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ON THE NUMBER OF CANDIDATES IN APRIORI LIKE
ALGORITHMS FOR MINING FREQUENT ITEMSETS

SAVO TOMOVIC

Abstract. Frequent itemset mining has been a focused theme in data mining
research for years. It was first proposed for market basket analysis in the form
of association rule mining. Since the first proposal of this new data mining
task and its associated efficient mining algorithms, there have been hundreds of
follow-up research publications. In this paper first we present the ideas from our
previous work where we consider two problems from linear algebra, namely the
set intersection problem and the scalar product problem, and make comparisons
to the frequent itemset mining task. Then we formulate and prove new theorems
that estimate the number of candidate itemsets that can be generated in the
level-wise mining approach.

1. Introduction

We suggest a new model for frequent itemset mining which is based on linear
algebra theory. In that way we give new mathematical foundation for frequent
itemset mining task.

The idea comes from the definition of frequent itemset: frequent itemset is set
of items that appear in sufficiently high number of transactions in given database
[1], |2]. In linear algebra terminology this means that sufficiently high number of
transactions have to intersect on particular itemset in order to make it frequent.

In this paper we developed the idea that had been initially presented in [26], in
more detailed manner. In [26] we considered frequent itemsets, while in this paper
we found upper bounds on the number of candidate itemsets in level wise mining
approach. As in [26], we adopted results from set intersection and scalar product
theory to estimate maximal number of candidate itemsets that can be generated
in level-wise mining approach. To illustrate the idea we use the modification of
well known Apriori algorithm [2]| for frequent itemset mining, such called Apriori
Multiple algorithm. Details of the Apriori Multiple algorithm are presented in [24],
[25] and [29].

Date: November 13, 2021.
Keywords. frequent itemset mining, Apirori algorithm, scalar product, set intersection.
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Results from this paper can be effectively applied to all algorithms that use
level-wise mining approach [19].

2. Preliminaries

This section contains definitions that are necessary for further text. We primarily
use notions from [23].
Suppose that I is a finite set; we refer to the elements of I as items.

Proposition 2.1. A transaction data set on I is a function T : {1,....n} — P(I).
The set T'(k) is the kth transaction of T. The numbers {1, ...,n} are the transaction
identifiers (TIDs).

Given a transaction data set T on the set I, we would like to determine those
subsets of I that occur often enough as values of T'.

Proposition 2.2. Let T : {1,...,n} — P(I) be a transaction data set on a set of
items I. The support count of a subset K of the set of items I in T is the num-

ber suppcountr (K) given by: suppcountr(K) = [{t|]1 <TID(t) <nANK CT(t)}|.

suppcountr (K)
B e—

The support of an itemset K is the number: supportp(K) =

Proposition 2.3. An itemset K is p-frequent relative to the transaction data set
T if supportp(K) > p. We denote by FJ the collection of all p-frequent itemsets
relative to the transaction data set T' and by FZ’FLT the collection of all u-frequent
itemsets that contain r items for r > 1. 7

Note that Fip = U, Fr,.-

Proposition 2.4. Frequent itemset mining problem consists of finding the set Fh
for given minimal support p and transaction data set T

The following rather straightforward statement is fundamental for the study of
frequent itemsets. It is known as Apriori principle.

Theorem 2.1. Let T : {1,....,n} — P(I) be a transaction data set on a set of
items I. If K and K; are two itemsets, then K1 C K implies supportp(Ky) >
supporty(K).

Proposition 2.5. An association rule on an itemset I is a pair of nonempty dis-
joint itemsets (X,Y). An association rule (X,Y) is denoted by X — Y. The

confidence of X — Y is the number confr(X —Y) = %.

3. LEVEL-WISE FREQUENT ITEMSET MINING

In this section we will briefly explain our Apriori Multiple algorithm for frequent
itemsets mining from [24]. It is modification of well known Apriori algorithm from

[1].
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Apriori Multiple implements level-wise approach in frequent itemset mining [19].
The main characteristic of this approach is in the following: it generates frequent
itemsets starting with frequent 1-itemsets (itemsets consisted of just one item);
next, it iteratively generates frequent itemsets of size 2, 3, etc.

Iteration consists of two phases: candidate generation and support counting [11],
[27].

In the candidate generation phase potentially frequent itemsets or candidate
itemsets are generated. The Apriori principle is used in this phase (see Theorem
2.1). In this phase we have added new parameter named multiple num that deter-
mines the "length" of iteration. Actually, in the original Apriori algorithm, in the
iteration r, set Fqlf’r is generated, while our Apriori Multiple algorithm in the itera-
tion r generates sets Fitf,i’ 0 <4 <multiple _num. The parameters multiple num
and 7 are not connected.

The Apriori Multiple can use any value for multiple num parameter. If multiple num =
0, our Apriori Multiple "becomes" the original Apriori algorithm. If we want to
ensure that Apriori Multiple finishes in just two database scans, we need to choose
value for multiple num parameter such that ry,., < multiple _num holds, where
Tmaz 18 the maximal size of u-frequent itemsets. The value 7,4, is not known
in advance, but we can use the following very simple approach to find it. In the
first scan, Apriori Multiple generates frequent 1-itemsets. During this scan Apriori
Multiple can determine the length of the longest transaction in the database: t,,4:-
It is clear that 7,00 < timaz, SO the algorithm can set multiple num parameter
t0 timae- Another approach is to set multiple num parameter to average size of
transactions. This does not guarantee that the algorithm finishes in two database
scans, but it will generally finish in less database scans than the original Apriori
algorithm [3]. Also, Apriori Multiple can start with some value for multiple _num
parameter and change this value in the next iterations. The multiple num pa-
rameter can also be defined by user, just like © = minsup threshold. It means
that user, according to domain knowledge or some other assessment can specify the
value for multiple num parameter.

The support counting phase consists of calculating support for all previously
generated candidates (which are not pruned according to the Apriori principle in the
preceding candidate generation phase). In the support counting phase, it is essential
to efficiently determine if the candidates are contained in particular transaction
t € T in order to increment their support. Because of that, many efficient structures
and appropriate procedures for traversal were proposed in the literature [3]-[10],
[12]-[18], [21], 28], [30]. In Apriori Multiple algorithm we organized candidates in
special tree structure called TS-Tree. The candidates, which have enough support,
are termed as frequent itemsets.

Pseudo-code for Apriori Multiple algorithm comes next.

The complexity of the Apriori like algorithms can be estimated as follows.
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Apriori Multiple Algorithm

Require: database of transactions 7', minimal support
threshold p

: Fj. | =frequent I-itemsets in T

multiple_num = average transaction size

r =2

while Fj. .| # 0 do

', = candidate_generation(Fy )

6: fori=1tomultiple.num — 1 do

7: Chryi = candidate_generation(Chryi_1)
8: end for

9:  fori=0tomultiple_num — 1 do

10: support_count(Cy4;)

11:  end for

12:  fori=0to multiple_num — 1 do

AR R

13: Froi=1{c€Cryi |S'EL;I)}'%71(C) > (1}
14:  end for
15: r=r—+1

16: end while
T n
17: return Fp =J.-, Fp

FIGURE 1. Apriori Multiple algorithm

e Generation of frequent l-itemsets. For each transaction, we need to update
the support count for every item present in the transaction. Assuming that
w is the average transaction width, this operation requires O(Nw) time,
where N is the total number of transactions.

e Candidate generation. To generate candidate k-itemsets, pairs of frequent
(k — I)-itemsets are merged to determine whether they have at least k — 2
items in common. Each merging operation requires at most k — 2 equal-
ity comparisons. In the best-case scenario, every merging step produces a
viable candidate k-itemset. In the worst-case scenario, the algorithm must
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merge every pair of frequent (k—1)-itemsets found in the previous iteration.
Therefore, the overall cost of merging frequent itemsets is

w

Z — 2)|Ck|< Costofmerging < Z —2)|Fp_1]?, (3.1)
k=2 k=2

where w is the maximum transaction width.

e Support counting. Each transaction of length |t| produces ('Z') itemsets of
size k. This is also the effective number of hash tree traversals performed
for each transaction. The cost for support counting is O(N ", (%)), where
w the maximum transaction width.

4. UPPER BOUNDS ON THE NUMBER OF CANDIDATES IN APRIORI LIKE
ALGORITHMS

In this section we further develop the ideas from [26]. Because of completeness,
let us briefly introduce set intersection problem and make comparison between it
and frequent itemset mining.

Let N,, be a finite set that contains n different elements. We can consider that

={1,2,...,n}. Let M = {My, Mo, ..., M} be subset of power set of N,, that
satisfies |M;|=k,i = 1,2, ..., s, where 1 < k < n is in advance given integer. We fix
t,0 <t < k and define condition |M; N M;|#t,i # j € {1,2,...,s}. With m(n, k,t)
we denote max|M| where maximum is taken on all M that satisfies previously
defined conditions.

In frequent itemset mining task terminology, set N,, is set of items I, while set M
can be considered as collection of candidate k-itemsets in Apriori based algorithms.

With f(n,r,t) denote the maximal number of candidate r-itemsets from set of
items I = {i1, ..., 1, } such that any two itemsets intersect on > t items. Notice that
now we do not forbid itemsets to intersect on specific number of items; we force
them to intersect on > ¢ items.

Theorem 4.1. Let 2r —n < p,1 < t < r < n. Also, under the conditions
0<i<(n—1)/2 and i<k —t define set

Fi(n,r,t) = {F C R" : |F|=r,|F N {1,2, ...t + 2i}|> t + ). (4.1)

In other words, the set F;(n,r,t) is collection of r-itemsets in I, such that at
least t + i items is taken from {1,2,...,t 4+ 2i} C I,,. If for some w € N |J{0} holds

(r—t+1)(2+i_+11)gn<(r—t+1)(2+%), (4.2)

we have f(n,r,t) = |Fy(n,r,t)|.
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In the following paragraphs, we analyze conditions from the Theorem 4.1 and
formulate new theorems in order to make upper bounds on the number of candidate
itemsets in Apriori Multiple algorithm or any algorithm that relays on level-wise
mining approach.

Conditions from the previous theorem just ensure that sets F;(n,r,t) are defined
correctly. First, consider 2r — n < t. The opposite is 2r — n > t and in that
case we have that r-itemsets of {1,2,...,n} surely intersect on > ¢ elements which
implies f(n,r,t) = (?) This situation represents trivial case and it is not under
consideration. Second, consider ¢ < (n — t)/2 that can be easily transformed to
t + 2i < n. This condition ensures that {1,2,...,t + 2i} C {1,2,...,n}. Finally,
consider ¢ < r —t that is equivalent to t + ¢ < r. The previous condition says that
r-itemsets F' for which |F'N{1,2,...,t+ 2i}|>t + i is true, definitely exists.

We can now formulate theorem that estimates number of candidate itemsets
in Apriori Multiple algorithm from the previous section. Recall that in Apriori
Multiple we have longer iterations, which means that in £+ 1th candidate generation
phase algorithm generates the following multiple num sets of candidate itemsets:
Cit+1, Ci42, -, Crpmuitiple num- Notice that all these candidate itemsets intersect
on >t items. a

Figure 2 illustrates the idea. For fast implementation of Apriori Multiple algo-
rithm special tree structure is used. The tree is called TS-tree and it is based on
Ryman set enumeration tree [1]. Each level in the tree contains candidate itemsets;
the Oth level contains just the root that represents empty set, the first level contains
the set C of candidate 1-itemsets, the second level contains the set Cy of candidate
2-itemsets, the level t contains the set C; of candidate t-itemsets.

Theorem 4.2. Consider t + 1th candidate generation step in Apriori Multiple
algorithm. Let r = t + multiple _num. In Apriori Multiple algorithm it holds
|Cr|< Fo(n,r,t).

Proof. Notice that the set C) corresponds to the set of r-itemsets from I, with
property that any two itemsets from C, intersect on > t items. In other words
|Cy| can be estimated with |f(n,r,t)|. In order to prove our theorem we will apply
result from Theorem 4.1.

In order to find w, we need w to satisfy the condition w < r — t. If we allow
different, i.e. w > r — ¢ which is equivalent to w > r — ¢t + 1, we obtain

t—1 t—1 2r—2t+2+t-1
< (r—t+1)2+——) < (r—t+1)(2+—7—=) < (r—t+1 < 2r—t+1 < n.
n < (r—tHD)2+— =) < () (@4 — ) St ) —— < 2r—t+l <

So, condition w > r — t is not possible. We set w =0 < r —t = multiple _num
and check (4.2), i.e.

(4.3)
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Oth level, empty set

T

C,

This node represents a candidate t-itemset. #
All candidates generated in succeeding

iterations are settled in subtree of this node
and contains its corresponding itemset as L

“prefix” —\ Ct
-y o,
Ct+1

Sl N

Ct+multi|i|e/_r1m// / * . \N>

FIGURE 2. TS-Tree example

(T—t+1)(2+é:_—11)§n<(r—t+1)(2+%) (4.4)

The inequalities in formula (4.4) are equivalent to

(r—t+1)2+t—1)<n<(r—t+1)(2+ o0), (4.5)

1.e.

(r—t+1)(t+1) <n<oo. (4.6)
Finally, we have

(multiple_num + 1)(t+1) < n < oo. (4.7)

Condition (4.7) is satisfied for sufficiently large n as in our case, because n is
typically several thousands while multiple num and t are much less. It can be
shown that integer w that satisfies conditions from Theorem 4.1. is unique [20], so
we use w = 0, that implies f(n,r,t) = Fy(n,r,t).
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The set Fy(n,r,t) is actually set of all r-itemsets in I, such that any two of them
intersect on {i1, i, ...,%: }. It is also illustrated on figure 2. O

Notice that Fy(n,r,t) = ("~1). If we use estimation ("_}) ~ (1.611... + o(1))"
from [20][pp. 23] we have |C,|< (1.611... + o(1))™.

The previous theorem can be reformulated in order to estimate number of can-
didate itemsets in any Apriori based algorithm that applies level-wise mining ap-
proach. Recall that in the iteration ¢ Apriori based algorithms should generate set
C; consisting of candidate ¢-itemsets.

Theorem 4.3. Consider tth candidate generation step in Apriori algorithm. Num-
ber of candidate itemsetls in r =t + xth step, where x > 0 is |Cy|< Fy(n,r,t).

Proof. The estimation directly follows from the result of the Theorem 4.2 when
parameter multiple num is changed with z. (]

5. EXPERIMENTAL RESULTS

In this section experimental results are reported and discussed to demonstrate
usability of presented methods. We performed a series of experiments on datasets
that are known in the literature and used for similar analysis. These datasets are
freely available. Some statistical characteristics are presented in Figure 3.

Number of
Dataset transactions,

Number of

items, |I]

8124 119

T25110D10K 9976 999

C20D10K 10000 386
C73D10K 10000 2178

| _pumbs*  [REEEE 7116
| _connect  INTEEY 129
T2016D100K 99921 999

T1014D100K 100000 999
T10140D100K 100000 589

340183 468

FIGURE 3. Datasets characteristics

The task is to investigate how to reduce number of 1/O operations, i.e. number
of database passes. Time for I/O operations significantly contributes to whole exe-
cution time of Apriori like algorithms. It is illustrated in Figure 4. For example, for
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|__Dataset | minsup | __1/Oin% |
C20D10K 4000 15
C73D10K 9000 9

| pumbs®  JEENY 56
[ connect [V 43
T1014D100K 1000 64

T2016D100K 1000 26
T25110D10K 150 31
T40110D100K 1500 8

FIGURE 4. Percentage of 1/0 operations in the execution time of Apriori algorithm

the dataset T10I4D100K when minsup parameter is set to 1000 time for database
readings is about 64% of the whole execution time.

We implemented Apriori Multiple algorithm with the procedure for estimating
upper bounds for number of candidate itemsets. When the estimated number of
candidates that must be generated is less then the buffer size, algorithm generates
all of them and counts support in just one database reading. Results are presented
in Figure 5. In all test cases time for I/O operations is significantly reduced.

-m Time for /O in Time for 1/0 in Apriori
Dataset o -
Apriori (% Multiple
22 8
3

C20D10K 4000
C73D10K 9000

[ pumbs*  [EENTN) 65 50
1000 64 60
1000 26 10
150 31 11

FIGURE 5. Apriori Multiple with procedure for estimating a number of
candidate itemsets

6. FREQUENT ITEMSET MINING TASK IN VECTOR THEORY

In this section we give new mathematical formulation of frequent itemset min-
ing problem that is based on scalar product of two vectors. After that we make
estimation on the number of candidate itemsets in Apriori like algorithm as in the
previous section.

Scalar product is an algebraic operation that takes two equal-length vectors and
returns a single number. This operation can be defined as the sum of the products
of the corresponding entries of the two vectors of numbers. Scalar product of two
vectors © = (1, ..., x,) and y = (y1, ..., yn) is defined as:
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(2,9) = 21y1 + o + Tnyn (6.1)
In the following paragraphs we will illustrate the modification of the original
scalar product problem from [20|[pp. 26| in order to make it more familiar with
frequent itemset mining task.
Let n, ko, k1 be natural numbers that satisfy kg + k; = n. Consider the following
set of vectors

X =2({0,1}" ko, k1) =
={z=(x1,....,2pn) : 2; € {0,1},
li : x; = 0|= ko, |i: x; = 1|= k1}.
Obviously, the set X is correctly defined and

n!
|X|= Permutations(ko, k1) = (5T (6.2)

We fix t € NU{0} and want to estimate maximal size of any set F' C ¥ in which
there is no pair of vectors with scalar product t. Connection to the problem from
the previous section is obvious.

We can now define the candidate itemsets maximal number estimation problem
using scalar product theory. Let I,, = {i1,...,i,} be set of items. Any vector from
Y represents candidate k; = r-itemset because (0, 1)-vector (z1,z2,....,2,) € X
corresponds to the canidate r-itemset ¢ € C) in the way that x; = 1 if ¢; € ¢ and
xj = 01if i; ¢ ¢ and number of 1 is k; = r. At the same time vector product of
vectors from ¥ corresponds to size of intersection of any two candidate r-itemset
from C,.

In the next paragraph we formulate the theorem that is modification of the
corresponding theorem from [20][Theorem 9, pp. 28|.

Theorem 6.1. Let p be prime number, I = {iy,io,...,in} set of items and T :
{1,2,...,w} — P(I) transaction database on I. Additionally, let n = 2p, p = r.
Mazimal number of candidate itemsets |Cy| in rth iteration of level-wise mining
approach with property that any two candidate itemsets c;,c; € C, do have at least
one item in common is < Xy moyea (n:fl) (”T_n?l), where A = {(mq1,ms) : my, mg €
No,mq +mgo <n,mj; +2mg <p—1}.

The previous theorem provides estimation of the maximal number of candidate
itemsets that can be generated from one common item in rth iteration. That
common item can be any node from the first level in TS-tree as it is illustrated in
figure 2.

From [20] we will just take estimation Y(n,, ma)yea () ("r?) = (2.4628... +

o(1))"™ [20][pp. 32]. m)\ my



ON THE NUMBER OF CANDIDATES IN APRIORI LIKE
ALGORITHMS FOR MINIG FREQUENT ITEMSETS

Notice that in Theorem 5.1 we define the set F' C ¥ that contains vectors with
property kg = k1 = p = n/2 and there is no pair of orthonormal vectors (vectors
with scalar product 0).

7. CONCLUSION

In this paper we present new mathematical model for frequent itemset mining
problem. We use linear algebra method to estimate the size of candidate itemsets
in Apriori based algorithms that implement level-wise approach in mining frequent
itemsets.

Results from this paper can be effectively used in implementation of any level-
wise algorithm because it gives upper bounds on the number of candidate itemsets,
so we can know maximal memory requirements in advance.

As future work we plan to:

e much better estimation in Theorem 4.3

e incorporate minimal support parameter p in order to achieve better estima-
tion and define eventually dependency between p and measures m(n,r,p)
or f(n,r,t).
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