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The Appendix

In honor of the first Doctor of Mathematical Sciences Acad. Blagoj Popov, a
mathematician dedicated to differential equations, the idea of holding the "Day of Differential
Equations" was born, prompted by Prof. Ph.D. Boro Piperevski, Prof. Ph.D. Borko Ilievski,
and Prof. Ph.D. Lazo Dimov. Acad. Blagoj Popov presented his doctoral dissertation on
05.05.1952 in the field of differential equations. This is the main reason for holding the " Day
of Differential Equations" at the beginning of May.

This year on May 7th, the "Day of Differential Equations" was held for the sixth time
under the auspices of the Faculty of Computer Sciences at "Goce Delcev" University in Stip
and Dean Prof. Ph.D. Cveta Martinovska - Bande, organized by Prof. Ph.D. Biljana
Zlatanovska. The event was organized online via the platform Microsoft Teams and with the
selfless help and support of Prof. Ph.D. Natasa Stojkovik, Ass. Prof. Ph.D. Limonka Koceva
Lazarova, Ass. Prof. Ph.D. Marija Miteva, Ass. Prof. Ph.D. Mirjana Kocaleva, Ass. Prof. Ph.D.
Aleksandra Stojanova.

The participants of this event were:

1. Prof. Ph.D. Boro Piperevski, Prof. Ph.D. Sanja Atanasova and Stefan Boshkovski
(student) from the Faculty of Electrical Engineering and Information Technology
at Ss. Cyril and Methodius, University in Skopje;

2. Prof. Ph.D. Aleksa Malcheski from the Faculty of Mechanical engineering at Ss.
Cyril and Methodius, University in Skopje;

3.  Prof. Ph.D. Slagjana Brsakoska from the Faculty of Natural Sciences and
Mathematics at Ss. Cyril and Methodius, University in Skopje;

4.  Prof. Ph.D. Natasa Stojkovik, Prof. Ph.D. Martin Lukarevski, Ass. Prof. Ph.D.
Limonka Koceva Lazarova, Ass. Prof. Ph.D. Marija Miteva, Ass. Prof. Ph.D.
Mirjana Kocaleva, Ass. Prof. Ph.D. Aleksandra Stojanova, Ass. Prof. Ph.D.
Jasmina Buralieva Veta, Ass. Prof. Ph.D. Elena Karamazova, Prof. Ph.D. Biljana
Zlatanovska from the Faculty of Computer Sciences at "Goce Delcev" University
in Stip.

Acknowledgments to Prof. Ph.D. Boro Piperevski, Prof. Ph.D. Borko Ilievski and Prof.

Ph.D. Lazo Dimov for the wonderful idea and the successful realization of the event this year
and in previous years.

Acknowledgments to the Dean of the Faculty of Computer Sciences, Prof. Ph.D. Cveta
Martinovska - Bande for her overall support of the organization and implementation of the
"Day of Differential Equations".

The papers that emerged from the "Day of Differential Equations" are in the appendix
to this issue of BJAMI.
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DYNAMICAL ANALYSIS OF A THIRD-ORDER AND A
FOURTH-ORDER SHORTENED LORENZ SYSTEMS

BILJANA ZLATANOVSKA AND BORO PIPEREVSKI

Abstract. In [1], a Modified Lorenz system of the seventh-order is defined. In
[2], from the Modified Lorenz system, shortened Lorenz systems of lower order
are obtained. Between them, the third-order and fourth-order shortened Lorenz
systems with graphical presentations for their local behavior are found. In this
paper, the dynamical analysis of these systems according to [3] will be done via:
symmetry of the systems, dissipative of the systems, finding of the fixed point,
analysis of the behavior of the systems in a neighborhood of the fixed point and
defining of Lyapunov function, which gives us the conditions for the stability
and the asymptotical stability of the fixed point.

1. Introduction

The Lorenz system of differential equations is a part of the group of chaotic sys-
tems for which the explicit solutions are not known. In numerous works in math-
ematical literatures (as an example [4-14|), its behavior is analyzed. As a chaotic
system, the Lorenz system is most often analyzed via graphical visualizations (see
[9-14]).

The Lorenz system has a form

i =o(y—x)

y=x(r—2)-y

z=uxy— bz
with parameters o > 0,7 > 0,b > 0 and initial values o = z(0),y0 = (0),
z0 = z(0).

In [1], the Modified Lorenz system of the seventh-order with the initial values

ap = x(0),bo = y(0),co = 2(0), ¢p :(g) (0),p € {1,2,3,4} and the expressions
A=14+0+bB=o0(r—z)—1%C=ocxoyo, D = -0},

Date: November 18, 2021.
Keywords. Lorenz system, third-order shortened Lorenz systems, fourth-order shortened
Lorenz systems, Lyapunov function, dissipative of the system.
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& =o(y—x)
y=a(r—z)—y
5 4 3 2
D a0 P rB-an? —c- By Y (D - cb): + Db
is presented.
The third equation of the Modified Lorenz system is the fifth-order homogeneous
linear differential equation with constant coefficients and its characteristic equation
has the form

kS + (A+b)k* — (B — Ab)k® + (C — Bb)k* — (D — Cb)k — Db =0
with solutions ki = —b, ky/3/4/5 = k(A, B,C, D, b).
By using one real solution from the characteristic equation, the seventh-order
Modified Lorenz system can transform in a third-order subsystem of differential
equations

&=o(y—1)
y=x(r—2z)—y (1.1)
z2=kz

with initial values zo = x(0),y0 = y(0), 20 = 2(0).

By using two solutions from the solutions ky/9/3/4/5 of the characteristic equa-
tion, the seventh-order Modified Lorenz system can transform into fourth-order
subsystems of differential equations

& =o(y—z) t=o0(y—uz) t=o(y—x)
y=z(r—z)—y g=z(r—2)—y g=xz(r—2)—y
Z=u 3= S —u

u = (k1 + ko)u — k1koz o = 2ku — k%2 o= 20m — (o + B%)z
ki,ko € R ke R a,fER

which are marked as (1.27), (1.2”) and (1.2”) respectively with initial values z¢ =

m(o)ayo = y(0>,2,'0 = 2(0)721 = Z(O) = u<0)
The systems (1.27), (1.2”) and (1.2"”’) can be present in a system that has a form
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t=o0(y—x)

y=z(r—z)—vy

Z=u (1.2)
= Su— Pz

where

- for the system (1.27), the variables , S = kj + ko, P = k1ky are taken;
- for the system (1.27), the variables , S = 2k, P = k? are taken;

- for the system (1.27), the variables , S = 2a, P = o + 32 are taken.

Remark 1.1. The system (1.2) is a simpler form of record for systems (1.27),
(1.27) and (1.277) . Where necessary, each system will be considered separately.

The third-order and fourth-order subsystems (1.1) and (1.2) of the Modified
Lorenz system will be called the third-order and the fourth-order shortened Lorenz
systems respectively. In [1], for the Modified Lorenz system an explicit solution is
given, which can be applied as an explicit solution for the third-order and fourth-
order shortened Lorenz systems.

In this paper, we will give a simple dynamical analysis of these systems (1.1)
and (1.2) via: symmetry of the systems, dissipative of the systems and finding of
the fixed point according to [3]. The behavior of the systems in a neighborhood
of the fixed point will be evaluated via the sign of eigenvalues for the matrix of
systems (1.1) and (1.2) according to [15] and [16]. Finally, the Lyapunov function
will be defined, which gives us the conditions for the stability and the asymptotical
stability of the fixed point. In numerous works in mathematical literatures (as an
example [17], [18], [19]), this research is carried out.

2. Third-order shortened Lorenz system

In this part, the dynamical analysis of the third-order shortened Lorenz system
(1.1) will be reviewed.

Symmetry: It is easy to see that the system (1.1) has a symmetry by using the
following transformation:

('Ta Y, Z) — (_I7 -Y, Z)
If (x(t),y(t), z(t)) is a solution of the system (1.1) then (—x(t), —y(t), z(t)) is a
solution of the system (1.1).
Dissipativity: In this part it will be shown that the system (1.1) is dissipative,

i.e that trajectories remain in one compact set ellipsoid via the following Theorem
2.1.
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Theorem 2.1. The system (1.1) is dissipative for k < o + 1.

Proof. The system (1.1) has
diUV—%%—@—f—%——a—l—i—k——(a—i—l—k)<0(k<a—|—1)
O0r Oy 0z N

where V is the volume. The system (1.1) is dissipative with an exponent contraction
rate of

dV .
2V =— 1—
o Vv (0 + k)

V = Voe TR vy = v(0)

When the time t increases from 0 to infinity, then the volume V lowers, i.e.

Fixed point: By Theorem 2.2, the fixed point for the system (1.1) will be
obtained.

Theorem 2.2. The system (1.1) has an unique fized point O(0,0,0).
Proof. For the system (1.1), from

t=0 oly—z)=0
y=0cz(r—2z)—y=0
z=0 kz=20
the fixed point is obtained. O

In Theorem 2.3, the eigenvalues of the matrix of the system (1.1) are obtained.
They depend on the parameters of the system (1.1).

Theorem 2.3. The characteristic equation of the system (1.1) in a neighborhood
of the fized point O(0,0,0) has a form

A=K\ +(@+DA+o(1—=7)]=0 (2.1)

with solutions

—(o+ 1)+ /(e +1)2+4o(r—1)
2

Ao = A3 =k (2.2)

-0 0 0
Proof. For the system (1.1), the matrix A= | r—z -1 —=x

0 0 k

—o o 0
in the neighborhood of the fixed point is A = r —1 0

0 0 &k
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From det(A — AE) = 0 (the matrix E is the identity matrix of size 3) the char-
acteristic equation (2.1) is obtained. By solving the characteristic equation, the
solutions (2.2) as eigenvalues for the matrix of the system (1.1) are obtained. [

The behavior of the system (1.1) in a neighborhood of the fixed point depends
on the sign of eigenvalues (2.2) for the matrix of the system (1.1). For their sign,
we know that

—(oc+ 1)+ (c+1)2+4o(r—1) —(oc+1)++/(c —1)2+4or

Al/j9 = = R
1/2 2 2 <

and

Ny — —(J+1)—\/(0;1)2+40(7’—1) “0

for every r > 0.
In Theorem 2.4, the behavior of the system (1.1) in a neighborhood of the fixed
point O(0,0,0) will be given.

Theorem 2.4. In a neighborhood of the fized point O (0,0,0) for the system (1.1),
the dynamics of the attractor is:

- a fived point for 0 <r <1 and k < 0;

- a chaos C! forr > 1 and k = 0;

- a torus T? forr =1 and k = 0.

Proof. The sign of the eigenvalues (2.2) of the matrix of system (1.1) will be con-
sidered.

- For 0 < r < 1and k < 0, the sign of the eigenvalues (2.2) are A\; < 0, A2 <
0, A3 < 0. This implies a form (—, —, —), which shows that the attractor is a fixed
point.

- For r > 1 and k = 0, the sign of the eigenvalues (2.2) are \; > 0,2 < 0,A3 =0
. This implies a form (4,0, —), which shows that the attractor is a chaos C1.

- For r =1 and k = 0, the sign of the eigenvalues (2.2) are Ay = 0, A2 < 0,A\3 =0
. This implies a form (0,0, —), which shows that the attractor is a torus 72

0

The Lyapunov function: The stability of the dynamical system with the
Lyapunov function is proved. Therefore, its constructing is called the Lyapunov’s
second method for the stability of a dynamical system. For the stability of the sys-
tem (1.1) at the fixed point O(0, 0, 0) via the following Theorem 2.5, the Lyapunov
function is defined.

Theorem 2.5. Let O(0,0,0) be a fized point for the system (1.1). Let the Lyapunov
function as a continuously differentiable function for the system (1.1) be defined with
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the following function:

.TQ y2 22
L(zy,2) =5+ 5 +5

where L(z,y,2) > 0,V(z,y,z) # (0,0,0) and L(0,0,0) = 0. Then the fized point
0(0,0,0) is stable when 0 <r <1 and k < 0. If L(z,y,2) < 0,¥(z,y,2) # (0,0,0)
then the fized point O(0,0,0) is asymptotically stable for 0 <r <1 and k < 0.

Proof. The system (1.1) at the fixed point O(0,0,0) is stable when for a contin-
dL

uously differentiable function L : D — R, D C R? exactly is 4 < 0, where
L(z,y,z) > 0,¥(z,y,2) # (0,0,0) and L(0,0,0) = 0 . We differentiate the Lya-
punov function:

. dL T . . r+1—z r+1—z
L.y, 2) = -5 = —Hygtei = —lo——F— —

2
= 1=
= 2= ("
The inequality implies that r < 1+ 2z . As we observe in the neighborhood of the
fixed point O(0,0,0), then |z|< ¢,c € (0,¢) for given € > 0. This indicates that the

system (1.1) at the fixed point O(0,0,0) is stable when 0 < r < 1 and k < 0. When

L(z,y, z) < 0 then the fixed point O(0,0,0) is asymptotically stable for 0 < r < 1
and k < 0. [

)y =(=k)z* <0

3. Fourth-order shortened Lorenz system

In this part, the dynamical analysis of the fourth-order shortened Lorenz system
(1.2) will be reviewed.

Symmetry: It is easy to see that the system (1.2) has a symmetry by us-
ing the following transformations: (z,y,z,u) — (—x,—y,z,u) and (z,y,z,u) —
(—x,—y, —z,—u). If (z(t),y(t),z(t),u(t)) is a solution of the system (1.2) then
(—z(t), —y(t), z(t),u(t)), (—=(t), —y(t), —z(t), —u(t)) are solutions of the system
(1.2).

Dissipativity: In this part it will be shown that the system (1.2) is dissipative,
i.e the trajectories remain in one compact set ellipsoid via the following Theorem
3.1.

Theorem 3.1. The system (1.2) is dissipative S < o + 1.

Proof. The system (1.2) has
., O Oy 0z Ou
dlvv_8x+8y+az+0u

where V is the volume. The system (1.2) is dissipative with an exponent contraction
rate of

=—0-1+S=—(c+1-8)<0(S<o+1)

awv .
_— = = — 1 —
p 1% (o + S)

v = %6_(U+1_S)t, % — V(O)
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When the time t increases from 0 to infinity, then volume V lowers, i.e. lim;_,o V (t) =

0. U

From S < o + 1, we can review the dissipative for every a system (1.2), (1.2”)
and (1.2”") individually via Corollary 3.1.

Corollary 3.1. The systems (1.2°), (1.27) and (1.2”’°) are dissipative for k1 + ko <
c+1,k< UTH and o < UTH respectively.

Proof. In the proof of Theorem 3.1, we will take the appropriate change for S for
every system individually.
For the system (1.27),S = ky + ko and S < o + 1 we obtained k1 + ko < o + 1.
For the system (1.27), S = 2k and S < o + 1 we obtained k < ZIL.
For the system (1.2”7), S = 2a and S < ¢ + 1 we obtained v < ZH. O

3

Fixed point: By Theorem 3.2, the fixed point for the system (1.2) will be
obtained.

Theorem 3.2. The system (1.2) has an unique fized point O(0,0,0,0).

Proof. For the system (1.2), from

=0 oly—x)=0
y=0cz(r—2)—y=0
z2=0 u=20

=0 Su—Pz=0

the fixed point is obtained.
O

In Theorem 3.3, the eigenvalues of the matrix of systems (1.2) are obtained.
They depend on the parameters of the system (1.2).

Theorem 3.3. The characteristic equation of the system (1.2) in a neighborhood
of the fized point 0(0,0,0,0) has a form
AN —SA+P)N+(oc+DA+o(1—7)]=0 (3.1)

with solutions

—(o+ 1)+ /(e +1)2+4o(r—1) S++852 4P
Ao = 5 s A3/ = 5 (3.2)
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-0 0 0
r—z —1 —x

0

. 0
Proof. For the system (1.2), the matrix A = 0 0 0 1
S

0 0 -—-P

—0 0 0 O
. . o r —1 0 0
in the neighborhood of the fixed point is A = 0o 0 0 1

o 0 —-P S

From det(A — AE) = 0 (the matrix E is the identity matrix of size 4) the char-
acteristic equation (3.1) is obtained. By solving the characteristic equation, the
solutions (3.2) as eigenvalues for the matrix of the system (1.2) are obtained. [

By Theorem 3.3, eigenvalues for the matrix of the system (1.2) are obtained,
where the system (1.2) presents a simpler record for the systems (1.2%), (1.2”7) and
(1.2”77). For this goal in the following Corollary 3.2, the eigenvalues for the matrix
for every system individually will be given.

Corollary 3.2. The characteristic equation for the systems (1.2°), (1.2”) and
(1.27°) in a neighborhood of the fized point O (0, 0, 0, 0) have a form

A=k =k N+ (@c+ DA +o(l—7)] =0 (3.3)
A=EPN+(c+ DA+l —-7)]=0 (3.4)
(N =2aA+a® +BHN +(c+ DA +o(l—7)] =0 (3.5)

with solutions

—(o+ 1)+ /(0 +1)2+4o(r—1)

)\172 = 5 y A3 = k1, Ay = ko (36)
—(oc+ 1)+ +/(c+1)2+4o(r—1
)\172 — ( ) \/( 2 ) ( )7/\3/4 — kf (37)
o+ 1)t /(c+1)2+4o(r—1 ,
Al = ( )£V 5 ) ( ),)\3/4 =a+Bi (3.8)
respectively.

Proof. By using S = ky+ko, P = k1ko, k1, k2 € R for the system (1.2") S =2k, P =
k2, k € R for the system (1.2”) and S = 2, P = o? + 3%, , 8 € R for the system
(1.27") in the characteristic equation (3.1) from Theorem 3.3, the characteristic
equations (3.3), (3.4) and (3.5) are obtained. By their solving, their solutions (3.6),
(3.7) and (3.8) as eigenvalues for the matrix of systems (1.2’), (1.2") and (1.2")
respectively are obtained. 0
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The same as for the system (1.1), the behavior of the system (1.2) in a neigh-
borhood of the fixed point depends on the sign of the eigenvalues (3.6), (3.7), and
(3.8) for the matrix of systems (1.2°), (1.2”) and (1.277) respectively. Because the
eigenvalues A o are the same as for the system (1.1), we already saw that A\, € R
and Ao < 0 for every r > 0. In Theorem 3.4, the behavior of the systems (1.2),
(1.27) and (1.2”’) in a neighborhood of the fixed point O(0,0,0,0) will be given.

Theorem 3.4. In a neighborhood of the fized point O(0,0,0,0) for the systems
(1.2°), (1.27) and (1.27°), the dynamics of the attractor is:

- a fived point if 0 <1 < 1 and k5 <0 for the system (1.2°); if 0 <r <1 and
k < 0 for the system (1.27); if 0 <r <1 and o < 0 for the system (1.27);

- a hypertorus T3 if r =1 and k12 = 0 for the system (1.2°); ifr =1 and k =0
for the system (1.27);

- a chaos on T3 if r = 1, k1 = 0(ka = 0) and ko > 0(ks > 0) orr > 1 and
k12 = 0 for the system (1.2°); if r > 1 and k = 0 for the system (1.27);

- a hyperchaos C? if r > 1,k; = 0(ky = 0) and ky > 0(ka > 0) for the system
(1.2°); if r =1 and k > 0 for the system (1.27); if r =1 and o > 0 for the system
(1.27).

Proof. The sign of the eigenvalues (3.6), (3.7) and (3.8) of the matrix of systems
(1.27), (1.27) and (1.2"’) respectively will be considered.

- The system (1.2"): For 0 < r < 1 and k5 < 0, the sign of the eigenvalues (3.6)
are A\ < 0,2 < 0,A\3 < 0,\4 < 0. This implies a form (—, —, —, —), which shows
that the attractor is a fixed point.

The system (1.27): For 0 < r < 1 and k < 0, the sign of the eigenvalues (3.7) are
A1 < 0,A2 < 0,)A3/4 < 0. This implies a form (—, —,—, —), which shows that the
attractor is a fixed point.

The system (1.277): For 0 < r < 1 and « < 0, the sign of the eigenvalues (3.8)
are A1 < 0,A2 < 0, Re)g;y < 0. This implies a form (—, —,—, —), which shows
that the attractor is a fixed point.

- The system (1.2): For r = 1 and k;/, = 0, the signs of the eigenvalues (3.6)
are A1 = 0,\a = —(0 +1) < 0,)3,4 = 0. This implies a form (0, 0,0, —), which
shows that the attractor is a hypertorus 73,

The system (1.2”): For r = 1,k; = 0(k2 = 0) and ky > 0(k2 > 0) or r > 1 and
k12 = 0, the signs of the eigenvalues (3.7) are Ay = 0, 3 = —(0+1) <0,A3/4 = 0.
This implies a form (0,0, 0, —), which shows that the attractor is a hypertorus7®.

- The system (1.2): For r = 1 and ky/p = 0, the signs of the eigenvalues (3.6)
are \] =0, \a = —(0+1) <0,A3 =0(As =0), s > 0(A3 > 0) This implies a form
(+,0,0, —), which shows that the attractor is a chaos on T3,

The system (1.2”): For r > 1 and k = 0, the signs of the eigenvalues (3.7) are
A1 > 0,A2 < 0,A3/4 = 0. This implies a form (0,0,0, —), which shows that the
attractor is a chaos on T3,
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- The system (1.2°): For r > 1,k; = 0(k2 = 0) and k2 > 0(k2 > 0), the signs
of the eigenvalues (3.6) are A\; > 0,2 < 0,A3 = 0(A4 = 0), Ay > 0(A3 > 0) This
implies a form (+, 4,0, —), which shows that the attractor is a hyperchaos C2.

The system (1.27): For r = 1 and k > 0, the signs of the eigenvalues (3.7) are
M =0 =—(c+1) <0,A3 =0(A\s =0),\y > 0(A3 > 0). This implies a form
(+,4,0,—), which shows that the attractor is a hyperchaos C2.

The system (1.277): For r = 1 and « > 0, the signs of the eigenvalues (3.8) are
A =0,M = —(0+1) <0,Re)3;y > 0. This implies a form (+,+,0,—), which
shows that the attractor is a hyperchaos C?.

0

The Lyapunov function: The stability of the dynamical system with the
Lyapunov function is proved. Therefore, its constructing is called the Lyapunov’s
second method for the stability of a dynamical system. For the stability of the
system (1.2) at the fixed point O(0,0,0,0) via the following Theorem 3.5, the
Lyapunov function is defined.

Theorem 3.5. Let O(0,0,0) be a fized point for the system (1.1). Let the Lyapunov
function as a continuously differentiable function for the system (1.1) be defined with
the following function

2 2 2 2
x vtz u
L(x,y,z,u):%+?+7+ﬁ (3.9)

where P > 0, L(x,y,z,u) > 0,V(z,y, z,u) # (0,0,0,0) and L(0,0,0,0) = 0. Then
the fized point O(0,0,0,0) is stable when 0 < r < 1 and S < 0. If L(.z:,y,z,u) <
0,¥(z,y, z,u) # (0,0,0,0) then the fixred point O(0,0,0,0) is asymptotically stable
forO0<r<1andS <0.

Proof. The system (1.2) at the fixed point O(0,0,0,0) is stable when for a con-
tinuously differentiable function L : D — R, D C R* exactly is ‘fi—% < 0, where
L(z,y,z,u) > 0,V(x,y,2z,u) # (0,0,0,0) and L(0,0,0,0) = 0 . We differentiate
the Lyapunov function:

. dL i J S
L(x,y,z,u) = i ? +yy + 22+ u_]g =z(y—x) +ylz(r—=z) —y| + §u2
By using mathematical transformations and for P > 0,0 > 0,r > 0, we obtained

by zu) =l = T R - (LR (- <0
The inequality implies that » < 1 + z and —%?0 i.e. for P > 0 and from —§ >
0 = S < 0. As we observe in the neighborhood of the fixed point O(0,0,0), then
|z|< ¢, c € (0,¢) for the given € > 0. This indicates that the system (1.2) at the fixed
point O(0,0,0,0) is stable when 0 < r < 1 and S < 0. When L(z,y, z,u) < 0 then
the fixed point O(0,0,0,0) is asymptotically stable for 0 < r < 1 and S < 0. O
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By Theorem 3.5 for the system (1.2), the Lyapunov function is defined. Because
the system (1.2) presents a simpler record for systems (1.2), (1.2”) and (1.277), in
the following Corollary 3.3 for the same Lyapunov function (3.9), the conditions for
asymptotically stable of the fixed point O(0,0,0,0) for every system individually

will be given.

Theorem 3.6. For the same Lyapunov function (3.9) where S = ki + ko, P =
kiks,ki,ks € R , for the system (1.2°), S = 2k, P = k? k € R for the system
(1.27) and S = 20, P = o® + %, , 8 € R for the system (1.27°), the fived point
0(0,0,0,0) is stable when 0 <r <1 and

- k1, ko <O for the system (1.2°);

- k <0 for the system (1.27);

-« < 0 for the system (1.27°). If L(x,y, z,u) < 0,Y(x,y,z,u) # (0,0,0,0) then
the fized point O(0,0,0,0) is asymptotically stable for 0 <r <1 and

- k1, ko < O for the system (1.2°);

- k <0 for the system (1.27);

- a < 0 for the system (1.27).

Proof. By using S = ki + ko, P = ki1ka,k1,ke € R for the system (1.27), § =
2k, P = k2, k € R for the system (1.2”) and S = 2a, P = o? + %, , f € R for the
system (1.2""), the proof is identical with the proof of Theorem 3.5. O

4. CONCLUSION

In this paper, the basic properties of the dynamical analysis for the third-order
and the fourth-order shortened Lorenz systems as a symmetry of the systems, a
dissipative of the systems, finding of the fixed point, analysis of the behavior of
the systems in a neighborhood of the fixed point, and the defining of a Lyapunov
function were given. This paper is a good base for the next research as numeri-
cal calculations and the graphical interpretations of the spectra of the Lyapunov
exponents for the concrete values of the parameters of the systems, calculation of
the largest Lyapunov exponent, 2D and 3D graphical presentations of the systems
with an accent of the system (1.2”7). The graphical interpretations of a hypertorus
T3, a hyperchaos C? and chaos on T2 for the concrete values for the parameters
of the fourth-order shortened Lorenz systems will be interesting. But, these things
will stay for future studies.
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