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RESULT ON COLOMBEAU PRODUCT OF GENERALIZED
FUNCTIONS CONTAINING DELTA DISTRIBUTION

MARIJA MITEVA AND LIMONKA KOCEVA LAZAROVA

Abstract. In this paper we consider the product of infinitely differentiable
function and the r−th derivative of Dirak delta distribution. The product is
obtained in Colombeau algebra of generalized functions, which is the most rele-
vant algebraic construction for dealing with Schwartz distributions. Colombeau
product of distributions generalizes classical products of distributions, but also
allows us to obtain products of distributions that do not exist in the classical
theory of distributions.

1. Introduction

The theory of distributions has its origins in the early 1950s and it was estab-
lished as a result of the scientists’ attempts to give mathematical meaning of many
concepts in physics and engineering that were understood heuristically. Such con-
cepts were Dirac delta function and its derivatives. As those concepts are very often
used in science, the concept of distributions has large employment in mathematics
and other natural sciences. The first sistematic theory of distributions was offered
by the French mathematician Laurent Schwartz. But, although the scientists have
found the theory of distributions a very useful branch of mathematics, they have
realized that the theory of distributions comes across two main problems: multi-
plication of distributions (not any two distributions can always be multiplied) and
differentiating the product of distributions (the product of distributions not always
satisfies the Leibniz rule). The large application of distributions has imposed the
need these two serious problems of this theory to be solved. Therefore, many at-
tempts have been made by scientists to define the product of distributions [1, 2, 3],
or rather to enlarge the number of existing products. Many attempts have also
been made to include the distributions into differential algebras [4].

Date: November 30, 2018.
Keywords. distribution, Colombeau algebra, Colombeau generalized function, Colombeau

product of distributions.
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2 MARIJA MITEVA AND LIMONKA KOCEVA LAZAROVA

According to the distribution theory [5, 6], we can distinguish two complementary
points of view:

The first one is that distribution can be considered as a continuous linear func-
tional f acting on a smooth function ϕ with compact support, i.e. we have a linear
map ϕ → 〈f, ϕ〉 where ϕ is called test function.

The second one is a sequential approach, which was introduced in order to enlarge
the number of products of distributions that the first approach does not allow us
to estimate: taking a sequence of smooth functions (ϕn) converging to the Dirac δ
distribution, we obtain a family of regularization (fn) by the convolution product

fn (x) = (f ∗ ϕn) (x) = 〈f (y) , ϕn (x− y)〉 (1.1)

which converges weakly to the distribution f . We identify all the sequences
that converge weakly to the same limit and consider them as an equivalence class.
The elements of each equivalence class are called representatives of the appropriate
distribution f . This way we obtain a sequential representation of distributions.
Some authors use equivalence classes of nets of regularization, i.e. the δ - net
(ϕε)ε>0 defined with ϕε =

1
εϕ

(
x
ε

)
.

By the regularization process, the non-linear structure is lost in a way identifying
sequences with their limit. Actually, all the operations then are done on the regu-
larized functions (the sequences of smooth functions) and with the inverse process
starting from the result, the function is returned from the regularization. So, we
have to get a nonlinear theory of generalized functions that will work with regular-
ization.

The sequential approach has partly solved the problem with multiplication of
distributions, but the general solution was missing.

The optimal solution for overcoming the problems that Schwartz’s theory of dis-
tributions is concerned with, was offered by J. F. Colombeau [7, 8]. He constructed
a differential algebra of generalized functions G (R) which contains the space D′ (R)
of distributions as a subspace and the algebra of C∞ - functions as subalgebra. This
theory of generalized functions of Colombeau generalizes the theory of Schwartz dis-
tributions: these new Colombeau generalized functions can be differentiated in the
same way as distributions, all products of distributions that exist in the clasical the-
ory also exist in the Colombeau theory, but many products of distributions that are
not defined in the classical theory, exist in the Colombeau theory. How Colombeau
algebra G can be used for treating linear and nonlinear problems including singular-
ities one can see in [9]. These new Colombeau generalized functions are very much
related to the distributions in the sense that their definition may be considered as
a natural evolution of Schwartz’s definition of distribution.

Marija MITEVA, Limonka KOCEVA LAZAROVA
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RESULT ON COLOMBEAU PRODUCT OF GENERALIZED FUNCTIONS CONTAINING DELTA DISTRIBUTION3

The notion ’association’ in G is a faithful generalization of the equality of distri-
butions and enables us to interpret the results we obtain in the Colombeau algebra
of generalized functions, in terms of distributions again.

Due to all these properties, Colombeau theory has reached large application in
different natural sciences and engineering, especially in fields where the products of
distributions with coinciding singularities are considered. About the applications
of Colombeau theory of generalized functions one can read papers [10, 11, 12, 13,
14, 15].

In this paper we consider the product of infinitely differentiable function with
the derivatives of Dirac delta distribution, as embedded in Colombeau algebra. The
results obtained in this way are a generalization of the results existing in the clas-
sical theory of distributions. We will mention here that the product of infinitely
differentiable function with distribution is defined in the classical theory of distri-
butions, but, we obtain the result in terms of associated distribution. The result
obtained in the last part of this paper is associated with the term consisting of only
delta distribution and its derivatives. Other products of distributions, evaluated in
the same way, can be found in [16, 17, 18, 19, 20, 21, 22, 23].

2. Colombeau Algebra

In this section we will give notations and definitions from Colombeau theory that
we have used while evaluating the main results.

N0 is the set of non-negative integers, i.e. N0 = N ∪ {0}.
Let D (R) be the space of all smooth functions ϕ : R → C with compact support.
For q ∈ N0 we denote

Aq (R) =



ϕ (x) ∈ D (R)

∣∣∣∣∣∣

∫

R

ϕ (x) dx = 1 and

∫

R

xjϕ (x) dx = 0, j = 1, ..., q





(2.1)
The elements of the set Aq (R) are called test functions.
It is obvious that A1 ⊃ A2 ⊃ A3... . In his books Colombeau has proved that

the sets Ak are non empty for all k ∈ N.
For ϕ ∈ Aq (R) and ε > 0 it is denoted ϕε =

1
εϕ

(
x
ε

)
and

∨
ϕ(x) = ϕ (−x).

Wanting to obtain an algebra containing the space of distributions, which ele-
ments could be multiplied and diferentiated as well as C∞ functions, Colombeau
started with E (R), the algebra of functions f (ϕ, x) : A0 (R) × R → C that are
infinitely differentiable with respect to the second variable, x. The embedding of
distributions into such an algebra should be done in a way that the embedding of
C∞ functions will be identity. Let f and g be C∞ functions. Taking the sequence

RESULT ON COLOMBEAU PRODUCT OF GENERALIZED
FUNCTIONS CONTAINING DELTA DISTRIBUTION
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(f ∗ ϕε)ε>0, which converges to f in D′, as a representative of f , we obtain an
embedding of D′ into E (R). So, if we consider f and g as distributions, we look
at the sequences (f ∗ ϕε)ε>0 and (g ∗ ϕε)ε>0. The product of f and g as distribu-
tions embedded into this algebra not always coincide with their classical product
considered as a distribution embedded in it, i.e.

(f ∗ ϕε) (g ∗ ϕε) �= (fg) ∗ ϕε (2.2)

The idea therefore is to find an ideal I [R] such that this diffrence will vanish in
the resulting quotient. In order to determine I [R] it is obviously enough to find
an ideal containing the differences ((f ∗ ϕε)− f)ε>0.

Expanding the last term in a Taylor series and having in mind the properties of
ϕ (x) as an element of Aq (R), we can see that it will vanish faster then any power
of ε, uniformly on compact sets, in all derivatives. The set of these differences will
not be an ideal in E (R) but in a set of sequences whose derivatives are bounded
uniformly on compact sets by negative power of ε. These sequences are called
’moderate’ sequences and the set containing them is denoted with EM [R]. Let

E (R) be the algebra of functions f (ϕ, x) : A0 (R) × R → C that are infinitely
differentiable for fixed ’parameter’ ϕ. The generalized functions of Colombeau are
elements of the quotient algebra

G ≡ G (R) =
EM [R]

I [R]
(2.3)

where EM [R] is the subalgebra of ’moderate’ functions such that for each compact
subset K of R and any p ∈ N0 there is a q ∈ N such that, for each ϕ ∈ Aq (R)
there are c > 0, η > 0 and it holds:

sup
x∈K

|∂pf (ϕε, x)| ≤ cε−q (2.4)

for 0 < ε < η and I [R] is an ideal of EM [R] consisting of all functions f (ϕ, x)
such that for each compact subset K of R and any p ∈ N0 there is a q ∈ N such
that for every r ≥ q and each ϕ ∈ Ar (R) there are c > 0, η > 0 and it holds:

sup
x∈K

|∂pf (ϕε, x)| ≤ cεr−q (2.5)

for 0 < ε < η.

The distributions on R are embedded in the Colombeau algebra G (R) by the
map:

i : D′ (R) → G (R) : u → ũ =

{
ũ (ϕ, x) =

(
u ∗

∨
ϕ

)
(x) : ϕ ∈ Aq (R)

}
(2.6)

Marija MITEVA, Limonka KOCEVA LAZAROVA
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RESULT ON COLOMBEAU PRODUCT OF GENERALIZED FUNCTIONS CONTAINING DELTA DISTRIBUTION5

where ∗ denotes the convolution product of two distributions and is given by:

(f ∗ g) (x) =
∫

R

f (y) g (x− y)dy. (2.7)

We should notice that the sequential approach (regularization method) men-
tioned in the previous section is used here. Thus, an element f ∈ G (a generalized
function of Colombeau) is actually an equivalence class [f ] = [fε + I] of an element
fε ∈ EM which is called representative of f . Multiplication and differentiation of
generalized functions are performed on arbitrary representatives of the respective
generalized functions.

The meaning of the term ’association’ in G (R) is given with the next two defi-
nitions.

Definition 2.1. Generalized functions f, g ∈ G (R) are said to be associated,
denoted f ≈ g, if for each representatives f (ϕε, x) and g (ϕε, x) and arbitrary
ψ (x) ∈ D (R) there is a q ∈ N0 such that for any ϕ (x) ∈ Aq (R)

lim
ε→0+

∫

R

|f (ϕε, x)− g (ϕε, x)|ψ (x) dx = 0 (2.8)

Definition 2.2. A generalized function f ∈ G is said to admit some u ∈ D′ (R)
as ’associated distribution’, denoted f ≈ u, if for each representative f (ϕε, x) of f
and any ψ (x) ∈ D (R) there is a q ∈ N0 such that for any ϕ (x) ∈ Aq (R)

lim
ε→0+

∫

R

f (ϕε, x)ψ (x) dx = 〈u, ψ〉 (2.9)

The representatives chosen in the above two definitions do not affect the result.
The distribution associated, if it exists, is unique and the association is a faithful
generalization of the equality of distributions.

If we multiply two distributions embedded in G, as a result we always obtain a
generalized function of Colombeau. But, it may not always be associated to a third
distribution, so if the product of two distributions embedded in Colombeau algebra
G admits an associated distribution, we say that Colombeau product of those two
distributions exists. If the regularized model product of two distributions exists,
then their Colombeau product also exists and it is the same as the first one.

RESULT ON COLOMBEAU PRODUCT OF GENERALIZED
FUNCTIONS CONTAINING DELTA DISTRIBUTION
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3. Results and discussion

Theorem 3.1. Let f be C∞−function on an open interval containing 0 and δ(r) (x)
is the r−th derivative of Dirac Delta distribution. The Colombeau product of the
generalized functions f̃ (x) and δ̃(r) (x) exists (admits associated distribution) and
it holds:

f̃ (x) · δ̃(r) (x) ≈
r∑

i=0

(
r
i

)
f (i) (0) (−1)i+1δ(r−i) (x) (3.1)

Proof. We should embed first the function f(x) and the distribution δ(r) (x) in
Colombeau algebra to obtain their representatives, and then multiply them as
Colombeau generalized functions.
We will use the Taylor expansion for the function f(x):

f (x) =
r∑

i=0

f (i) (0)

i!
·xi +O (ε) (3.2)

According to the embedding rule, if we embed the function f(x) in Colombeau
algebra, we will obtain:

f̃ (ϕε, x) =
(
f ∗ ∨

ϕε

)
(x)

=
∫
R

f (y)
∨
ϕε (x− y) dy = 1

ε

∫
R

f (y)ϕ
(y−x

ε

)
dy

= 1
ε

∫
R

(
r∑

i=0

f (i)(0)
i! yi

)
ϕ
(y−x

ε

)
dy +O (ε)

= 1
ε

r∑
i=0

∫
R

f (i)(0)
i! yiϕ

(y−x
ε

)
dy +O (ε)

= 1
ε

r∑
i=0

f (i)(0)
i!

∫
R

yiϕ
(y−x

ε

)
dy +O (ε)

(3.3)

We can suppose (without loss of generality) that suppϕ ⊆ [−l, l], so if y−x
ε = −l

then y = x− εl and if y−x
ε = l then y = x+ εl and we will have:

f̃ (ϕε, x) =
1

ε

r∑
i=0

f (i) (0)

i!

x+εl∫

x−εl

yiϕ

(
y − x

ε

)
dy +O (ε) (3.4)

Using substitution y−x
ε = t we obtain the representatives of the function f in

Colombeau algebra:

f̃ (ϕε, x) =
r∑

i=0

f (i) (0)

i!

l∫

−l

(x+ εt)iϕ (t) dt+O (ε) (3.5)

Marija MITEVA, Limonka KOCEVA LAZAROVA
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In a similar way, using the embedding rule, we obtain the embedding of the
distribution δ(r) (x) in the Colombeau algebra:

δ̃(r) (ϕε, x) =
(−1)r

εr+1
ϕ(r)

(
−x

ε

)
(3.6)

Let us now calculate the product of these two Colombeau generalized functions and
check the existance of the Colombeau product of the considered distributions. For
any ψ(x) ∈ D(R) we have:

〈
f̃ (ϕε, x) · δ̃(r) (ϕε, x) , ψ (x)

〉
=

= (−1)r

εr+1

r∑
i=0

f (i)(0)
i!

∫
R

(
l∫

−l

(x+ εt)iϕ (t) dt

)
ϕ(r)

(
−x

ε

)
ψ (x) dx+O (ε)

(3.7)

We have supposed that suppϕ ∈ [−l, l], so if −x
ε = −l then x = εl and if −x

ε = l
then x = −εl, thus we have:

〈
f̃ (ϕε, x) · δ̃(r) (ϕε, x) , ψ (x)

〉
=

= (−1)r+1

εr+1

r∑
i=0

f (i)(0)
i!

εl∫
−εl

(
l∫

−l

(x+ εt)iϕ (t) dt

)
ϕ(r)

(
−x

ε

)
ψ (x) dx+O (ε)

(3.8)

Now using substitution u = −x
ε , for the product of the above two Colombeau

generalized functions we obtain:

〈
f̃ (ϕε, x) · δ̃(r) (ϕε, x) , ψ (x)

〉
=

= (−1)r

εr+1

r∑
i=0

f (i)(0)
i!

l
∫
−l

(
l∫

−l

(εt− εu)iϕ (t) dt

)
ϕ(r) (u)ψ (−εu) (−εdu) +O (ε)

= (−1)r+1

εr

r∑
i=0

f (i)(0)
i!

l∫
−l

ϕ(r) (u)ψ (−εu)

(
l∫

−l

(εt− εu)iϕ (t) dt

)
du+O (ε)

(3.9)
Using Taylor’s Theorem for the function ψ we have:

ψ (−εu) =
r∑

j=0

ψ(j) (0)

j!
(−εu)j +

ψ(r+1) (−εηu)

(r + 1) !
(−εu)r+1 (3.10)

RESULT ON COLOMBEAU PRODUCT OF GENERALIZED
FUNCTIONS CONTAINING DELTA DISTRIBUTION
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for 0 < η < 1. Substituting (3.10) in (3.9) we obtain:
〈
f̃ (ϕε, x) · δ̃(r) (ϕε, x) , ψ (x)

〉
=

= (−1)r+1

εr

r∑
i=0

f (i)(0)
i!

l∫
−l

ϕ(r) (u)
r∑

j=0

ψ(j)(0)
j! (−εu)j

(
l∫

−l

(εt− εu)iϕ (t) dt

)
du+O (ε)

= (−1)r+1

εr

r∑
i=0

f (i)(0)
i!

r∑
j=0

ψ(j)(0)
j! (−ε)j

l∫
−l

ϕ(r) (u)uj

(
l∫

−l

(εt− εu)iϕ (t) dt

)
du+O (ε)

=
r∑

i=0

f (i)(0)
i!

r∑
j=0

(−1)r+j+1ψ(j)(0)
εr−jj!

l∫
−l

ϕ (t) dt
l∫

−l

ϕ(r) (u) (εt− εu)iujdu+O (ε)

=
r∑

i=0

f (i)(0)
i!

r∑
j=0

(−1)r+j+1ψ(j)(0)
εr−jj!

· Ji,j +O (ε)

(3.11)
where

Ji,j =

l∫

−l

ϕ (t) dt

l∫

−l

ϕ(r) (u) (εt− εu)iujdu (3.12)

We will calculate now the last integral. Using a binomial expansion for the term
(εt− εu)i, we have:

Ji,j =
l∫

−l

ϕ (t) dt
l∫

−l

(εt− εu)iujϕ(r) (u) du

=
l∫

−l

ϕ (t) dt
l∫

−l

[
i∑

k=0

(
i
k

)
(εt)k(−εu)i−k

]
ujϕ(r) (u) du

=
l∫

−l

ϕ (t) dt
l∫

−l

i∑
k=0

(
i
k

)
(−1)i−kεitkui+j−kϕ(r) (u) du

= εi
l∫

−l

tkϕ (t) dt
l∫

−l

i∑
k=0

(
i
k

)
(−1)i−kui+j−kϕ(r) (u) du

(3.13)

Due to the properties of the function ϕ ∈ A0, the last integral will be non zero only
for k = 0 and i+ j−k = r, i.e for i+ j = r ⇔ j = r− i. In this case we will obtain:

Ji,j = εi
l∫

−l

(
i
0

)
(−1)iurϕ(r) (u) du

= (−1)iεi
l∫

−l

urϕ(r) (u) du

= (−1)iεi · (−1)rr!

= (−1)i+rεir!

(3.14)

Marija MITEVA, Limonka KOCEVA LAZAROVA
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Applying this result in (3.11), and having in mind that we have obtained it for
j = r−i, about the product of Colombeau generalized functions we are considering,
we have:

〈
f̃ (ϕε, x) · δ̃(r) (ϕε, x) , ψ (x)

〉
=

=
r∑

i=0

f (i)(0)
i! · (−1)r+j+1ψ(j)(0)

εr−jj!
· (−1)i+rεir! +O (ε)

=
r∑

i=0

f (i)(0)
i! · (−1)2r−i+1ψ(r−i)(0)

εi(r−i)!
· (−1)i+rεir! +O (ε)

=
r∑

i=0

r!
i!(r−i)! · (−1)1−iψ(r−i) (0) f (i) (0) (−1)i+r +O (ε)

=
r∑

i=0

(
r
i

)
f (i) (0) (−1)r+1ψ(r−i) (0) +O (ε)

=
r∑

i=0

(
r
i

)
f (i) (0) (−1)i+1 〈δ(r−i) (x) , ψ (x)

〉
+O (ε)

(3.15)

Finally, passing to the limit when ε → 0, we obtain the relation:

f̃ (ϕε, x) · δ̃(r) (ϕε, x) ≈
r∑

i=0

(
r
i

)
f (i) (0) (−1)i+1δ(r−i) (x) (3.16)

which proves the theorem. �
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