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Abstract

We aim in this work to establish new operational representations for the hypergeometric functions of four
variables X' é4), X §4), X, é‘”, X, ;4) , X 1(3). By means of these operational representations, a number of generation

functions involving these hypergeometric functions are then found.
MSC 2010: 33C20, 33C65.
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1. Introduction

The subject of operational calculus has gained considerable popularity and importance during the past three
decades or so, due mainly to its demonstrated applications in numerous seemingly diverse and widespread fields
of science and engineering [4, 11, 12]. One of the most interesting developments on the use of operational calculus
is the finding of symbolic representations for hypergeometric series and polynomials that play an important role
in the investigation of various useful properties of the hypergeometric series and polynomials (for example [1, 2,
5-10]). Recently, Bin-Saad et al. [3] have introduced five new quadruple hypergeometric functions whose names

are X é4), X 54), X §4), X 54), X, 1(3) to investigate their five Laplace integral representations that include the

confluent hypergeometric functions |, | f;, the Humbert functions @,,®, and ¥, in their kernels, we recall

these quadruple hypergeometric functions are defined by

a ) (a ) xm n Zp uq
(4) . . _ ( 1/ 2m+n+q 2/ g+n+2p y 11
X (a,,a,,0,,0,,0,,0,,8,,8,5C,,C;,C5,C,3 X, Y, Z,U) = Z T (1.1

)
m,n,p.q=0 (cl)m+n(c2)p+q m! nl pl g

(@) 202 (a)),(a3), x" y" z” u? 1.2
X;M(a]aalsalaalsalaa25a39al;C]9czac3ac4;x7ysz9u): 2 gy ‘ L= = — ( : )

m,n.p.q=0 (cl)m(CZ)II(CS)p(c4)q m! n! p! q!’

(@) 2.2 (ay),(ay), x™ y" z¥ u?
X (ay,a,,0,,0,,0,,0y,d5,8,3C,,C,,Cyy Cy3 X, P, Z,1) = z m2q+n+p n pi'y' -, (1.3)
mapg=0 (€)men(€2) ,(€3), m! n! p! q!

(a])2m+2q+n+p(a2)n(a3)p x" y" z? u? (1.4)

(4) . . —
Xy (ay,a,a,,a,,a,,a,,05,0,5¢,,¢,,0,,C33X, Y, 2,U) = Z PSR
mamg=0 (€)1, (€2) (C3)q m: n. p: g

= (4) (@)1 (@3) 0y x" y" 27 u?
X1<g)(al9a1Dal’a27a13a29a3aa3;c19c2ac3vc4;x YLz u)= z s e e T (1.5)
mamg=0 (€1, (C3), (C3)p (04),, m:n:p:-q:

where each series X (4)(.)contains twelve parameters (eight a’s and four ¢’s ). The 1st, 2nd, 3rd and 4th
parameters in X (4)(.)are connected with the integers m, 1, p andq , respectively. Each repeated parameter in

the series XV (.) points out a term with double parameters. For example, X (4)(a1 ,a,,0,,0,,05,0,,0d,,ds) Shows

.. 4
that (al )m+n (az )p+q (a3 )m+n (a4 )p (aS )q : Slmllarly’ for X( )(al > al’ al > a2’ al’ al 2 aZ’ a3 )’ (a1)2m+2n+p (az)pﬂ] (a3)q and
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X (a,,a,,a,,a,,a,,a,,a,,a,) points out the term (a1)2m+n+p (a2)n+p+2q . Similarly, we can write various
combinations of indices, for more details see [3].

We have organized the rest of this paper in the following way: Section 2 establishes operational representations
of the multinomial-type for the quadruple series X é‘” , X §4) , X, 8(4) , X, 9(4) , X, 1(3) . In Section 3, we aim to establish

operational representations of exponential and multinomial type. The aim of Section 4 is to use the operational
representations obtained in Section 3 to derive a number of generating functions for the quadruple series

X0 XXX X
2. Operational representations of the multinomial-type

Here we will deal with operational definitions ruled by the operators D, and D;l where D, denotes the

derivative operator and D;l defines the inverse of the derivative. It is evident that D;l is essentially an integral

operator and the lower limit has been assumed to be zero.

The following two formulas are well-known consequences of the derivative operator D and the integral operator

D;l (see, Ross [12]):

Dyt = F(A+1) , @.1)
r(A-m+1)
Dx = LA+ , 22)
C(A+m+1)
me N {0}, A € C (complex number)\ {—1,—2,...},
where 1—‘(/1) is usual Euler's Gamma function given by
riA+1
r(1)= M, (A#0,-1,-2,..).
A
Based on the operational relations (2.1) and (2.2) the action of the set of operators
{D;” D[;’”}, (m=0,1,2,3,..),
on the power
a“" g, (Re(a) >0, Re(b) >0) ,
is given by [1]
m —m a+m-—] —| a— +1m—! (a )m
Dy D, {a lﬂbl}:a ‘B 1@' 2.3)
It is easily verified that
(2.4)

(Daﬂ—lD;ay"{aa—lﬁc—l}:D:ﬂ—mD;mam{aa—lch—l}: o gt Ea)m ’(m =0,1,2,..).

c

m
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Moreover, the multinomial expansion of algebra

- m xm,” xm” (25)

AL

—a
(1—x1—x2..._xn) — ' x
my,...,m,=0 ml ....mn !

has its analogue the operator multinomial expansion

0-Ip. 5'Dja]-~[p, 5 D}a])*

-y @, [, 57D ]" . [D, B;'Dj e, ]

o ml.m !

(2.6)

Now, by means of the operators in (2.1) to (2.6), we aim in this section to establish the following operational
representations:

—b,

(-x[p, p'D;a ]I, ()" Dja])" (1~ D, 57D} ]ID.. (") Djla])
(1-z[p, 'D,a][D,. (B" ' Dy, | V" (1=u D, 'Djle | D, (™) Dy, | | 2.7)
Aartaz gy g g

=aa ()BT (BN BT A BT X ayara50a0,0,,05,05,a55¢0,6,¢5, 0030 v, 2,0)
(-x[p, 5D, e [p, p' D} ]-u D, 5 D)o ]I, 57D} ] )
(1-y[p, B D)) (1= (D, B D)) (e g g g e i | @8)
=" B BT g ;3'1 j‘"l'X§4)(a1,al,a1,al,al,az,a3,al;01,02,03,c4;x,y,z,u);

a

(1 —-X [ a ﬂ]ﬁlD;;,lal ] [Da‘ (ﬂ’)il D;al] )7bl (1 -y [Da‘ ﬂlﬁlD;al] )7

(1-z[p, gD | (-u D, B Dy ][0, (B Dyt | {8y (B g g pe) B
zalﬁllil(ﬂ')bﬁ](ﬂ”)bzil 16'7I zcr] ;3_]'Xé4)(al’al9a1’a1’al9a2’aS’al;cPCl7cztcz;x9yazﬁu);
(-x[p, 5, D)'a D, (8)' D))" 1~y [D, B D} ] )
(2.10)

(1-z[p, pr' D] ) (1-u[D, g D} |[D, (B D] ) { e (8 (B o e B}

a1 N mb,~1 pe—1 pe,—1 pes-1 (4) . . .
=a (BB BB B X (al7a1aalaalaalaazaaaaal:czaclaclacwxayazau)»

—b

(-x[p, 50D, D7 )= (D, p:'Djla ][, 57D} ])
(1-y[p, p' D )-u D, B D} | ) { e 7 pe B g B (2.11)

_ -1 a-1 pb-1 pe-1 pey-1 pes-1 pey—l (4)( . . )
=a" ay p 1 2 3 4 Xi\a,,a,,a,,a,,a,,a,,a;,a55¢,,¢,,C5,C43X, Y, Z,U)

Proof of the operational representations of the multinomial-type

To prove (2.7), let us denote, for convenience, the left-hand side of assertion (2.7) by O . Then, as a consequence
of the binomial theorem, it can be easily seen that:

= (), 0,), 0,),0,),x"y zru (B)" (87" (B7) () )
m,n,p,g=0 m!n! p'q!

B D;{m D;:l D;f«? D;»‘«In D;‘(ern)D/—i:(erq) . { ala|+2m+n+q—la;+q+2p—l (ﬂr)bﬁl (ﬁ”)bz*l (ﬂm)lgfl (ﬂ"")m*l ﬁlyl—l 2L'2—1 }

2m+n+q Fyn+q+2p
D, D,

Upon using (2.3) and considering the definition (1.1), we are finally led to the right-hand side of the assertion
(2.7). The proofs of the assertions (2.8) to (2.11) run parallel to that of the assertion (2.7) thus we skip the details.
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3. Operational representations of the exponential and the multinomial type

We recall that the exponential expansion is defined by (see [13])

e :i Z—' 3.1)

making use of the expansion formula above and the technique illustrated in section 2, we can easily derive the
following operational representations of exponential and multinomial type for X i(4)( i=06,7,8,9,10)

-b

(-x[p, D5, 57 D' |-z [, g D I, 57 D5 e ])
-exp( y [Da. D, ,Bl’ngalaz ]+ u [Da, D, ﬁ{ng alaz] ) (3.2)
{opazm

=a/ ol B BT B X((f)(al,al,az,al,al,az,az,az;cl,cl,cz,cz;x,y,z,u);

—ay

explx [D2 5D} e} |+u[D? 5 D)) (1- v [D, 5D}, | ) (-2 D, 5 D}l er ])
_{alal—lﬂlcl—l Zcz—l ;;,71 :471} (3.3)

_ a1 pe-1 pe-1 pes=1 peg-1 (4) . . .
=ai" p ) By X (al5al’al’al’al’a23a3’al501’02303304’x’y’z’u)’

ewle D2 5Dyt - [p, 57D ]) " (1-2 (D, 5 D] )
explu [0 ;' Dylar]) (et g i B (34

_ a1 pe-l pe,-1 pey-1 (4) . . .
=) BBy By X (alaalaalaalaalaazaazsalsclaclscz,czaxa%zau)a

exp(x [D2 g Dya?] ) (1= [D, p' Dy | (1-2 D, B D', ] )
cexplu [D2 p;' D)@ ])-{ @i g g gt} 33

—_ a1l pa-1 pe-1 03_1, (4)( . . )
_al 1 2 3 X9 a;,d,,a,,0,,d,,d,,d3,0,,C,,C,C,C3,X, Y, Z,U ),

exp(x[D2 gD el ]+ 2 [D, D, B;' D e, ] )-(1-y [D, ;' D, @, |-u D, B;'D; ] )
Ao tas o g gt gt} (3.6)

_ a1 a1 pe-l pe-l pe=l peg-l (4)( . . )
=o' oy BB BBy - Xansan.a0,ay,a0,a,,a5,05500,0,,05,045X, 9, 2,U);

Proof of the operational representations of exponential and multinomial type

To prove formula (3.6), we proceed as follows: Let us denote the left hand side of (3.6) by O . Then in view of
the exponential expansion (3.1) and the multinomial expansion (2.5) one gets :

(@), X"y BB

=0 m!n! plq!

. ay+2m+n+p-1 __ as+p+q-1 pe—1 pe,—1 pey-1 0471}
{al 28 1 2 3 4 .

2m+n+p |yp+q y—m -1 -p N4
D”‘l DU‘J Dﬂl Dﬂz Dﬂ} Dﬂ4

Upon using (2.3) and considering the definition (1.5), we are finally led to the right-hand side of equation (3.6)
and thereby (3.6) is proved. The proofs of formulae (3.2) to (3.5) run parallel to that of formula (3.6), so the details
are skipped.
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4. Generating functions

By virtue of the operational representations for the quadruple series X l.(4)( i=6,7,8,9,10) in section 3 and also
expansion formula (3.1), we find the following generating functions :

exp(y [Da] Daz ﬂ,_lD;a,az ]+ u [Da. Daz ﬂz_lDZa,az] )

: exp[t (1-x[p, 8;'D, o, |[D, p'D;'e |-z D, p;' D), |[D,. 87D,y ] )22 J

4.1
'{alal—laz—lﬂ—l lc]—l 20271}
w k k
=a/" o, BB BT Y ai ! XWa,,a,,k,a,,a,,k.kk;c,,c ey cysx, v, z,u);
i B k!
explx [ D2 gDy at 1+t 1=y [D, ' D | )+ v (1-2 D, B D, ey | )+ u [D2 B, D} a?] ) 42)
. {al"l’l l‘l*] 202*1 ;x*] :4*1} '
:Ollal_1 151_1,32(2_1 3[:371 :4_1 i ;:'Vr' X§4)(a1,al,al,a],al,—k,—r,a];c],cz,c3,c4;x,y,z,u);
k=0 S
explx [ D2 8Dyl |+1(1-y D, B'D; e, | )+ v (1-2 D, ;' D) | )+u D2 p;'D; et ]) )
.{alalfl ]clfl 20271 3(‘371} ( 3)
k r
=alar1 lCrl 26271 3‘:371 Z tivX§4)(al,a,,a,,a,,a,,—k,—r,a,;cl,cl,cz,c3;x,y,z,u);
im0 k!
exp(x [ D2 p;' D, a? |+1(1-y D, D} e | )+v(1-z D, 7' D, e | )+u [D? B D} a?] )
. {alalfl Iclflﬂzt'zfl ;371} (44)
B B ~ ~ © Zk r
:ala1 l 101 l ZCZ 1 3(:3 l z 'v'X9(4)(a17a17a17a17a17_k5_r5a1;027C15clac3;x,y527u);
i k!lr!
exp(x [ D; B'D,'al ]+ z [Da| D, ,B;lDZotla3]+t (1 -y [Dm1 ﬂz’lDzal]—u [Dm1 ﬁ;'Dgog] )) (4.5)
.{ala,—la;rl lc,—l zz'z—l 343—1 :4—1}

k

_ a-l _as-1 pe-1 pe,—1 pes—1 pey-1 ’ (4)( _ _ A s .. ).

=a oy 1 2 3 4 k'Xl() a,,a,,a,,—k,a,,—k,a;,a; ;c,,c,,c5,¢,5%,y,z,u);
k=0 :

Proof of the generating functions

k
t
To prove relation (4.1), in (3.2), let us puta, = —b = k , by multiplying both sides by E and then sum, we
finally get

exp(y [Da] D, ﬂl’lD;azla2 ] )+ u [Da‘ D, ﬂ;lDl};alaz]

(; (1-x[p, p'D,'a)ID, p'D,'a,]-=[D, B;'D, s, |[D, 7D, ] )“2] {

2

o0
oy k!

alal—laz—lﬂ—lﬂlcr] 2cz—]}

k

® k

a, t

_ ya-l_ -1 -1 pc-1 pe,-1 2
=" a, BB B

4) . .
- 'Xé (al,al,k,al,al,k,k,k,cl,cl,cz,cz,x,y,z,u).
w Pk

Now, we use the definition (3.1) of the exponential expansion, which completes the proof of relation (4.1).
In the same manner, one can prove relations (4.2) to (4.5).

Remark: in (4.2) to (4.4) let @, =—k and @, = —rand a, =—k in(4.5), respectively.
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