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The Appendix 
 

In honor of the first Doctor of Mathematical Sciences Acad. Blagoj Popov, a 
mathematician dedicated to differential equations, the idea of holding the "Day of 
Differential Equations" was born, prompted by Prof. Ph.D. Boro Piperevski, Prof. 
Ph.D. Borko Ilievski, and Prof. Ph.D. Lazo Dimov. Acad. Blagoj Popov presented his 
doctoral dissertation on 05.05.1952 in the field of differential equations. This is the 
main reason for holding the " Day of Differential Equations" at the beginning of May. 

This year on May 10th, the "Day of Differential Equations" was held for the 
fifth time at the Faculty of Computer Sciences at "Goce Delcev" University in Stip 
under the auspices of Dean Prof. Ph.D. Cveta Martinovska - Bande, organized by 
Prof. Ph.D. Biljana Zlatanovska. 

Acknowledgments to Prof. Ph.D. Boro Piperevski, Prof. Ph.D. Borko Ilievski 
and Prof. Ph.D. Lazo Dimov for the wonderful idea and the successful realization of 
the event this year and in previous years. 

Acknowledgments to the Dean of the Faculty of Computer Sciences, Prof. 
Ph.D. Cveta Martinovska - Bande for her overall support of the organization and 
implementation of the "Day of Differential Equations". 

The papers that emerged from the "Day of Differential Equations" are in the 
appendix to this issue of BJAMI. 
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UDC 517.93:519.6

 
 

NUMERICAL ANALYSIS OF THE BEHAVIOR  
OF THE DUAL LORENZ SYSTEM  

BY USING MATHEMATICA  
 

Biljana Zlatanovska 

Abstract. The Dual Lorenz system as a system of differential equations was obtained [1] and its dynamical 
analysis was done in the paper [2]. In this paper, by using Runge-Kuta method via mathematical software 
Mathematica a numerical analysis of the behavior of the Dual Lorenz system for a finite time t (as in the paper 
[3]) will be made. From the papers [1] and [2], the main role in the behavior of the Dual Lorenz system has the 
value of the parameter r, therefore the numerical analysis of the Dual Lorenz system will be made via changing 
the parameter r so that: we will change the parameter r and the parameter σ and b will remain fixed, we will 
change the parameters r and σ (or b) and the third parameter b (or σ) will remain fixed, or we will change all 
three parameters in parametric space (σ,r,b). 
Mathematical Subject Classification: 65L06, 65L07. 
 
 

1. Introduction 

Dynamical systems as systems of differential equations are studied extensively in numerous 
mathematical literature (for example [1] – [15]). The behavior is often analyzed via graphical 
visualizations with using numerical methods (see [3], [4], [5], [6], [7], [8] and [9]).  

The Dual Lorenz system is a nonlinear autonomous dynamic system and it is obtained in the 
paper [1] by the following form 

( )
( )

, , 0

x y x
y x r z y

z xy bz
r b





= −
= − −
= − −



       (1.1) 

where , ,x y z  are real functions from the real argument t. It has three fixed points (0,0,0)O ,

1 2( (1 ), (1 ), 1), ( (1 ), (1 ), 1)O b r b r r O b r b r r− − − − − − − −  for 0<r<1 and one fixed point 
(0,0,0)O  for r>1.  

From [1], for the Dual Lorenz system (1.1), appropriate characteristic equation in the fixed 
point (0,0,0)O  is given with  

2( )[ ( 1) (1 )] 0b r    + + + + − =      (1.2) 
for r>1. For 0<r<1 all roots of this equation (1.2) are negative. The characteristic equation in other 
fixed points 1 2( (1 ), (1 ), 1), ( (1 ), (1 ), 1)O b r b r r O b r b r r− − − − − − − −  is given with  

3 2( 1) ( ) 2 ( 1) 0b b r b r     + + + + + + − =   (1.3) 
for 0<r<1. The characteristic equation (1.3) does not have purely imaginary roots. 

In the paper [2] a dynamical analysis of the Dual Lorenz system (1.1) was done where the 
following conclusions are obtained:   

• For 0<r<1, the Dual Lorenz system (1.1) has unstable fixed points O1 and O2, but for t→∞, 
the trajectories of the system (1.1) are most likely to weigh to the fixed point O;  

• The Dual Lorenz system (1.1) does not have chaos, when 0<r<1. For 0<r<1, the Dual Lorenz 
system (1.1) has a stable fixed point O. But, for r>1, the fixed point O is the unstable fixed 
point; 

• For r=1, the fixed point O appears as a subcritical pitchfork bifurcation point for the Dual 
Lorenz system (1.1). 
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In this paper, the numerical analysis of the Dual Lorenz system (1.1) done in the same way as the 

numerical analysis of the Lorenz system in the paper [3] for a finite time t.  The numerical analysis of 
the Dual Lorenz system (1.1) is made with the mathematical package Mathematica, which 
numerically approximates the solutions of the system by the method of Runge – Kuta. The three fixed 
points for the Dual Lorenz system (1.1) will exist when the parameter 0<r<1, therefore its numerical 
analysis will be made via the changing of the parameter 0<r<1.  
 

We will consider the following cases: 
1. The parameter 0<r<1 is changing, the other two parameters σ and b are fixed. This is the case when 
the parameters are changing along a line in the parametric space (σ ,r, b);  
2. The parameters 0<r<1 and σ (or b) are changing, the third is fixed. This is the case when the 
parameters are moving in a plane in the parametric space (σ ,r, b);  
3. All three parameters 0<r<1, σ and b are changing. This is the case when all three parameters are 
moving in the parametric space (σ ,r, b). 
 

For the solutions x = x(t), y = y(t), z = z(t) of the Dual Lorenz system (1.1)  only  2D graphs 
will be given  because  the software  Mathematica does not give а good 3D graph (x(t), y(t), z(t)). On 
2D graphs of the Dual Lorenz system (1.1), the red color correspondents with x = x(t), the green color 
correspondents with y = y(t) and the blue color correspondents with z = z(t). Regardless of the above 
cases, for t=0 the curves x = x(t), y = y(t), z = z(t) always start from initial values x0=x(0), y0=y(0), 
z0=z(0) in 2D coordinate systems Oxt, Oyt, Ozt respectively. 

In the paper [2], we proved that the Dual Lorenz system (1.1) does not have chaos for 0<r<1. 
For improving the conclusions of this paper the graphical visualization of the solutions of the 
characteristic equations (1.2) and (1.3) when 0<r<1 will be given. 
	
	
	

2. Numerical analysis of the behavior for the Dual Lorenz system (1.1) when the parameter 
0<r<1 changes 

 
When the parameter 0<r<1 changes and the parameters σ and b are fixed, it moves in a 

straight line in the parameter space (σ,r,b).  For small the time t, the instability of the Dual Lorenz 
system (1.1) close to the fixed points O1 and O2 can be seen when the parameters are changing in the 
following way: 

- 0<σ≤1, 0<b≤1,  0.9≤r<1; 
- 0<σ≤1,     b>1,  0.65≤r<1. 
 

Example 1: The parameter r is changing from 0.9 to 0.95 by step 0.01. Let σ=0.5, b=0.6 and the 
initial values x0=0.1, y0=0.5, z0=-0.5.  
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Figure 1: The solutions x(t), y(t), z(t) of the Dual Lorenz system (1.1) in 2D coordinate system  

 
Figure 1 shows the graphical visualization of the solutions x(t), y(t), z(t) of the Dual Lorenz 

system (1.1) and it is obtained the picture that the solutions x(t), y(t), z(t) are away far from 0. 	
Next, the graphical visualization of the solutions of the characteristic equations (1.2) and (1.3) 

when 0<r<1 will be presented in Fig. 2:  

                                
 
 a) the solutions of the characteristic equation (1.2)   b) the solutions of the characteristic (1.3) 

 
Figure 2: The graphical visualization of the solutions for the characteristic equations (1.2) and (1.3) 

Figure 2, a) shows that all solutions of the characteristic equation (1.2) are negative numbers. Figure 
2, b) shows that the two solutions of the characteristic equation (1.3) are negative numbers and one 
solution is a positive number.  
 

3. Numerical analysis of the behavior for the Dual Lorenz system (1.1) when the parameter r 
and σ (or b) change 

	
When the parameters 0<r<1 and σ (or b) are changing, the third b (or σ) remains fixed; then they are 
moving in a plane in the parametric space (σ,r,b). For short time t, the instability of the Dual Lorenz 
system (1.1) close to the fixed points O1 and O2 can be seen when the parameters are changing in the 
following way: 

- 0<σ<1, b>0, 0.8≤r<1 (when the parametric σ and 0<r<1 are changing and the parameter b 
remains fixed);  

- σ≥1, b>1, 0.65≤r<1 (when the parametric σ and 0<r<1 are changing and the parameter b 
remains fixed);   

- but, small subintervals exist for 0<r<1, σ>0, large b (when the parametric 0<r<1 and b  are 
changing and  the parameter σ remains fixed). 

	
Example 2: The parameter r is changing from 0.9 to 0.95 by step 0.05 and the parameter σ is 
changing from 0.7 to 0.8 by step 0.05. Let b=0.6 and the initial values x0=0.1, y0=0.5,        z0=-0.5. 
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Figure 3: The solutions x(t), y(t), z(t) of the Dual Lorenz system (1.1) in 2D coordinate system for t∈ [0,10] 

 
In Figure 3 the graphical visualization of the solutions x(t), y(t), z(t) of the Dual Lorenz system (1.1) is 
shown and the picture that the solutions x(t), y(t), z(t) are away far from 0 is obtained.  

Next, the graphical visualization of the solutions of the characteristic equations (1.2) and (1.3) 
when 0<r<1 in Fig. 4 will be presented, for the different value of σ: 

 

                             
	

a) the solutions of the characteristic equations (1.2)  and (1.3) when σ=0.7 
 

											 											 	
	

b) the solutions of the characteristic equations (1.2)  and (1.3) when σ=0.75 
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c) the solutions of the characteristic equations (1.2)  and (1.3) for σ=0.8 
 

Figure 4: The graphical visualization of the solutions for the characteristic equations (2) and (3) 
 

Figure 4 a) shows that all solutions of the characteristic equation (1.2) are negative numbers (the 
picture on the left), but the two solutions of the characteristic equation (1.3) are negative numbers and 
one solution is a positive number (the picture on the right) for σ=0.7. In Figure 4, b) and c) identical 
results are shown. 
	
	
4. Numerical analysis of the behavior of the Dual Lorenz system (1.1) when all three parameters 

are changed 
 

When all three parameters are changing, then the three parameters are moving in the 
parametric space (σ,r,b). For short time t, the instability of the Dual Lorenz system (1.1) close to the 
fixed points O1 and O2 can be seen in some small subintervals for 0<r<1 close to 1, σ>0, about 
b=0.05.  
 
Example 3: The parameter r is changing from 0.9 to 1 by step 0.05, the parameter σ is changing from 
0.5 to 0.6 by step 0.05 and the parameter b is changing from 0.04 to 0.06 by step 0.01. Let t∈ [0,8] 
and the initial values t x0=0.1, y0=0.5, z0=-0.5. 
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Figure 5: The graphs in 2D coordinate system for t∈ [0,8] 
In Figure 5 the graphical visualization of the solutions x(t), y(t), z(t) of the Dual Lorenz system (1.1) is 
shown and the picture that the solutions x(t), y(t), z(t) are away far from 0 is obtained.   

Next, the graphical visualization of the solutions of the characteristic equations (1.2) and (1.3) 
when 0<r<1 will be presented in Fig. 6, for the different values of σ and b: 

 

													 									 	
	
	

a) the solutions of the characteristic equations (1.2)  and (1.3) when σ=0.5 and b=0.04 
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b) the solutions of the characteristic equations (1.2)  and (1.3) when σ=0.5 and b=0.05 
 

													 				 			
 

c) the solutions of the characteristic equations (1.2)  and (1.3) when σ=0.55 and b=0.04 
 

													 									 	 	
d) the solutions of the characteristic equations (1.2)  and (1.3) when σ=0.55 and b=0.05 

 
Figure 6: The graphical visualization of the solutions for the characteristic equations (1.2) and (1.3) 

 
Figure 6, a) shows that all solutions of the characteristic equation (1.2) are negative numbers (the 
picture on the left), but the two solutions of the characteristic equation (1.3) are negative numbers and 
one solution is a positive number (the picture on the right) for σ=0.5 and b=0.04. In Figure 6, b), c) 
and d) identical results are shown. 
 

Remark: In Figure 2, 4 and 6 the graphical visualization of the solutions of the characteristic 
equations (1.2) and (1.3) are shown when 0<r<1 which are in accordance with the proofs, which are 
presented in the paper [2]. 
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5. Conclusion 
 

For the Dual Lorenz system (1.1), the explicit solutions are not known, therefore in this paper 
its behavior is analyzed with the Runge-Kuta method. The Runge-Kuta method gives us a geometrical 
visualization of the Dual Lorenz system. The Dual Lorenz system (1.1) does not have chaos and its 
behavior is the opposite of the behavior of the Lorenz system. The behavior of the Dual Lorenz 
system (1.1) was described in the papers [1] and [2], where appropriate proofs were given. The result 
from the numerical analysis of the Dual Lorenz system (1.1), which is made in this paper, is in 
accordance with the presenting of the proofs in the papers [1] and [2]. 
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