
BALKAN JOURNAL
OF APPLIED MATHEMATICS

AND INFORMATICS

(BJAMI)

GOCE DELCEV UNIVERSITY - STIP, REPUBLIC OF MACEDONIA
FACULTY OF COMPUTER SCIENCE

ISSN 2545-479X print
ISSN 2545-4803 on line

YEAR 2018 VOLUME I, Number 2

BALKAN JOURNAL
OF APPLIED MATHEMATICS

AND INFORMATICS

(BJAMI)

GOCE DELCEV UNIVERSITY - STIP, REPUBLIC OF MACEDONIA
FACULTY OF COMPUTER SCIENCE

ISSN 2545-479X print
ISSN 2545-4803 on line

YEAR 2018 VOLUME I, Number 2

Managing editor
Biljana Zlatanovska Ph.D.

Editor in chief
Zoran Zdravev Ph.D.

Lectoure
Snezana Kirova

Technical editor
Slave Dimitrov

Address of the editorial office
Goce Delcev University – Stip
Faculty of philology
Krste Misirkov 10-A
PO box 201, 2000 Štip,
R. of Macedonia

AIMS AND SCOPE:
BJAMI publishes original research articles in the areas of applied mathematics and informatics.

Topics:
1. Computer science;
2. Computer and software engineering;
3. Information technology;
4. Computer security;
5. Electrical engineering;
6. Telecommunication;
7. Mathematics and its applications;
8. Articles of interdisciplinary of computer and information sciences with education,

economics, environmental, health, and engineering.

BALKAN JOURNAL
OF APPLIED MATHEMATICS AND INFORMATICS (BJAMI), Vol 1

 ISSN 2545-479X print
ISSN 2545-4803 on line
Vol. 1, No. 2, Year 2018

EDITORIAL BOARD

Adelina Plamenova Aleksieva-Petrova, Technical University – Sofia,
Faculty of Computer Systems and Control, Sofia, Bulgaria

Lyudmila Stoyanova, Technical University - Sofia , Faculty of computer systems and control,
Department – Programming and computer technologies, Bulgaria

Zlatko Georgiev Varbanov, Department of Mathematics and Informatics,
Veliko Tarnovo University, Bulgaria

Snezana Scepanovic, Faculty for Information Technology,
University “Mediterranean”, Podgorica, Montenegro

 Daniela Veleva Minkovska, Faculty of Computer Systems and Technologies,
Technical University, Sofia, Bulgaria

 Stefka Hristova Bouyuklieva, Department of Algebra and Geometry,
Faculty of Mathematics and Informatics, Veliko Tarnovo University, Bulgaria

Vesselin Velichkov, University of Luxembourg, Faculty of Sciences,
Technology and Communication (FSTC), Luxembourg

Isabel Maria Baltazar Simões de Carvalho, Instituto Superior Técnico,
Technical University of Lisbon, Portugal

Predrag S. Stanimirović, University of Niš, Faculty of Sciences and Mathematics,
Department of Mathematics and Informatics, Niš, Serbia

Shcherbacov Victor, Institute of Mathematics and Computer Science,
Academy of Sciences of Moldova, Moldova

Pedro Ricardo Morais Inácio, Department of Computer Science,
Universidade da Beira Interior, Portugal

Sanja Panovska, GFZ German Research Centre for Geosciences, Germany
Georgi Tuparov, Technical University of Sofia Bulgaria

Dijana Karuovic, Tehnical Faculty “Mihajlo Pupin”, Zrenjanin, Serbia
Ivanka Georgieva, South-West University, Blagoevgrad, Bulgaria

Georgi Stojanov, Computer Science, Mathematics, and Environmental Science Department
The American University of Paris, France

Iliya Guerguiev Bouyukliev, Institute of Mathematics and Informatics,
Bulgarian Academy of Sciences, Bulgaria

 Riste Škrekovski, FAMNIT, University of Primorska, Koper, Slovenia
 Stela Zhelezova, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria
 Katerina Taskova, Computational Biology and Data Mining Group,

Faculty of Biology, Johannes Gutenberg-Universität Mainz (JGU), Mainz, Germany.
 Dragana Glušac, Tehnical Faculty “Mihajlo Pupin”, Zrenjanin, Serbia
 Cveta Martinovska-Bande, Faculty of Computer Science, UGD, Macedonia
 Blagoj Delipetrov, Faculty of Computer Science, UGD, Macedonia
 Zoran Zdravev, Faculty of Computer Science, UGD, Macedonia
 Aleksandra Mileva, Faculty of Computer Science, UGD, Macedonia
 Igor Stojanovik, Faculty of Computer Science, UGD, Macedonia
 Saso Koceski, Faculty of Computer Science, UGD, Macedonia
 Natasa Koceska, Faculty of Computer Science, UGD, Macedonia
 Aleksandar Krstev, Faculty of Computer Science, UGD, Macedonia
 Biljana Zlatanovska, Faculty of Computer Science, UGD, Macedonia
 Natasa Stojkovik, Faculty of Computer Science, UGD, Macedonia
 Done Stojanov, Faculty of Computer Science, UGD, Macedonia
 Limonka Koceva Lazarova, Faculty of Computer Science, UGD, Macedonia
 Tatjana Atanasova Pacemska, Faculty of Electrical Engineering, UGD, Macedonia

4

5

C O N T E N T

Marija Miteva, Limonka Koceva Lazarova
RESULT ON COLOMBEAU PRODUCT OF GENERALIZED FUNCTIONS 7
CONTAINING DELTA DISTRIBUTION

Done Stojanov
FIXING GENOMIC DATA DECOMPRESSION ERRORS . 17

Maged G. Bin-Saad, Jihad A. Younis
OPERATIONAL REPRESENTATIONS AND GENERATING FUNCTIONS
OF CERTAIN QUADRUPLE HYPERGEOMETRIC SERIES . 23

Biljana Zlatanovska
DYNAMICAL ANALYSIS OF ONE TWO-DIMENSIONAL MAP . 31

Marija Chekerovska, Risto Filkoski, Todor Chekerovski, Sara Srebrenkoska
NUMERICAL MODELING OF FLAT PLATE SOLAR COLLECTORS
WITH A CFD APPROACH . 47

17

FIXING GENOMIC DATA DECOMPRESSION ERRORS

Done Stojanov

Faculty of Computer Science, Goce Delcev University, Stip, Macedonia
done.stojanov@ugd.edu.mk

Abstract: The problem of genomic data compression/decompression is considered in this paper. Unlike
current research that depends on reference sequence or template, a new hash-based methodology that
does not depend on reference sequence is proposed. By applying the hashing formula that was proposed
by Reneker and Shyu, 9 bytes of compression gain per zipped read is possible. However, the main
emphasis in this paper is put on the correction of errors in genomic data decompression that happen if
Renker-Shyu formula is applied.

Keywords: DNA, data, errors, correction.

1. Introduction
Current sequencing projects have revealed a variety of genomic data. Genomic data is tracked,

annotated, classified and offered though public DNA databases. Since new data is sequenced and submitted
on daily basis, it is very likely that DNA databases will face up storage deficiency in near future. This
conclusion has motivated the scientific community to develop efficient genomic data compression
algorithms.

The general approach to genomic data compression relies on reference sequence. This means that the
compression is done by tracking the positions of difference between the sample that has to be compressed
and the reference sequence or the template. Further compression gain is also possible if entropy coding is
applied to the positions of difference, based on HUFFMAN [1] or GOLOMB [2] code. However, we must
admit that this approach proposed in 2009 by Brandon [3] has limited application since it can be applied
only to samples that do not significantly differ. The solution to this problem relies on using more than one
template.

SNPs (single-nucleotide polymorphisms) and mutation history are provided as additional information
in some works for better compression gain. Utilizing SNPs information, Christley [4] and Pavlichin [5]
managed to compress the James-Watson’s genome small enough to be sent by mail. Christley [4]
compressed the genome down to 4 MB, while further compression down to 2.5 MB was reported by
Pavlichin [5].

GRS [6] was the first known software tool that was able to compress genomic data without additional
data. However, this application runs slow, it cannot be applied to all samples and the compression gain is
not high at all. All these drawbacks are overcame by GreEn [7]. GreEn runs at a higher speed than GRS,
has better compression rate and can be applied to any sequence.

Straightforward application of HUFFMAN code was reported by Tembe [8]. While more than 65% of
compression gain was measured in that research, some researchers such as Deorowicz and Grabowski [9]
proposed a limitation upon the compression pattern to be exclusively applied to samples that come from
the same species.

All these methods rely on reference sequence and, without it, data compression would not be possible.
Therefore, in this paper we consider the application of hash function for genomic data compression that
makes the compression process independent of reference sequence.

Compressing data applying Renker and Shyu hashing formula [10] can be done without any problem,
but when it comes to decompression, errors in terms of accuracy are likely to happen. We found that these
errors happen in hashed C(X) (C-cytosine, X-random nucleotide) pairs and C…C cytosine tracts
(uninterrupted chains of cytosine) and they happen because one of the nucleotides is hashed to the same
value as the radix in the hashing formula. Appropriate solutions are proposed and that resulted in 0 errors
in genomic data decompression.

UDC: 004.62.052.4:575.111

18

2. Materials and methods
In 2005, Reneker and Shyu proposed a unique hashing formula based on equations (1) and (2) that

translates genomic string over the alphabet ∑ = {A, C, T, G} into number. Equation (1) translates nucleotides
into positive numbers, which are afterwards used to compute the hash of random genomic read R according
to equation (2).

f(A) → 1, f(T) → 2, f(G) → 3, f(C) → 4 (1) (A: adenine, T: thymine, G: guanine, C: cytosine)

H(R) = f(R: a0a1 … an−2an−1)=∑ f(ai) × 4in−1
i=0 = f(a0) × 40 + f(a1) × 41 + ⋯+ f(an−2) × 4n−2 +

f(an−1) × 4n−1 (2)

This concept is suitable for genomic data compression and here we are going to explain why.

 Storing DNA sequence as an array of characters requires 1 B (byte) per nucleotide (character). If the
sequence contained n nucleotides, n B (bytes) would be required. In terms of the request for storage, the
previous is not a problem when it comes to short reads or partial mRNA, but it may be a problem when we
deal with human chromosome or even the entire human genome of 3.000.000.000 bp (base pairs).

Applying equations (1) and (2) we can compress short genomic reads of 15 base pairs into a single
integer of 4 B (bytes) that results in 11 bytes of compression gain per read. Rather than random, the length
of the reads was chosen upon the hash of the read of 15 cytosines which equals 1.431.655.764, which is the
maximum that can be stored into a single variable of inter type without overflow. According to equation
(1), all other nucleotide translations (f(A), f(T), f(G)) are less than 4 (f(C)) what grants that any other read
of 15 base pairs can be also zipped into a single integer of 4 bytes without overflow.

After read’s compression, we must know how to decompress/decrypt a part of the read or even the
entire read (decompression/decryption means transforming the hash into a string). To do that, we have to
know how to decompress nucleotide ak given the hash of the read H(R) and the position of decryption k as
input.

Perhaps one can say that this can be easily done by applying equation (3), but errors in decryption are
likely to happen if only this equation is applied and, as we said before, these errors happen because cytosine
(C) is hashed to the same value as the radix in equation (2) which equals 4.

𝐟𝐟(𝐚𝐚𝐤𝐤)𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 = (𝐇𝐇(𝐑𝐑)
𝐦𝐦𝐤𝐤⁄)𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 (3)

To prove equation (3) we can write equation (2) into equation (4) in terms of 4k as a common factor.

From equation (4) we get that H(R)
4k⁄ equals equation (5). If we rewrite equation (5) in terms of 4 as a

common factor, we get equation (6), wherefrom we get equation (7) that equals equation (3).

H(R) = f(a0) × 40 + ⋯+ f(ak−1) × 4k−1 + 4k × (f(ak) + f(ak+1) × 41 + ⋯+ f(an−1) × 4n−k−1)
(4)

H(R)
4k⁄ = f(ak) + f(ak+1) × 41 + ⋯+ f(an−1) × 4n−k−1 (5)

H(R)
4k⁄ = f(ak) + 4 × (f(ak+1) + f(ak+2) × 4 … + f(an−1) × 4n−k−2) (6)

(H(R)
4k⁄)mod4 = f(ak)mod4 (7)

So, we get that if (H(R)
4k⁄)mod4 = 1 then ak = ′A′(Adenine), if (H(R)

4k⁄)mod4 = 2 then ak =

′T′(Thymine), if (H(R)
4k⁄)mod4 = 3 then ak = ′G′(Guanine) and if (H(R)

4k⁄)mod4 = 0 then ak =
′C′(Cytosine).

Done STOJANOV

19

The first time when the accuracy of decryption is undermined is when ak is preceded by Cytosine
or ak−1 = ′C′. In such a case, instead of equation (3), equation (8) must be applied to decrypt correctly ak.

𝐟𝐟(𝐚𝐚𝐤𝐤)𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 = (𝐇𝐇(𝐑𝐑)
𝐦𝐦𝐤𝐤⁄ − 𝟏𝟏)𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 (8)

To prove equation (8) we shall consider once again equation (2) under ak−1 = ′C′, f(ak−1) = 4. In
such a case, equation (2) transforms into equations (9) and (10).

H(R) = f(a0) × 40 + ⋯+ f(ak−2) × 4k−2 + 4 × 4k−1 + f(ak) × 4k + f(ak+1) × 4k+1 + ⋯+
f(an−1) × 4n−1

 (9)

H(R) = f(a0) × 40 + ⋯+f(ak−2) × 4k−2 + 4k + f(ak) × 4k + f(ak+1) × 4k+1 + ⋯+ f(an−1) ×
4n−1 (10)

If we take 4k out of parenthesis in equation (10), this equation becomes equation (11).

H(R) = f(a0) × 40 + ⋯+f(ak−2) × 4k−2 + 4k × (1 + f(ak) + f(ak+1) × 4 + ⋯+ f(an−1) ×
4n−k−1) (11)

According to equation (11) H(R)
4k⁄ equals 1 + f(ak) + f(ak+1) × 4 + ⋯+ f(an−1) × 4n−k−1. The

further transformation of H(R)
4k⁄ in terms of 4 as a common factor results in equations (12) and (13).

H(R)
4k⁄ = 1 + f(ak) + 4 × (f(ak+1) + ⋯+ f(an−1) × 4n−k−2) (12)

H(R)
4k⁄ − 1 = f(ak) + 4 × (f(ak+1) + ⋯+ f(an−1) × 4n−k−2) (13)

From equation (13) we get that (H(R)
4k⁄ − 1)mod4 = f(ak)mod4.

Since we cannot know in advance if ak is preceded by cytosine or not, an additional test (14) must be
conducted. Given that test (14) is true, equation (8) must be applied to decrypt correctly ak and if false
equation (3) is applied instead. In fact, test (14) checks if ak is preceded by cytosine or not upon the hash
of the read 𝐇𝐇(𝐑𝐑) and the position of decryption 𝐤𝐤 as input.

𝐼𝐼𝐼𝐼(𝐻𝐻(𝑅𝑅) 𝑚𝑚𝑚𝑚𝑚𝑚 4𝑘𝑘−1 = 𝐻𝐻(𝑅𝑅) 𝑚𝑚𝑚𝑚𝑚𝑚 4𝑘𝑘) 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑎𝑎𝑘𝑘−1 =′ 𝐶𝐶′:𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑡𝑡𝐸𝐸𝑚𝑚𝑒𝑒 (8) 𝐸𝐸𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐸𝐸𝑒𝑒𝑚𝑚 (14)

Test (14) can be also proved. For that purpose, we consider once again equation (9), which is a special
case of equation (2) given that ak−1 = ′C′. If we take 4k−1out of parenthesis in equation (9), we get equation
(15).

H(R) = f(a0) × 40 + ⋯+f(ak−2) × 4k−2 + 4k−1 × (4 + f(ak) × 4 + f(ak+1) × 42 + ⋯+ f(an−1) ×
4n−k) (15)

According to equation (15) H(R)mod 4k−1 = f(a0) × 40 + ⋯+f(ak−2) × 4k−2 and if we look back at
equation (11), we get that H(R)mod 4k also equals f(a0) × 40 + ⋯+f(ak−2) × 4k−2 and this happens only
if ak is preceded by Cytosine.

 Until now, we know that if test (14) returns true ak is preceded by cytosine and equation (8) must
be applied to decrypt correctly ak, on the other hand equation (3) has to be applied. However, there is one
more case that is critical when test (14) returns false but instead of equation (3), equation (8) must be
applied. This situation happens if cytosine tract (C…C) before ak.

To discuss this situation, we consider the case when ak is preceded by cytosine being also preceded
by cytosine(…𝐂𝐂𝐂𝐂𝐚𝐚𝐤𝐤 …). In this situation, H(R) equal equations (15), (16) and (17). Equations (16) and

FIXING GENOMIC DATA DECOMPRESSION ERRORS

20

(17) equal equation (15), but they are written in terms of 4k−1 and 4k as common factors. From equations
(16) and (17) we get that condition (14) is not satisfied because H(R)mod 4k−1 and H(R)mod 4k mutually
differ, i.e. H(R)mod 4k−1 = ⋯+ f(ak−3) × 4k−3 and H(R)mod 4k = ⋯+ f(ak−3) × 4k−3 + 4k−1 but
since ak is preceded by Cytosine, equation (8) must be applied to decrypt correctly ak.

H(R) = ⋯+ f(ak−3) × 4k−3 + f(C) × 4k−2 + f(C) × 4k−1 + f(ak) × 4k + ⋯

= ⋯+ f(ak−3) × 4k−3 + 4 × 4k−2 + 4 × 4k−1 + f(ak) × 4k + ⋯

= ⋯+ f(ak−3) × 4k−3 + 4k−1 + 4k + f(ak) × 4k + ⋯ (15)

H(R) = ⋯+ f(ak−3) × 4k−3 + 4k−1 × (1 + 4 + f(ak) × 4 + ⋯) (16)

H(R) = ⋯+ f(ak−3) × 4k−3 + 4k−1 + 4k × (1 + f(ak) + ⋯) (17)

If test (14) returns false, we conduct an additional test (18), for which if it is true, equation (8) must be
applied. This test (18) we derived from equations (16) and (17) and it covers the case when ak is preceded
by cytsoine tract (C…C). From equations (16) and (17) we get that H(R)mod 4k−1 = ⋯+ f(ak−3) × 4k−3
and H(R)mod 4k = ⋯+ f(ak−3) × 4k−3 + 4k−1, i.e. H(R)mod 4k = H(R)mod 4k−1 + 4k−1 .

𝐼𝐼𝐼𝐼(𝐻𝐻(𝑅𝑅)𝑚𝑚𝑚𝑚𝑚𝑚 4𝑘𝑘 = 𝐻𝐻(𝑅𝑅)𝑚𝑚𝑚𝑚𝑚𝑚 4𝑘𝑘−1 + 4𝑘𝑘−1) ∶ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝐸𝐸 (8) 𝐸𝐸𝑖𝑖 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝐸𝐸𝑎𝑎𝑚𝑚 (18)

This discussion was summarized into algorithm that is presented below.

output: char 𝒂𝒂𝒌𝒌 algorithm: Nucleotide Decompression (input: int 𝑯𝑯(𝑹𝑹),𝒌𝒌)
{

 if (𝐻𝐻(𝑅𝑅)𝑚𝑚𝑚𝑚𝑚𝑚 4𝑘𝑘−1 == 𝐻𝐻(𝑅𝑅) 𝑚𝑚𝑚𝑚𝑚𝑚 4𝑘𝑘)
 𝑓𝑓(𝐸𝐸𝑘𝑘) ← (𝐻𝐻(𝑅𝑅)

4𝑘𝑘⁄ − 1)𝑚𝑚𝑚𝑚𝑚𝑚4
 else{

 if (𝐻𝐻(𝑅𝑅)𝑚𝑚𝑚𝑚𝑚𝑚 4𝑘𝑘 == 𝐻𝐻(𝑅𝑅)𝑚𝑚𝑚𝑚𝑚𝑚 4𝑘𝑘−1 + 4𝑘𝑘−1)
 𝑓𝑓(𝐸𝐸𝑘𝑘) ← (𝐻𝐻(𝑅𝑅)

4𝑘𝑘⁄ − 1)𝑚𝑚𝑚𝑚𝑚𝑚4
 else
 𝑓𝑓(𝐸𝐸𝑘𝑘) ← (𝐻𝐻(𝑅𝑅)

4𝑘𝑘⁄)𝑚𝑚𝑚𝑚𝑚𝑚4
 }

if(𝑓𝑓(𝐸𝐸𝑘𝑘)= =1)
𝐸𝐸𝑘𝑘=’A’
 else if (𝑓𝑓(𝐸𝐸𝑘𝑘)= =2)
 𝐸𝐸𝑘𝑘=’T’
 else if (𝑓𝑓(𝐸𝐸𝑘𝑘)= =3)
 𝐸𝐸𝑘𝑘=’G’
 else
 𝐸𝐸𝑘𝑘=’C’
 return 𝐸𝐸𝑘𝑘

 }

3. Results and discussion
A short reads compression/decompression program was written in C#, Figure 1. This program accepts

short reads as input (upper text control Figure 1), computes its hash (middle text control Figure 1) and
upon the hash decrypts the read, either by applying only equation (3) (middle text control Figure 1) or/and
by applying tests (14) and (18) and the additional correction equation (8) (lower text control Figure 1).
Short reads decompression is made by the previous algorithm for all positions in the reads.

We made five tests on 11-b.p (base pairs) reads on Acer Aspire 5570Z computer with Genuine Intel
T2080 @ 1.73 GHz and 2 GB RAM, Table 1. Four of the reads contain critical CT-tandem repeats (record
1-record 4 Table 1) while the last sample contained Cytosine tract before Thymine, Table 1.

Done STOJANOV

21

Applying only equation (3) Thymine nucleotides in CT-tandem repeats were not accurately decrypted
(Table 1, red-labeled nucleotides, record 1- record 4). In addition, five base pairs were not accurately
decrypted near/in the Cytosine tract (Table 1, red-labeled nucleotides record 5). The total number of errors
equaled 15, Figure 2. Applying proposed tests (14) and (18) and the additional correction equation (8), all
these 15 errors were solved that resulted in 0 errors in genomic data decompression (Table 1, blue-labeled
nucleotides).

Figure 1. Screenshot of the application

Table 1: Decryption results

Input Hash Value Applying eq. 3

Applying tests (14)
and (18) and

correction eq. (8) Errors
ACTGTATAAGA 1926897 ACGGTATAAGA ACTGTATAAGA 1
ACTCTATAAGA 1926961 ACGCGATAAGA ACTCTATAAGA 2
ACTCTCTAAGA 1930033 ACGCGCGAAGA ACTCTCTAAGA 3
ACTCTCTCTGA 2044721 ACGCGCGCGGA ACTCTCTCTGA 4
ACCCCCTAAGA 1930577 ACAAAAGAAGA ACCCCCTAAGA 5

FIXING GENOMIC DATA DECOMPRESSION ERRORS

22

Figure 2. Number of base pairs errors per short read

Concluding remarks
We considered the problem of genomic data compression/decompression by applying the hashing

formula that was proposed by Reneker and Shyu. We showed that using this formula short reads of 15 base
pairs can be zipped into a single integer of 4 bytes that results in 11 bytes or around 73 % of compression
gain per read. This compression is possible without having to use reference sequence, which is a common
practice in all current research of genomic data compression. However, we should be very careful when
applying this formula for data decompression since errors are likely to happen due to the fact that one of
the nucleotides is mapped to the same value as the radix. We noticed this case and we proposed a solution
that works based on two tests and one additional equation that eliminated the possibility of errors in genomic
data decompression.

References
1. Huffman, D.A. (1952). “A method for the construction of minimum-redundancy codes”: IEEE, In:

Proceedings of the IRE. 1098–1101.
2. Golomb, S. (1966). “Run-length encodings”: IEEE Information Theory Society, IEEE transactions

on information theory. 12(3): 399–401.
3. Brandon, M.C., Wallace, D.C., Baldi, P. (2009). “Data structures and compression algorithms for

genomic sequence data”: Oxford University Press, Bioinformatics. 25(14): 1731–1738.
4. Christley, S., Lu, Y., Li, C., Xie, X. (2008). “Human genomes as email attachments”: Oxford

University Press, Bioinformatics. 25(2): 274–275.
5. Pavlichin, D.S., Weissman, T., Yona, G. (2013). “The human genome contracts again”: Oxford

University Press, Bioinformatics. 29(17): 2199–2202.
6. Wang, C., Zhang, D. (2011). “A novel compression tool for efficient storage of genome

resequencing data”: Oxford University Press, Nucleic acids research. 39(7): e45–e45.
7. Pinho, A.J., Pratas, D., Garcia, S.P. (2011). “GReEn: a tool for efficient compression of genome

resequencing data”: Oxford University Press, Nucleic acids research. 40(4): e27–e27.
8. Tembe, W., Lowey, J., Suh, E. (2010). “G-SQZ: Compact encoding of genomic sequence and

quality data”: Oxford University Press, Bioinformatics. 26(17): 2192–2194.
9. Deorowicz, S., Grabowski, S. (2011). “Robust relative compression of genomes with random

access”: Oxford University Press, Bioinformatics. 27(21): 2979–2986.
10. Reneker, J., Shyu, C.R. (2005). “Refined repetitive sequence searches utilizing a fast hash function

and cross species information retrievals”: BioMed Central, BMC bioinformatics. 6(1): 111.

0

1

2

3

4

5

6

Errors

Done STOJANOV

