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The Appendix 
 

In honor of the first Doctor of Mathematical Sciences Acad. Blagoj Popov, a 
mathematician dedicated to differential equations, the idea of holding the "Day of 
Differential Equations" was born, prompted by Prof. Ph.D. Boro Piperevski, Prof. 
Ph.D. Borko Ilievski, and Prof. Ph.D. Lazo Dimov. Acad. Blagoj Popov presented his 
doctoral dissertation on 05.05.1952 in the field of differential equations. This is the 
main reason for holding the " Day of Differential Equations" at the beginning of May. 

This year on May 10th, the "Day of Differential Equations" was held for the 
fifth time at the Faculty of Computer Sciences at "Goce Delcev" University in Stip 
under the auspices of Dean Prof. Ph.D. Cveta Martinovska - Bande, organized by 
Prof. Ph.D. Biljana Zlatanovska. 

Acknowledgments to Prof. Ph.D. Boro Piperevski, Prof. Ph.D. Borko Ilievski 
and Prof. Ph.D. Lazo Dimov for the wonderful idea and the successful realization of 
the event this year and in previous years. 

Acknowledgments to the Dean of the Faculty of Computer Sciences, Prof. 
Ph.D. Cveta Martinovska - Bande for her overall support of the organization and 
implementation of the "Day of Differential Equations". 

The papers that emerged from the "Day of Differential Equations" are in the 
appendix to this issue of BJAMI. 
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UDC 517.912

 
 

ON EXISTENCE AND CONSTRUCTION OF A POLYNOMIAL SOLUTION  
OF A CLASS OF MATRIX DIFFERENTIAL EQUATIONS  

WITH POLYNOMIAL COEFFICIENTS  
 

Boro M. Piperevski  
 

Abstract. A class of matrix differential equations is observed in this article. The conditions 
under which this class has a polynomial solution are obtained. The formula of that polynomial 
solution is also obtained, and some special cases of this type of equations related to orthogonal 
polynomial are observed. 
Keywords: matrix differential equation, differential equation, orthogonal polynomial, 
polynomial solution. 

 
 

1. Introduction 
 

The relation between orthogonal polynomials and differential equations is well known.  
 
Polynomials  {𝜋𝜋𝑛𝑛}  orthogonal on a semicircle with respect to the complex inner product 

=


 
0

)()()(),( dewegefgf iii , 

have been introduced by Walter Gautschi, Henry J. Landau, and Gradimir V. Milovanovic [2].  
In that paper, in the Gegenbauer case  

2
1,)1()1()( 2

1
2
1

−+−=
−−




zzzw ,                              (1.1) 

a linear second-order differential equation for {𝜋𝜋𝑛𝑛}  is obtained. 
 
Polynomials {𝜋𝜋𝑛𝑛𝑅𝑅} orthogonal on a circular arc with respect to the complex inner product   


−

=



 dwgfgf )()()(),( 111 , 

where 





 

2
1,0 , and the function 𝑓𝑓1(𝜃𝜃) in terms 𝑓𝑓(𝑧𝑧) is defined by  

  tan),1()( 2
1 =++−= RReiRff i , 

 
have been introduced by de Bruin [1].  

 
In the Jacobi case  

1,,)1()1()( −+−=  zzzw                   (1.2) 
 
Gradimir V. Milovanovic and Predrag M. Rajkovic [3], obtained a linear second-order differential 
equation for {𝜋𝜋𝑛𝑛𝑅𝑅} . 
 

In [4] a class of systems  
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𝑎𝑎𝑥𝑥1′ + 𝑏𝑏𝑥𝑥2′ + 𝐴𝐴𝑥𝑥1 = 0, 
𝑐𝑐𝑥𝑥1′ + 𝑑𝑑𝑥𝑥2′ + 𝐵𝐵𝑥𝑥2 = 0, 

 
or in matrix form 

𝑷𝑷𝑿𝑿′ + 𝑴𝑴𝑿𝑿 = 𝟎𝟎,                                          (1.3) 
where 


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1
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X ,  

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)('
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'
2

1

tx
tx

X , 

 
𝑎𝑎 = 𝑎𝑎1𝑡𝑡 + 𝑎𝑎2, 𝑏𝑏 = 𝑏𝑏1𝑡𝑡 + 𝑏𝑏2, 𝑐𝑐 = 𝑐𝑐1𝑡𝑡 + 𝑐𝑐2, 𝑑𝑑 = 𝑑𝑑1𝑡𝑡 + 𝑑𝑑2, 

 𝐴𝐴, 𝐵𝐵, 𝑎𝑎1, 𝑎𝑎2, 𝑏𝑏1, 𝑏𝑏2, 𝑐𝑐1, 𝑐𝑐2, 𝑑𝑑1, 𝑑𝑑2 ∈ 𝑅𝑅,    
dt
dxtx 1

1 )(' = ,
dt

dxtx 2
2 )(' = , 

 
is considered. 

In that article, the necessary conditions 
 

𝑏𝑏’ =  0, 𝐵𝐵 + 𝑛𝑛𝑑𝑑’ =  0, 𝑘𝑘 𝑎𝑎’ +  𝐴𝐴 ≠ 0, 𝑘𝑘 <  𝑛𝑛, 𝑘𝑘 a positive integer, 
 

for a polynomial solution of degree n, 𝑥𝑥1(𝑡𝑡) = 𝑃𝑃𝑛𝑛−1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡) = 𝑄𝑄𝑛𝑛(𝑡𝑡), or in matrix form 









= −

)(
)(1

tQ
tP

n

n
nX , 

where 𝑃𝑃𝑛𝑛−1(𝑡𝑡) is a polynomial of degree n-1and 𝑄𝑄𝑛𝑛(𝑡𝑡),  a polynomial of degree n  
is obtained. 

In this case, the second component of the matrix  𝑿𝑿𝒏𝒏 is a polynomial solution of degree n of the 
differential equation 
 

0)(')("))(( 201201
2

22
2 =++++++++ xtxttxTStRQtt  ,            (1.4) 

 
and another polynomial solution of degree k, k<n does not exist, if the conditions 
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(n is the smaller one if both roots of the first condition are natural numbers), are satisfied. 

Also the polynomial solution will be given by the formula 
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 The complex polynomial orthogonal on the semicircle or on the circular arc [2,3] is the unique 
polynomial solution of the differential equation of type (1.4), satisfying the conditions (1.5) [5].   

In particular [6], classes of complex polynomial )(zn
 , in the case of the Gegenbauer weight 

function (1.1), are the unique polynomial solutions of the differential equation (1.4), where 

,
)122(

1,)1)(122(2,1,0 21 S
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Therefore, the system  

 

0)()12(
)(

)12(
1)(

)122( 1
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



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
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− −
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
, (1.6) 
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)122)(12(
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)( 11 =−
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−++ −− zn
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Sz
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
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where )(1 zGn

−  is the Gegenbauer polynomial of degree n-1, solutions of the equation 

 
(1 − 𝑧𝑧2)𝑥𝑥1" − (2 + 1)𝑧𝑧𝑥𝑥1′ + (𝑛𝑛 − 1)(𝑛𝑛 − 1 + 2)𝑥𝑥1 = 0, 

 
are obtained. 

Also, we obtain the formula 
 

( ) ,1
)122)(12(

)1()12()( 2
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2
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1
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22
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2
1

1
2
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n z
dz
dzzG . 

 
 More generally [6], classes of complex polynomials, )(zR

n  in the case of the Jacobi weight function 
(1.2), are the unique polynomial solutions of the differential equation (1.4), where 
 

𝑄𝑄 = 0, 𝑅𝑅 = −1, 𝑆𝑆 = (2𝑛𝑛 + 𝛼𝛼 + 𝛽𝛽)(2𝑛𝑛 + 𝛼𝛼 + 𝛽𝛽 − 1)𝑖𝑖𝜃𝜃𝑛𝑛−1, 

2

222

)2(
)())()((4





++

+−+++++
−=

n
SSnnnnT , 

𝛽𝛽2 = (𝛼𝛼 + 𝛽𝛽 + 1)𝑆𝑆, 𝛽𝛽1 = −(𝛽𝛽 − 𝛼𝛼)𝑆𝑆 + (𝛼𝛼 + 𝛽𝛽 + 2)𝑇𝑇, 𝛽𝛽0 = −(𝛽𝛽 − 𝛼𝛼)𝑇𝑇 + 𝑆𝑆,  

𝛾𝛾1 = −𝑛𝑛(𝑛𝑛 + 𝛼𝛼 + 𝛽𝛽)𝑆𝑆, 𝛾𝛾0 = −𝑛𝑛(𝑛𝑛 + 𝛼𝛼 + 𝛽𝛽 + 1)𝑇𝑇 +



++
−−

n
SSn

2
)( 2

, 
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Here, )(, zPk
  is Jacobi polynomial of degree k.  

 . 
Therefore, we obtain the system  
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)(
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)( ,

1
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
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R
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where )(,
1 zPn


−  is the Jacobi polynomial of degree n-1, solutions of the equation 

 
(𝑧𝑧2 − 1)𝑥𝑥1" + [(𝛼𝛼 + 𝛽𝛽 + 2)𝑧𝑧 − (𝛽𝛽 − 𝛼𝛼)]𝑥𝑥1′ − (𝑛𝑛 − 1)(𝑛𝑛 + 𝛼𝛼 + 𝛽𝛽)𝑥𝑥1 = 0. 

 
 Also, we obtain the following formula 
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])1()1[(11 11
1

1

1
−+−+

−

−
−−

− +−+−  nn
n

n
βαα,β

n zz
dz
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Remark 1.1:  
Of the corresponding systems (1.6) and (1.7) respectively, appropriate relations between the complex 
orthogonal polynomials of Jacobi or Gegenbauer can be obtained. It can also be shown that the 
corresponding differential equations whose solutions are complex orthogonal polynomials, do not 
have a polynomial as a second particular solution because the required condition (the degree of the 
second polynomial solution being the root of the characteristic equation) is not satisfied. Namely, the 
second root of the characteristic equation is −(𝑛𝑛 + 2 − 1) < 0 (𝑁𝑁) in the first case, and it is 
−(𝑛𝑛 + 𝛼𝛼 + 𝛽𝛽) < 0 (𝑁𝑁)  in the second case. 
 

2.   Main Result 
 
 In [6] we consider a class of matrix differential equations (1.3).  
 

Definition 2.1: We say that (1.3) has a polynomial solution of degree n if polynomials 𝑃𝑃𝑛𝑛(𝑡𝑡), 𝑄𝑄𝑛𝑛(𝑡𝑡) 
of degree n exist such that  

 









=

)(
)(

tQ
tP

n

n
nX  

is the solution (1.3). 
Lemma 2.1: Using the substitution  









==

)(0
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,
tf
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+
− dt

bcad
AdaB

etf )( , 



51

ON EXISTENCE AND CONSTRUCTION OF A POLYNOMIAL SOLUTION OF A 
CLASS OF MATRIX DIFFERENTIAL EQUATIONS WITH POLYNOMIAL COEFFICIENTS 

 
 

 
in (1.3), we get 𝑷𝑷𝟏𝟏𝒀𝒀′ + 𝑴𝑴𝟏𝟏𝒀𝒀 = 𝟎𝟎,  where 
 









−

−
=

aBAc
bBAd

1P , 







=

AB
AB
0

0
1M . 

 
Theorem 2.1: The equation (1.3) with condition 𝑎𝑎 ∙ 𝑏𝑏 ∙ 𝑐𝑐 ∙ 𝑑𝑑 ∙ (𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐) ∙ 𝐴𝐴 ∙ 𝐵𝐵 ≠ 0  has a 

polynomial solution of degree n, and another polynomial solution of degree k, k<n, does not exist, if 
only there exists a positive integer n such that the conditions 

 
𝑟𝑟(𝑴𝑴 + 𝑛𝑛𝑷𝑷′) = 1, 𝑟𝑟(𝑴𝑴 + 𝑘𝑘𝑷𝑷′) = 2 , 𝑘𝑘 < 𝑛𝑛, 𝑘𝑘 a positive integer,  

𝑏𝑏’ ≠ 0, c′ ≠ 0, 𝐴𝐴 + 𝑛𝑛𝑎𝑎’ ≠ 0, 𝐵𝐵 + 𝑛𝑛𝑑𝑑′ ≠ 0,                                  (2.1) 
 

are satisfied (𝑟𝑟 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑎𝑎𝑛𝑛𝑘𝑘 𝑜𝑜𝑜𝑜 𝑎𝑎 𝑚𝑚𝑎𝑎𝑡𝑡𝑟𝑟𝑚𝑚𝑚𝑚). 
The polynomial solution will be given by the formula 

 

  )1(
11

−= n
n UTTX ,                                       (2.2) 

where 









=

)(0
0)(
tf

tf
T , 








+

+
=

)(0
0)(

1 ckdA
akbB

T , 






−
=

−

1
1

)(
)( 1

1 tf
bcad n

U  

and 

= −
+

− dt
bcad
AdaB

etf )(  , 
'

'
'

'
nb

naA
ndB

nck +
−=

+
−= . 

 
Proof: Suppose that the conditions of the theorem are satisfied and consider the algebraic matrix 

equation (homogeneous linear algebraic system) (𝑴𝑴 + 𝑛𝑛𝑷𝑷′) ∙ 𝑾𝑾 = 𝟎𝟎. Using the conditions, we write 
the solution of this equation in the form  

.0,0,, 21
2

1 







== kk

k
k

K0ΚW  

If ,)(n
nXΚ =   𝑿𝑿𝑛𝑛

(𝑛𝑛+1) = 𝟎𝟎, then 0XPMXP =++ + )()1( )'( n
n

n
n n , and 𝑿𝑿 = 𝑿𝑿𝑛𝑛 is a polynomial 

solution of (1.3).  
 Suppose that equation (1.3) has a polynomial solution 𝑿𝑿𝑛𝑛  of degree n and another polynomial solution 
of degree k, k<n, does not exist. That  

.,0,0,, )1(
21

2

1)( 0XK0ΚX =







== +n

n
n

n kk
k
k

 

Differentiating equation (1.3) n times, and 𝑿𝑿 = 𝑿𝑿𝑛𝑛  we obtain the algebraic matrix equation 
(homogeneous linear algebraic system) 0KPM =+ )'( n  where .)( 0ΚX =n

n  Since 
 

𝑟𝑟(𝑴𝑴 + 𝑛𝑛𝑷𝑷′) = 1, 𝑟𝑟(𝑴𝑴 + 𝑘𝑘𝑷𝑷′) = 2 , 𝑘𝑘 < 𝑛𝑛, 𝑘𝑘 a positive integer,  
𝑏𝑏’ ≠ 0, c′ ≠ 0, 𝐴𝐴 + 𝑛𝑛𝑎𝑎’ ≠ 0, 𝐵𝐵 + 𝑛𝑛𝑑𝑑′ ≠ 0, 

 
Now, let us consider the matrix differential equation 

 
𝑷𝑷∗ ∙ 𝒁𝒁′ + 𝑴𝑴∗ ∙ 𝒁𝒁 = 𝟎𝟎,                                          (2.3) 
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where 









=

)(
)(

2

1

tz
tz

Z 







−

−
=

aBAc
bBAd

*P , 







−+−−

−−−+
=

BanABAcn
BbnAdnAB
')1(')1(

')1(')1(
*M . 

 
With the substitution 𝒁𝒁 = 𝑻𝑻𝟏𝟏 ∙ 𝑼𝑼  (Lema 2.1), 
 









=

)(
)(

2

1

tu
tu

U , 







+

+
=

)(0
0)(

1 ckdA
akbB

T , 
'

'
'

'
nb

naA
ndB

nck +
−=

+
−= , 

 
this equation is transformed into the equation  𝑷𝑷𝟏𝟏

∗ ∙ 𝑼𝑼′ − 𝑴𝑴𝟏𝟏
∗ ∙ 𝑼𝑼 = 𝟎𝟎,  where 

 









−

−
=

bcad
bcad

0
0

*1P , 







−−++

−−++
=

)')(1(0
0)')(1(

*1 bcadnAdaB
bcadnAdaB

M . 

 
A particular solution is  








−
=

−

1
1

)(
)( 1

1 tf
bcad n

U . 

 
On the other hand, if we differentiate (2.3) n-1 times and use the substitution 𝒁𝒁(𝒏𝒏−𝟏𝟏) = 𝑻𝑻−𝟏𝟏 ∙ 𝑿𝑿 , 

where 









=

)(0
0)(
tf

tf
T , = −

+
− dt

bcad
AdaB

etf )( , 

 
then we easily obtain the same equation (1.3). Similarly, applying the substitutions, we get the 
particular polynomial solution by formula (2.2). 
 
Remark 2.1. We consider a special case when 𝑏𝑏’ = 0, or c′ = 0, or 𝐴𝐴 + 𝑛𝑛𝑛𝑛’ = 0, or 𝐵𝐵 + 𝑛𝑛𝑑𝑑′ = 0. 
That definition 1 is not valid. 
 

Now, consider the matrix differential equation (1.3) and the appropriate system  
𝑛𝑛𝑥𝑥1′ + 𝑏𝑏𝑥𝑥2′ + 𝐴𝐴𝑥𝑥1 = 0,                                         (2.4) 

    𝑐𝑐𝑥𝑥1′ + 𝑑𝑑𝑥𝑥2′ + 𝐵𝐵𝑥𝑥2 = 0, 
where 
 

𝑛𝑛 = 𝑛𝑛1𝑡𝑡 + 𝑛𝑛2, 𝑏𝑏 = 𝑏𝑏1𝑡𝑡 + 𝑏𝑏2, 𝑐𝑐 = 𝑐𝑐1𝑡𝑡 + 𝑐𝑐2, 𝑑𝑑 = 𝑑𝑑1𝑡𝑡 + 𝑑𝑑2, 

 𝐴𝐴, 𝐵𝐵, 𝑛𝑛1, 𝑛𝑛2, 𝑏𝑏1, 𝑏𝑏2, 𝑐𝑐1, 𝑐𝑐2, 𝑑𝑑1, 𝑑𝑑2 ∈ 𝑅𝑅,    
dt
dxtx 1

1 )(' = ,
dt

dxtx 2
2 )(' = , 

 
By method of differentiation and transformation the last system (2.4) can be transformed into the 

following differential equations of a second order: 
 

++−+−++− ']''''[")( 1
2

1 xabBadbAdbcbbaddbaxbcadb  

                                                 0)''( 1 =+−+ xbBdbbdA ,                                    (2.5) 
 

+++−+−+− ']''''[")( 2
2

2 xacBAcdadcdcacbcadxbcadc  
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                                         0)''( 2 =+−+ xcaacAcB .                                            (2.6) 
 

Theorem 2.2: The equation (2.5) with condition 𝑎𝑎 ∙ 𝑏𝑏 ∙ 𝑐𝑐 ∙ 𝑑𝑑 ∙ (𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐) ∙ 𝐴𝐴 ∙ 𝐵𝐵 ≠ 0 has a polynomial 
solution of degree n, and another polynomial solution of degree k, k<n, does not exist,  if only there 
exists a positive integer n such that the conditions 
 

(𝑎𝑎′𝑑𝑑′ − 𝑏𝑏′𝑐𝑐′)𝑛𝑛2 + (𝐴𝐴𝑑𝑑′ + 𝐵𝐵𝑎𝑎′)𝑛𝑛 + 𝐴𝐴𝐵𝐵 = 0, 
      𝑏𝑏’ ≠ 0, c′ ≠ 0, 𝐴𝐴 + 𝑛𝑛𝑎𝑎’ ≠ 0, 𝐵𝐵 + 𝑛𝑛𝑑𝑑′ ≠ 0,                           (2.7) 

 
(n is the smaller one if both roots of the first condition are natural numbers) are satisfied. 
 

The polynomial solution will be given by the formula 






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)(
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1

1

1
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Proof. With the application of Theorem 2.1. the conditions (2.7) are equivalent to conditions (2.1). 

 
 

Theorem 2.3: The equation (2.6) with condition 𝑎𝑎 ∙ 𝑏𝑏 ∙ 𝑐𝑐 ∙ 𝑑𝑑 ∙ (𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐) ∙ 𝐴𝐴 ∙ 𝐵𝐵 ≠ 0 has a polynomial 
solution of degree n, and another polynomial solution of degree k, k<n, does not exist, if only there 
exists a positive integer n such that the conditions 
 

(𝑎𝑎′𝑑𝑑′ − 𝑏𝑏′𝑐𝑐′)𝑛𝑛2 + (𝐴𝐴𝑑𝑑′ + 𝐵𝐵𝑎𝑎′)𝑛𝑛 + 𝐴𝐴𝐵𝐵 = 0, 
                                 𝑏𝑏’ ≠ 0, c′ ≠ 0, 𝐴𝐴 + 𝑛𝑛𝑎𝑎’ ≠ 0, 𝐵𝐵 + 𝑛𝑛𝑑𝑑′ ≠ 0,                             (2.7) 

 
(n is the smaller one if both roots of the first condition are natural numbers) are satisfied. 
 

The polynomial solution will be given by the formula 
 








 −
+==

−

−

−

)(
)()()()()(

1

1

1

2 tf
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dz
dtftQtx
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− dt
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Proof. With the application of Theorem 2.1. the conditions (2.7) are equivalent to conditions (2.1). 
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