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DYNAMICAL ANALYSIS OF ONE TWO-DIMENSIONAL MAP

BILJANA ZLATANOVSKA

Abstract. In this paper we will present a dynamical analysis of a two- dimen-
sional map via an example. The fixed points, the classification of their character
(stable or unstable), the visualization of some orbits and plotting of the bifurca-
tion diagrams will be the main aspects of research for the two-dimensional map.
As a computer support, mathematical software Mathematica will be used.

1. Introduction

The dynamical analysis of the dynamical systems appeared as a result of the
development of the science for the needs of the technique, a description of the
natural processes and laws, the economics etc. The dynamical analysis of the
dynamical systems can be seen in a lot of scientific papers (as examples [1]-[7]).

The dynamical analysis of the maps and their application in physics, econom-
ics, biologic process, engineering and other areas as discrete dynamical systems
described via difference equations are presented in the mathematical literature ([1],
[2], [3], [5], [6], [7]).

The simplest maps for a dynamical analysis are one-dimensional maps. They
can be seen in [1], [2], [3], [5], [6], [7].

Any dynamical analysis of the dynamical systems (discrete or continuous) is
unimaginable without using a mathematical software. For this goal, we will use a
mathematical software Mathematica which contains tools and techniques of alge-
braic, numerical and graphical nature (as in [1], [2], [3], [4], [5]).

The dynamical analysis of the two-dimensional maps includes finding fixed and
periodical points, classification of their character (stable or unstable), visualiza-
tion of orbits, calculation, and visualization of Lyapunov functions, plotting of the
bifurcation diagrams, calculations of Lyapunov numbers and visualizations of Lya-
punov specter. Such a dynamical analysis can be seen in numerous mathematical
literature (as in [5], [6], [7]).

Date: December 6, 2018.
Keywords. Discrete dynamical system, dynamical analysis, two-dimensional map, fixed point,

orbit, bifurcation diagram.
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The simplest two-dimensional maps are the liner maps F (x, y) = (ax+ by, cx+
dy) where a, b, c, d are real parameters and the appropriate two-dimensional linear
system of difference equations is

xn+1 = axn + byn

yn+1 = cxn + dyn

where n=1,2,.... This system has one fixed point (0, 0) for (a− 1)(d− 1)− bc �= 0.
Its dynamics are simple.

A dynamical analysis of the two-dimensional map will be given in this paper

F (x, y) = ((a− x− by)x, (a− cx− y)y) (1.1)
where a, b, c are real parameters. This two-dimensional map is an unsolved exercise
in the paper [5] as exercise 2.17 on page 197 in which they look for a dynamical
analysis for the system of difference equations

xn+1 = (a− xn − byn)xn

yn+1 = (a− cxn − yn)yn (1.2)

where n=1,2,.... In the recommendation of the authors from the paper [5], this a
system (1.2) is given in the paper from 1989, [S. Eubank, W. Miner, T. Tajima,
J. Wiley "Interactive computer simulation and analysis of Newtonian dynamics",
Am. J. Phys. 57].

The dynamical analysis of the two-dimensional map (1.1) will be presented with
a finding fixed points, classification of their character (stable or unstable), visual-
ization of orbits and plotting of the bifurcation diagrams.

2. Theoretical basis

The two-dimensional maps F = (f, g) reviewed as discrete dynamical systems
are reviewed with corresponding systems of difference equations

xn+1 = f(xn, yn)

yn+1 = g(xn, yn) (2.1)

where n=1,2,... and f, g are given functions.

The following definitions and theorems are given in [5]:

Definition 2.1. a) A fixed point of the map F = (f, g) as an equilibrium solution
of the system (2.1) is a point (x, y) that satisfies

Biljana ZLATANOVSKA
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x = f(x, y)

y = g(x, y) (2.2)

b) Let (x0, y0) be a given element of R2. The pairs (x1, y1), (x2, y2), ... defined
inductively by (2.1) are called the iterates of (x0, y0), and the sequence (xn, yn)

∞
n=0 is

called the positive orbit of (x0, y0) and is denoted by γ+((x0, y0)); that is γ+((x0, y0)) =
{(x0, y0), F (x0, y0), ..., F

k(x0, y0), ...}.
c) If the map F is invertible, we define the negative orbit of (x0, y0) to be

γ−((x0, y0)) = {(x0, y0), F−1(x0, y0), ..., F
−k(x0, y0), ...} where F−n denotes the n -

th iterate of F−1.
d) When both the positive and negative orbits eist, the complete orbit γ((x0, y0))

is the union of the positive and negative orbits γ((x0, y0)) = γ+((x0, y0))
⋃
γ−((x0, y0)).

Definition 2.2. a) Let (x, y) be a fixed point of a map F = (f, q), where f and
g are continuously differentiable function at (x, y). The Jacobian matrix of F at
(x, y) is the matrix

JF (x, y) =

[
∂f
∂x (x, y)

∂f
∂y (x, y)

∂g
∂x(x, y)

∂g
∂y (x, y)

]
(2.3)

The linear map JF (x, y) : R
2 → R2 given by
[

∂f
∂x (x, y)x+ ∂f

∂y (x, y)y
∂g
∂x(x, y)x+ ∂g

∂y (x, y)y

]

is called the linearization of the map F at the fixed point (x, y).
The equation

det(JF (x, y)− λE) = 0

i.e

λ2 − trJF (x, y)λ+ detJF (x, y) = 0 (2.4)
is called the characteristic equation at the fixed point (x, y), where

E = [ei,j ] =

{
1 if i = j,

0 if i �= j
(2.5)

is an identity matrix from second order.
The solution λ of the characteristic equation (2.4) is called an eigenvalue of the
Jacobian matrix (2.3).

b) A fixed point (x, y) of the map F is said to be hyperbolic if the linearization of
F is hyperbolic, that is, if the Jacobian matrix JF (x, y) at (x, y) has no eigenvalues

DYNAMICAL ANALYSIS OF ONE TWO-DIMENSIONAL MAP
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on the unit circle. If JF (x, y) has at least one eigenvalue on the unit cicle, the it is
a nonhyperbolic fixed point.

The classification of fixed points is given in the following theorem:

Theorem 2.1. (Linearized Stability theorem) Let F = (f, g) be a continuously
differentiable function defined on an open set W in R2 and let (x, y) in W be a
fixed point of F .

a) If all the eigenvalues of the Jacobian matrix JF (x, y) have modulus less than
one, then the equilibrium point (x, y) is asymptotically stable;

b) If at least one of the eigenvalues of the Jacobian matrix JF (x, y) has a modulus
greater than one, then the equilibrium point (x, y) is unstable.

By analysis of the characteristic equation (2.4) of the Jacobian matrix (2.3)
it can obtain explicit conditions for the local behaviour of a fixed point. For a
two-dimensional map (1.1), an analysis will follow the general method Schur-Cohn
criterion which is described in [5]:

Theorem 2.2. a) An equilibrium point (x, y) of (2.1) is locally asymptotically
stable if and only if every solution of the characteristic equation (2.4) lies inside
the unit circle that is if and only if |trJF (x, y)|< 1 + detJF (x, y)) < 2.

b) An equilibrium point (x, y) of (2.1) is locally a repeller if and only if every
solution of the characteristic equation (2.4) lies outside the unit circle, that is, if
and only if |trJF (x, y)|< |1 + detJF (x, y))| and |detJF (x, y)|> 1.

c) An equilibrium point (x, y) of (2.1) is locally a saddle point if and only if the
characteristic equation (2.4) has one root that lies inside the unit circle and one
root lies outside the unit circle, that is, if and only if |trJF (x, y)|> |1+detJF (x, y))|
and (trJF (x, y))

2 − 4detJF (x, y)) > 0.
d) An equilibrium point (x, y) of (2.1) is non-hyperbolic if and only if the char-

acteristic equation (2.4) has at least one root that lies on the unit circle, that is, if
and only if |trJF (x, y)|= |1 + detJF (x, y)| or detJF (x, y) = 1 and trJF (x, y) ≤ 2.

Monitoring changes in a map depending on the parameters resulting by a change
of the parameter gives the dynamics of that map viewed as a discrete dynamical
system. These qualitative changes are analyzed by drawing bifurcation diagrams
for which the dynamical system is reviewed as a function depending on a parameter.

3. Dynamical analysis of the two-dimensional map (1.1)

The finding fixed points, classification of their character (stable or unstable),
visualization of some orbits and plotting of the bifurcation diagrams for the two-
dimensional map (1.1) will be shown in this part.

Biljana ZLATANOVSKA
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3.1. Fixed points. The fixed points of the two-dimensional map (1.1) are given
with the following theorem:

Theorem 3.1. The two-dimensional map (1.1) has four fixed points F0(0, 0), F1(0, a−
1), F2(a− 1, 0) and F3(

ab−a−b+1
bc−1 , ac−a−c+1

bc−1 ) (bc− 1 �= 0).

Proof. By using (2.2) from Definition 2.1 the following system of algebraic equations
is obtained:

(a− x− by)x = x

(a− cx− y)y = y

By solving this system of algebraic equations (using of the mathematical software
Mathematica) four fixed points are obtained:

i) the point F0(0, 0) is a trivial fixed point;
ii) the points F1(0, a− 1) and F2(a− 1, 0) are fixed points which exist lla ∈ R;
iii) the point F3(

ab−a−b+1
bc−1 , ac−a−c+1

bc−1 ) is a fixed point which exists for bc− 1 �= 0.
�

For the classification of fixed points for the two-dimensional map (1.1) Jacobian
matrix is used (Theorem 2.1. and Theorem 2.2.). The Jacobian matrix (2.3) at the
point (x, y) of the two-dimensional map (1.1) is

JF (x, y) =

[
a− 2x− by −bx

−cy a− cx− 2y

]
(3.1)

For the classification of fixed points, the map (1.1), F = (f, g) must satisfy
conditions of Definition 2.2 and Theorem 2.1. From
f(x, y) = (a − x − by)x, g(x, y) = (a − cx − y)y, we conclude that the map (1.1)
satisfies conditions of Definition 2.2 and Theorem 2.1.

The fixed point F0(0, 0): For the fixed point F0(0, 0), we will give the following
theorem,

Theorem 3.2. For the two-dimensional map (1.1), the appropriate the character-
istic equation of the Jacobian matrix (3.1) at the fixed point F0(0, 0) is

λ2 − 2aλ+ a2 = 0

with eigenvalues λ1 = λ2 = a.

Proof. The Jacobian matrix (3.1) at the fixed point F0(0, 0) has a form

JF (F0) =

[
a 0
0 a

]

DYNAMICAL ANALYSIS OF ONE TWO-DIMENSIONAL MAP
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From

det(JF (F0)− λE) =

∣∣∣∣
a− λ 0
0 a− λ

∣∣∣∣ = 0

the characteristic equation is obtained

λ2 − 2aλ+ a2 = 0

where E is the identity matrix (2.5).
The eigenvalues of the Jacobian matrix JF (F0) are λ1 = λ2 = a. �

For the classification of the fixed point F0(0, 0) for the map (1.1) (by using
Theorem 2.2. and the mathematical software Mathematica), we have the following
conclusions:

i) When −1 < a < 1 , the point F0(0, 0) is an asymptotically stable point (locally
asymptotically stable);

ii) When a > 1 or a < −1 , the point F0(0, 0) is a repeller (unstable point);
iii) When a = 1 or a = −1 , the point F0(0, 0) is a non-hyperbolic point.

We conclude that the behaviour of the map (1.1) in a neighbourhood of the fixed
point F0(0, 0) does not depend on the values of the parameters b and c. The point
F0(0, 0) cannot be the saddle point for any real value of parameters a, b, c .

The fixed point F1(0, a− 1): For the fixed point F1(0, a− 1), we will give the
following theorem,

Theorem 3.3. For the two-dimensional map (1.1), the appropriate characteristic
equation of the Jacobian matrix (3.1) at the fixed point F1(0, a− 1) is

λ2 − (2 + b− ab)λ+ (2a− a2 + 2b− 3ab+ a2b) = 0

with eigenvalues λ1 = 2− a, λ2 = a+ b− ab.

Proof. The Jacobian matrix (3.1) at the fixed point F1(0, a− 1) is

JF (F1) =

[
a− b(a− 1) 0
−b(a− 1) 2− a

]

From

det(JF (F1)− λE) =

∣∣∣∣
a− b(a− 1)− λ 0

−b(a− 1) 2− a− λ

∣∣∣∣ = 0

the characteristic equation is obtained

λ2 − (2 + b− ab)λ+ (2a− a2 + 2b− 3ab+ a2b) = 0

where E is the identity matrix (2.5).
The eigenvalues of the Jacobian matrix JF (F1) are λ1 = 2− a, λ2 = a+ b− ab. �

Biljana ZLATANOVSKA
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For the classification of the fixed point F1(0, a − 1) for the map (1.1) (by using
Theorem 2.2. and the mathematical software Mathematica), we have the following
conclusions:

i) When 1 < a < 3 and 1 < b < a+1
a−1 , the point F1(0, a− 1) is an asymptotically

stable point (locally asymptotically stable);
ii) When (a < 1 and (b > 1 ∨ b < a+1

a−1)) or (a > 3 and (b < 1 ∨ b > a+1
a−1)), the

point F1(0, a− 1) is a repeller (unstable point);
iii) When (a < 1 and a+1

a−1 < b < 1) or (1 < a < 3 and (b < 1 ∨ b > a+1
a−1)) or

(a > 3 and 1 < b < a+1
a−1) the point F1(0, a− 1) is a saddle point;

iv) When (a < 1 and (b = a+1
a−1 ∨ b = 1) or (a = 1) or (1 < a < 3 and

(b = 1 ∨ b = a+1
a−1) ) or (a = 3) or (a > 3 and (b = a+1

a−1 ∨ b = 1)), the point
F1(0, a− 1) is a non-hyperbolic point.

The behaviour of the map (1.1) in the neighbourhood of the fixed point F1(0, a−
1) does not depend on the parameter c .

The fixed point F2(a− 1, 0): For the fixed point F2(a− 1, 0), we will give the
following theorem,

Theorem 3.4. For the two-dimensional map (1.1), the appropriate characteristic
equation of the Jacobian matrix (3.1) at the fixed point F2(a− 1, 0) is

λ2 − (2 + c− ac)λ+ (2a− a2 + 2c− 3ac+ a2c) = 0

with eigenvalues λ1 = 2− a, λ2 = a+ c− ac.

Proof. The Jacobian matrix (3.1) at the fixed point F2(a− 1, 0) is

JF (F2) =

[
2− a −b(a− 1)
0 a− c(a− 1)

]

From

det(JF (F2)− λE) =

∣∣∣∣
2− a− λ −b(a− 1)

0 a− c(a− 1)− λ

∣∣∣∣ = 0

the characteristic equation is obtained

λ2 − (2 + c− ac)λ+ (2a− a2 + 2c− 3ac+ a2c) = 0

where E is the identity matrix (2.5).
The eigenvalues of the Jacobian matrix JF (F2) are λ1 = 2− a, λ2 = a+ c− ac. �

For the classification of the fixed point F2(a − 1, 0) for the map (1.1) (by using
Theorem 2.2. and the mathematical software Mathematica), we have the following
conclusions:

DYNAMICAL ANALYSIS OF ONE TWO-DIMENSIONAL MAP
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i) When 1 < a < 3 and 1 < c < a+1
a−1 , the point F2(a− 1, 0) is an asymptotically

stable point (locally asymptotically stable);
ii) When (a < 1 and (c > 1 ∨ c < a+1

a−1) ) or (a > 3 and (c < 1 ∨ c > a+1
a−1)), the

point F2(a− 1, 0) is a repeller (unstable point);
iii) When (a < 1 and a+1

a−1 < c < 1) or (1 < a < 3 and (c < 1 ∨ c > a+1
a−1) ) or

(a > 3 and 1 < c < a+1
a−1) , the point F2(a− 1, 0) is a saddle point;

iv) When (a < 1 and (c = a+1
a−1 ∨ c = 1)) or (a = 1) or (1 < a < 3 and

(c = 1 ∨ c = a+1
a−1) ) or (a = 3) or (a > 3 and (c = a+1

a−1 ∨ c = 1)), the point
F2(a− 1, 0) is a non-hyperbolic point.

The behaviour of the map (1.1) in the neighbourhood of the fixed point F2(a−
1, 0) does not depend on the parameter b .

The fixed point F3(
ab−a−b+1

bc−1 , ac−a−c+1
bc−1 ): For the fixed point F3(

ab−a−b+1
bc−1 , ac−a−c+1

bc−1 ),
we will give the following theorem,

Theorem 3.5. For the two-dimensional map (1.1), the appropriate characteristic
equation of the Jacobian matrix (3.1) at the fixed point F3(

ab−a−b+1
bc−1 , ac−a−c+1

bc−1 ) is

λ2 − 2bc− ac+ c− ab+ b+ 2a− 4

bc− 1
λ+

(2− a)(abc− ac− ab+ a+ b+ c− 2)

bc− 1
= 0

with eigenvalues λ1 = 2− a, λ2 =
a+b+c−ab−ac+abc−2

bc−1 .

Proof. The Jacobian matrix (3.1) at the fixed point F3 is

JF (F3) =

[
a+b−ab+bc−2

bc−1
ab+b2−ab2−b

bc−1
ac+c2−ac2−c

bc−1
a+c−ac+bc−2

bc−1

]

From

det(JF (F3)− λE) =

∣∣∣∣∣
a+b−ab+bc−2

bc−1 − λ ab+b2−ab2−b
bc−1

ac+c2−ac2−c
bc−1

a+c−ac+bc−2
bc−1 − λ

∣∣∣∣∣ = 0

by using Mathematica (because of the complexity of the equation det(JF (F3) −
λE) = 0) the characteristic equation is obtained

λ2 − 2bc− ac+ c− ab+ b+ 2a− 4

bc− 1
λ+

(2− a)(abc− ac− ab+ a+ b+ c− 2)

bc− 1
= 0

where E is the identity matrix (2.5).
The eigenvalues of the Jacobian matrix JF (F3) are λ1 = 2−a, λ2 =

a+b+c−ab−ac+abc−2
bc−1 .

�
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For the classification of the fixed point F3(
ab−a−b+1

bc−1 , ac−a−c+1
bc−1 ) for the map (1.1)

(by using Theorem 2.2. and the mathematical software Mathematica), we have the
following conclusions:

i) The point F3(
ab−a−b+1

bc−1 , ac−a−c+1
bc−1 ) is an asymptotically stable point (locally

asymptotically stable) when

1 < a < 3 and [(b <
a− 1

a+ 1
and

ab− a− b+ 3

ab− a+ b+ 1
< c < 1)∨

(b =
a− 1

a+ 1
and c < 1) ∨ (

a− 1

a+ 1
< b < 1 and (c < 1 ∨ c >

ab− a− b+ 3

ab− a+ b+ 1
))∨

(b > 1 and
ab− a− b+ 3

ab− a+ b+ 1
< c < 1)];

ii) The point F3(
ab−a−b+1

bc−1 , ac−a−c+1
bc−1 ) is a repeller (unstable point) when

(1) a < −1 and [(b < 0 and (c <
1

b
∨ 1

b
< c < 1 ∨ c >

ab− a− b+ 3

ab− a+ b+ 1
))∨

(b = 0 and (c < 1 ∨ c >
a− 3

a− 1
)) ∨ (0 < b < 1 and (c < 1 ∨ c >

1

b

∨ab− a− b+ 3

ab− a+ b+ 1
< c <

1

b
)) ∨ (1 < b <

a− 1

a+ 1
and (

ab− a− b+ 3

ab− a+ b+ 1
< c <

1

b
∨

1

b
< c < 1)) ∨ (b =

a− 1

a+ 1
and (c <

1

b
∨ 1

b
< c < 1)) ∨ (b >

a− 1

a+ 1
and

(c <
1

b
∨ 1

b
< c < 1 ∨ c >

ab− a− b+ 3

ab− a+ b+ 1
))] or

(2) a = −1 and [(b < 0 and (c <
1

b
∨ 1

b
< c < 1 ∨ c >

1

2
(4− 2b)))∨

(b = 0 and (c < 1∨c > 2))∨(0 < b < 1 and (c < 1∨1

2
(4−2b) < c <

1

b
∨c > 1

b
))

∨(b > 1 and (
1

2
(4− 2b) < c <

1

b
∨ 1

b
< c < 1))] or

(3) −1 < a < 1 and [(b <
a− 1

a+ 1
and (

ab− a− b+ 3

ab− a+ b+ 1
< c <

1

b
∨1

b
< c < 1))

∨(b = a− 1

a+ 1
and (c <

1

b
∨1

b
< c < 1))∨(a− 1

a+ 1
< b < 0 and (c <

1

b
∨1

b
< c < 1

∨c > ab− a− b+ 3

ab− a+ b+ 1
)) ∨ (b = 0 and (c < 1 ∨ c >

a− 3

a− 1
)) ∨ (0 < b < 1 and

(c > 1∨ab− a− b+ 3

ab− a+ b+ 1
< c <

1

b
∨c > 1

b
))∨(b > 1 and (

ab− a− b+ 3

ab− a+ b+ 1
< c <

1

b
∨
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1

b
< c < 1))] or

(4) a > 3 and [(b < 0 and (c <
1

b
∨ 1

b
< c <

ab− a− b+ 3

ab− a+ b+ 1
∨ c > 1))

∨(b = 0 and (c <
a− 3

a− 1
∨ c > 1)) ∨ (0 < b <

a− 1

a+ 1
and (c <

ab− a− b+ 3

ab− a+ b+ 1

∨1 < c <
1

b
∨c > 1

b
))∨(b = a− 1

a+ 1
and (1 < c <

1

b
∨c > 1

b
))∨(a− 1

a+ 1
< b < 1 and

(1 < c <
1

b
∨1

b
< c <

ab− a− b+ 3

ab− a+ b+ 1
))∨(b > 1 and (c <

1

b
∨1

b
< c <

ab− a− b+ 3

ab− a+ b+ 1
∨c > 1))];

iii) The point F3(
ab−a−b+1

bc−1 , ac−a−c+1
bc−1 ) is a saddle point when

(1) a < −1 and [(b < 1 and (1 < c <
ab− a− b+ 3

ab− a+ b+ 1
)) ∨ (1 < b <

a− 1

a+ 1

and (c <
ab− a− b+ 3

ab− a+ b+ 1
∨ c > 1)) ∨ (b =

a− 1

a+ 1
and c > 1) ∨ (b >

a− 1

a+ 1

and 1 < c <
ab− a− b+ 3

ab− a+ b+ 1
)] or

(2) a = −1 and [(b < 1 and (1 < c <
1

2
(4− 2b))) ∨ (b > 1 and

(c <
1

2
(4− 2b) ∨ c > 1))] or

(3) − 1 < a < 1 and [(b <
a− 1

a+ 1
and (c <

ab− a− b+ 3

ab− a+ b+ 1
∨ c > 1))

∨(b = a− 1

a+ 1
and c > 1) ∨ (

a− 1

a+ 1
< b < 1 and 1 < c <

ab− a− b+ 3

ab− a+ b+ 1
)

∨(b > 1 and (c <
ab− a− b+ 3

ab− a+ b+ 1
∨ c > 1))]

(4) 1 < a < 3 and [(b < 0 and (c <
1

b
∨ 1

b
< c <

ab− a− b+ 3

ab− a+ b+ 1
∨ c > 1))

∨(b = 0 and (c <
a− 3

a− 1
∨ c > 1)) ∨ (0 < b <

a− 1

a+ 1
and

(c <
ab− a− b+ 3

ab− a+ b+ 1
∨1 < c <

1

b
∨c > 1

b
))∨(b = a− 1

a+ 1
and (1 < c <

1

b
∨c > 1

b
))∨

(
a− 1

a+ 1
< b < 1 and (1 < c <

1

b
∨ 1

b
< c <

ab− a− b+ 3

ab− a+ b+ 1
)) ∨ (b > 1 and
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c <
1

b
∨ 1

b
< c <

ab− a− b+ 3

ab− a+ b+ 1
∨ c > 1))] or

(5) a > 3 and [(b <
a− 1

a+ 1
and

ab− a− b+ 3

ab− a+ b+ 1
< c < 1) ∨ (b =

a− 1

a+ 1

and c < 1) ∨ (
a− 1

a+ 1
< b < 1 and (c >

ab− a− b+ 3

ab− a+ b+ 1
∨ c < 1)) ∨ (b > 1 and

ab− a− b+ 3

ab− a+ b+ 1
< c < 1)];

iv) The point F3(
ab−a−b+1

bc−1 , ac−a−c+1
bc−1 ) is a non-hyperbolic point when

(1) a < −1 and [(b < 1 and (c =
ab− a− b+ 3

ab− a+ b+ 1
∨ c = 1)) ∨ (b = 1 and

(c < 1∨ c > 1))∨ (1 < b <
a− 1

a+ 1
and (c =

ab− a− b+ 3

ab− a+ b+ 1
∨ c = 1))∨ (b =

a− 1

a+ 1

and c = 1) ∨ (b >
a− 1

a+ 1
and (c = 1 ∨ c =

ab− a− b+ 3

ab− a+ b+ 1
))] or

(2) a = −1 and [(b < 1 and (c =
1

2
(4− 2b) ∨ c = 1)) ∨ (b = 1 and

(c < 1 ∨ c > 1) ∨ (b > 1 and (c =
1

2
(4− 2b) ∨ c = 1))] or

(3) − 1 < a < 1 and [(b <
a− 1

a+ 1
and (c =

ab− a− b+ 3

ab− a+ b+ 1
∨ c = 1))∨

(b =
a− 1

a+ 1
and c = 1) ∨ (

a− 1

a+ 1
< b < 1 and (c =

ab− a− b+ 3

ab− a+ b+ 1
∨ c = 1))

∨(b = 1 and (c < 1∨c > 1))∨(b > 1 and (c =
ab− a− b+ 3

ab− a+ b+ 1
∨c = 1))] or

(4) a = 1 and [(b < 0 and (c <
1

b
∨ c >

1

b
)) ∨ (b = 0) ∨ (b > 0 and

(c <
1

b
∨ c >

1

b
))] or

(5) 1 < a < 3 and [(b <
a− 1

a+ 1
and (c =

ab− a− b+ 3

ab− a+ b+ 1
∨c = 1))∨(b = a− 1

a+ 1

and c = 1) ∨ (
a− 1

a+ 1
< b < 1 and (c =

ab− a− b+ 3

ab− a+ b+ 1
∨ c = 1)) ∨ (b = 1

and (c < 1 ∨ c > 1)) ∨ (b > 1 and (c =
ab− a− b+ 3

ab− a+ b+ 1
∨ c = 1))] or
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(6) a = 3 and [(b < 0 and (c <
1

b
∨ c >

1

b
)) ∨ (b = 0) ∨ (b > 0 and

(c <
1

b
∨ c >

1

b
))] or

(7) a > 3 and [(b <
a− 1

a+ 1
and (c =

ab− a− b+ 3

ab− a+ b+ 1
∨ c = 1)) ∨ (b =

a− 1

a+ 1

and c = 1) ∨ (
a− 1

a+ 1
< b < 1 and (c =

ab− a− b+ 3

ab− a+ b+ 1
∨ c = 1)) ∨ (b = 1

and (c < 1 ∨ c > 1)) ∨ (b > 1 and (c = 1 ∨ c =
ab− a− b+ 3

ab− a+ b+ 1
))].

For the classification of the fixed points for the map (1.1), we conclude that the
most complex one is the point F3 vs. the other fixed points F0, F1, F2.

3.2. Visualization of orbits for the map (1.1). In this part a visualization of
two orbits for the map (1.1) will be given.

Let a = −1.5, b = 2.22431, c = 2.5, the positive orbit of (x0, y0) = (0.1, 0)
(Definition 2.1) is

γ+((0.1, 0)) = {(0.1, 0), (−0.16, 0), (0.2144, 0), (−0.367, 0), (0.416, 0),

(−0.7976, 0), (0.56, 0), (−1.15, 0), (0.399, 0), (−0.757, 0), (0.56, 0)...} (3.2)

In fig.1 the graphical presentation of the orbit (3.2) in the x-y plane is shown:

Figure 1. Graphical visualization of orbit (3.2) for the map (1.1)
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For the parameters a = −1.5, b = 2.22431, c = 2.5,
1. the point F0(0, 0) has eigenvalues λ1 = λ2 = a = −1.5 and |λ1|= |λ2|> 1;
2. the point F1(0,−2.5) has eigenvalues λ1 = 2− a = 3.5, λ2 = a+ b− ab ≈ 4.1

and |λ1|> 1, |λ2|> 1;
3. the point F2(−2.5, 0) has eigenvalues λ1 = 2− a = 3.5, λ2 = a+ c− ac = 4.75

and |λ1|> 1, |λ2|> 1;
i.e. F0, F1, F2 are repellers (unstable points).
4. But the point F3(−0.6711,−0.8222) has eigenvalues λ1 = 2 − a = 3.5, λ2 =

a+b+c−ab−ac+abc−2
bc−1 ≈ −0.00666 and |λ1|> 1, |λ2|< 1 i.e. F3 is a saddle point.

By a small change of the parameter b = 2.32622, for the same values of the
parameters a = −1.5, c = 2.5, the positive orbit of (x0, y0) = (0.1, 10−30) is

γ+((0.1, 10−30)) = {(0.1, 10−30), (−0.16,−1.749 · 10−30),

(0.2144, 1.9249 · 10−30), (−0.367,−3.919 · 10−30), (0.416, 2.27 · 10−30),

(−0.7976,−5.786 · 10−30), (0.56,−2.85 · 10−30), (−1.15, 8.29 · 10−30), (3.3)

(0.399, 1.15 · 10−30), (−0.757,−2.8 · 10−30), (0.56,−1.133 · 10−30)...}

In fig.2 the graphical presentation of the orbit (3.3) in the x-y plane is shown:

Figure 2. Graphical visualization of orbit (3.3) for the map (1.1)
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For the parameters a = −1.5, b = 2.32622, c = 2.5,
1.the point F0(0, 0) has eigenvalues λ1 = λ2 = a = −1.5 and |λ1|= |λ2|> 1;
2.the point F1(0,−2.5) has eigenvalues λ1 = 2 − a = 3.5, λ2 = a + b − ab ≈ 4.1

and |λ1|> 1, |λ2|> 1;
3. the point F2(−2.5, 0) has eigenvalues λ1 = 2− a = 3.5, λ2 = a+ c− ac = 4.75

and |λ1|> 1, |λ2|> 1;
i.e. F0, F1, F2 are repellers (unstable points).
4. But the point F3(−0.6885,−0.7787) has eigenvalues λ1 = 2 − a = 3.5, λ2 =

a+b+c−ab−ac+abc−2
bc−1 ≈ −0.033 and |λ1|> 1, |λ2|< 1 i.e. F3 is a saddle point.

3.3. Bifurcation diagrams of map (1.1). From the experimental results which
are made in the mathematical software Mathematica the parameter a appears as a
bifurcation parameter.

In Figure 3 the bifurcation diagram of the map (1.1) is shown where the parame-
ter a is changing in the interval a ∈ [−2,−1] by step 0.005. The values of the other
parameters are b = 2.22431 and c = 2.5. The initial values are (0.1, 0).

Figure 3. Bifurcation diagram of the map (1.1) for a ∈ [−2,−1],
b=2.22431, c=2.5 and the initial values (0.1, 0)

In Figure 4 the bifurcation diagram of the map (1.1) is shown where the parame-
ter a is changing in the interval a ∈ [−2,−1] by step 0.005. The values of the other
parameters are b = 2.32622 and c = 2.5. The initial values are (0.1, 10−30).
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Figure 4. Bifurcation diagram of the map (1.1) for a ∈ [−2,−1],
b=2.32622, c=2.5 and the initial values (0.1, 10−30)

4. Conclusion

The dynamical analysis of the two-dimensional nonlinear maps is a complex
process that requires a lot of research and a good computer. The two-dimensional
map (1.1) is a nonlinear map which depends on three parameters a, b, c. Therefore,
its dynamics is interesting for analysis. From this dynamical analysis of the map
(1.1), we conclude that the two-dimensional map (1.1) has a complex structure.
For a better picture of the behaviour of the map (1.1) we should make finding
and classification of the character of periodical points, calculation and visualization
of Lyapunov functions, calculations of Lyapunov numbers and visualizations of
Lyapunov spectre, which is left for further research.
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