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UDC: 519.61:517.983.6

EXAMPLES OF GROUP exp(tA), (t € R) OF 2 x 2 REAL MATRICES
IN CASE MATRIX A DEPENDS ON SOME REAL
PARAMETERS

RAMIZ VUGDALIC

Abstract. In this paper of the given 2 X 2 matrix A, which depends on some
real parameters, we obtain the multiplicative groups exp(tA) (t € R) of 2 x 2
real matrices.

1. Introduction

One can find some preliminaries about the matrix theory in [1, 2, 4], and other
preliminaries about the semigroup or group theory of linear and bounded operators
in Banach spaces in [3, 5]. Here we give some necessary preliminaries. Matrices
constitute the fundamental analytic apparatus for the study of linear operators
in an n— dimensional vector space (n € N). For every real or complex matrix
n X n matrix A, the matrix exponential of matrix A is defined as the matrix

exp(4) = e = > Ak—f. Namely, it is known that this series converges for ev-
k=0
ery square matrix A. Also, it holds that

1. exp(0) = I, I is the identity matrix;
2. exp((t + s)A) = exp(tA) exp(sA) (t,s € R);
3. If for square matrices A, B holds AB = BA, then exp(A+ B) = exp(A) exp(B).

By defining any norm |[|-|| on M,(C) (the vector space of all n X n matri-
ces over the field of complex numbers) it is known that the matrix exponential

oo

exp(tAd) = > % is convergent, bounded and |lexp(tA)| < 4l (¢ € R). Ma-
k=0

trix exponentials are important in the solution of systems of ordinary differential

equations (for example, see [1]). Namely, for every constant n x n matrix A, the so-
lution of Cauchy problem %y(t) = Ay(t), y(0) = yo, is given by y(t) = e!dyq. The
matrix exponential can also be used to solve the inhomogenous differential equation

Date: May 22, 2020.
Keywords. Group exp(tA) (t € R) of 2 X 2 real matrices, matrix exponential, group of linear
and bounded operators in R?.
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dy(t) = Ay(t)+2(t), y(0) = yo. From I = exp(0) = exp(A-+(—A)) = exp(A) exp(—A)
it follows that every matrix exponential exp(A) is always an invertible matrix and
[exp(A)] ™' = exp(—A). The matrix exponential is a map exp : M, (C) — GL(n, C),
where GL(n,C) denotes the general linear group of degree n, i.e. the multiplicative
group of all n X n complex invertible matrices. This map is surjective. That means
that every invertible matrix can be written as an exponential of some matrix from
M,,(C). The map t 1— exp(tA) for some fixed matrix A € M, (C) and t € R, is an
one-parameter subgroup of the general linear group GL(n, C) since exp(0) = I and
exp((t+s)A) = exp(tA) exp(sA) (t,s € R). The group of matrices T'(t) := exp(tA)
(t € R) represents the group of linear and bounded operators in a complex Banach
space C" relative to a basis of C™. Then, the matrix A represents the infinitesimal
generator of that group of operators relative to the same basis of C". Namely, it
holds the next definition.

Definition 1. The one-parameter family of linear and bounded operators T (t) (t €
R) defined from a Banach space X into X, which satisfies T(0) = I, the identity
operator on X, and T(t + s) = T(t)T(s) on X, for every t,s € R, is called the
group of linear and bounded operators on X. If, in addition, we also have s —
Q%T(t)x = x for every x € X, in the strong operator topology, then T(t) (t € R)
s called a strongly continuous or Co—group of linear and bounded operators on
X. The operator A is defined as follows: The domain of A is the set D(A) =

{x € X: lim% exists ¢, and for every x € D(A), Ax := }llin%T(h;f—x, is called
%

h—0
the infinitesimal generator of T(t) (t € R).

The group of operators T'(t) (t € R) on X is the solution of the abstract Cauchy
problem T"(t) = AT(t), T(0) = I. Here A is a linear and closed operator and the
infinitesimal generator of T'(¢t) (¢t € R). Obviously, it holds A = T7(0) on D(A).
It is known that a linear operator A is the infinitesimal generator of an uniformly
continuous group 7'(t) (t € R) (or semigroup T'(t) (¢t > 0)) of linear operators on
a Banach space X if and only if A is a bounded linear operator ([5]). If X is a
finite-dimensional Banach space, then any strongly continuous group of operators

0. @]
is an uniformly continuous group. In this case, T'(t) = exp(tA) = > tklﬁk (t € R).
k=0

2. Results
In this section, for several given matrices A € Ms(R) we construct the groups
o
of matrices T'(t) = exp(tA) = > % (t € R) in M3(R) (i.e. the groups of linear
k=0

and bounded operators in R?). For this goal we use the matrix exponential, i.e.



EXAMPLES OF GROUP exp(t€A),(t R) OF 2x2 REAL MATRICES IN CASE
MATRIX A DEPENDS ON SOME REAL PARAMETERS

Taylor’s power series of the given matrix A. Since the given matrix A depends on
one or more real parameters, therefore the obtained group also depends on these
parameters. So we get the classes of groups that depend on one or more real
parameters. We give our result in the form of the following theorem.

Theorem 2.1. Real matriz:

ST 222

d)A:[élaa Eﬂ
da=| 5 L na-| 2 ] @ero;
=] oo D eeron was |50 0 ero
pa=| L @ron j)A:[% )| @20
k)A:{% _b }(5,0%0);

generates the group of real matrices T'(t) = exp(tA) (t € R) (i.e. the group of
linear and bounded opemtors):

=[5 fomo=[ 4 8] omo=[}270 121
4 1(t) = l COSh(?)ats)mh(nggh(gat) cosh(B;:)m—h(%gsnzh(S 1) ] ¢/ T() = [ " g ]
DT =[ Somen) B |,
970 =[ " waier s |
IO = | b ey oo 07O =] T 4R ],
910 = S5 e 970 [ LA e

Proof. Denote: T'(t) = { ;11 ?2 }
21 122

a) For A = [ 8 8 } it is A%2 = 0. Therefore,

T(t) = exp(tA) = T+ tA — H ! 1
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0 0

b) If A= [ ], then A%2 = 0. Hence,
a 0

at 1

2a® 2a? A3 _ 4a®  4a?
202 2a? T | 403 4a3

T(t) = exp(tA) = I+ tA — { 1o }

c) For A = [ Z Z } we have:A%? = ], and so

k—1_k k—1_k
on. In general, it is AF = [ gk—lzk ;k_lgk } (k € N). Therefore,

Lk > k
T112T22:1+Z%<2k1ak> :1+%Z(2a7) :1_’_% (e2at_1) :%(€2at+1).
k=1"

k!
k=1
— k—1 k 1 — (Zat)k L on
== 3 gy (210 - 3 - Ly
k=1 k=1

Hence,

2 3 3
d) T A = a 2a then A2 — 9a 0 A% = 9a3 18(13 ’
—a —9a

4a 0 9a? 36a
4
At = [ 810a 810a4 ], and so on. One can prove that

B 32k—2a2k—1 9. 32k—2a2k—1 B B 1 9
AP = { 4.32k=2,2k=1  _32k-2,2k—1 = 3% 2% 1 4 —1 (k? GN)

and 2% 2k
3°"Fa 0
AQk = l 0 32ka2kz 1 (k € N)
Therefore,
. 2k 2k 2] 2%—2 2k—1
T = 1 o () 1 )
. + ]; 3 + 2 e —1)
0 o0
3at)2k 1 o= (3at)?—1
= 14+ Z on) + 3 Z @k — 1] = cosh(3at) + = sinh(3at)
k=1 k=1
S 2k 2k — 2] 2%—2 2k—1
T = 1 () - ()
22 + ; 3 Zl 2E— 1)) 37 a
© (3at)2k 1 £)2k—1 1
= 14 Z Al -3 Z (3a — = cosh(3at) — 3 sinh(3at),
k=1 ’ k=1
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O y2k-1 ) 4
Ti9 =2 ; m (3%_2a2k—1> =3 sinh(3at) and Ty = 271712 = 3 sinh(3at).
Therefore,
T(t) = cosh(3at) L sinh(3at) £ smh(Bat)
N 3 sinh(3at) Cosh(3at) — 1 sinh(3at)

2k :Ean_l 0

e) For A = [ ioa ioa } we have A%k = { aO agk } and A%k~1 = [ 0 +g2k—1

(k € N). Therefore, To1 = T12 = 0,

2k 2k s 2k 142k—1
t t ot

+ Z %—_1) = cosh(at) £ sinh(at) = and

N

|

o3

|

—_
||M8

:I:at
0
OB R ]
0 b . a2 0 0 azb
f) For A = {% O] (a,b # 0) it holds A? = { 0 ag],A?’: [% 0 ],
4 4y 6
At = {ao 6?4],14 = {ag ao ],AGZ {a&) C?())},zmdsoom. It is easy to
b
prove that
2k 0 2k—2
A%—[ao %]andA%l [ﬂ aO ](k‘GN)
Now we have
o0 a2k't2k' 2k—2bt2k 1
T11 = TQQ =1+ Z W = COSh(CLt)./ T12 = W = a Slnh(at)
k=1 k=1
_ i a2k 2k—1 B h(at)
2= b 2k_1)  po

| cosh(at) gsinh(at)
() = %sinh(at) cosh(at)
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2 ac? bc?
g)If A= 22 2 (b,c # 0), then A? ¢ 02 A% = 2(2—a?) ,
C a 0 cC —aCQ
b b
4 act bct 6
At = { CO 21 ], Ad = c4(Czb_az) RE AS = [ CO 606 ] and so on. In gen-
eral,
o2k ac2k—2 be2k—2
A%k = [ 0 2k ] and A%F-1 2k 2(5 —a?) k2 (k eN)
Therefore
22k O 2k—242k—1 a
T, = 1 ——————— = cosh(ct) + — sinh(ct
11 +k e —i—z:: k= 1) cos (c)—i—csm (ct),
0 2kp2k O 2k—2,2k—1 a
22 = 1 + Z 2]{) ; W = COSh(Ct) — E Sll’lh(ct),
bCQkutZszl b 22 (2 g?) g2k 2 _ g2
Tio = - h(et), THy = = inh(ct
12 ; T GO ; b (2k — 1) pe Stubi(et),
cosh(c )+ % sinh(ct) b sinh(ct)
T(t) = - c a
T smh(ct) cosh(ct) — % sinh(ct)
[ &a 0 s [a® 0 s [ £a® 0
h)ForA—[ b :Fa}(a;éO)wehaveA [0 a2:|,A —|:a2b |
4
At = [ % 6?4 , and so on. It is easy to see that
a2k 0 B ian*l 0
A% [ 0 a2 ] and A%~ = [ a2 2kl } (k € N).
Now we have
o0 2kt2k 0, 2k—142k—1 o
T = —————— = cosh(at) + sinh =
11 Z 2k 1)1 cosh(at) £ sinh(at) = ™%,
k=1 k=1
o0 a2k—2bt2k—1 b
T Ty =S “ " = sinh(at
12 0, T 2 o= 1) ~sin (at),
0 2k2k O 2k—142k—1 .
=1 h inh =et?
T +Z k) Zl 2% =1, = cosh(at) F sinh(at) = e™*,
6:|:at 0
() [ Zsinh(at) eF* ] '
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|

i) Analogously as in h), for A = [ :Ea :'fa] (@ # 0) we obtain T(t) =

etat g sinh(at)
0 eTat ’

I

J)IfA_|: 0 —u ot

9 2
°, b}(a,bﬂ),thenA?—[ a 02],A3—[f gb},
b

¢ g

4
0 a {

0
4 0 a' 6
A4:[a O}AE‘:[ “ ],AGZ[ g _?16},andsoon. It can be

proven that

0 (_1)k71a2k72b

ok _ | (=1)Fa?* 0 -1 _
A = |: (—l)ka% and A = (_1)bka2k 0 (k S N).

TH = T22:1+ZW:COS(M’L)’T12:Z

Therefore,
& (_1)k71a2k72bt2k71

(_1)ka2kt2k
(2k —1)!

= sin(at),
k=1 k=1
o2k p2k—1

— - (71)k — —a . — a
T = ; b ko1 p Smaet), T = [ ~ain(at) cos(at)

ok _ [ (=1)F* 0 o1 _ | (
A = |: (—1)kc2k and A = (71)k62k_2(02+a2) (_1)ka02k72

b
k) For A = [ _Cza_az " ] (b,c # 0) we have
. _

_ 2 —ac? —bc? 4
2 C 0 3 4 C 0
4 _{ 0 —CQ}’A |G e A _[ 0 04]’
act bt _ 5
A = —ct(2+a?) e AS = [ OC 6 ], and so on.
——— —ac -

b
In general, it holds

_1\k— k— _ 1\k— ck_
1) 1, .2k—2 (1) 102 2] (kEN)‘

0
Now we have

(_1)k—1ac2k—2t2k—1

= cos(ct) + 2 sin(ct),
c

(2k —1)!
k=1 k=1
o) [e.e]
1)k 22k (—1)kLac2h—22k-1 a
Ty = 1—1—2((%)'—2 ) 2k — 1)1 :cos(ct)—zsm(ct),
k=1 ’ k=1 ’
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1 k:—lbc2k:—2t2k—1 b

Ty = Z =) 2k = 1) = Esin(ct),

k=1
2 (—1)kek-2 (02 +a?) (21 e —q?
Tn = Z CI sin(ct),
k=1 ’
() cos(ct) + < sin(ct) b sin(ct)
72 sm(ct) cos(ct) — & sin(ct)

O

Remark 2.1: Tt is known that from every group of operators T'(¢) (¢t € R) one can
obtain an appropriate cosine operator function C(¢) (t € R) in the same Banach
space with C(t) = 2 [T(t)+ T(—t)] (t € R). Such family of operators satisfies
C0)=1and C(t+s)+C(t—s) =2C(t)C(s) for every t,s € R. If A is generator
of T(t) (t € R), then A2 is generator of C(t) (¢t € R). Therefore we have the next
corollary.

Corollary 2.1. If the matriz A is the same as in Theorem 2.1, then the matriz A2
generates the following cosine operator functions C(t) (t € R) defined in R? :

Ina)and b), C(t) = (1) (1) = I (a trivial case of cosine operator function); in

[ $(cosh(2t) +1) 3 (cosh(2t) —1) ] . _ | cosh(3at) 0 .
00 = Feomto) - 1) L eomno 7 1) [/ 7% €0 = [ 0 o |

. . cosh(at 0 ) cosh(ct 0

in 6)} f)? h) and Z)} C(t) = |: 0( ) Cosh(at) :|} m g)’ C(t> - |: O( ) COSh(Ct) :|

in j), C(t) = [ Cosé“t) Cos‘zat) } and in k), C(t) = [ COSéCt) COS‘zct) } .
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