not so abstract and can be represented geometrically, so the concept of connectedness this space take like a 
‘hole part’ and concept of path connectedness is easier to see there. Implication of connectedness to path 
connectedness can be shown if the space for working is metric (Euclidean). Examples 3.1, 3.2, 3.3, 3.4 and 3.5 are 
given in metric space and for that this implication can be true.  
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