
BALKAN JOURNAL
OF APPLIED MATHEMATICS

AND INFORMATICS

(BJAMI)

GOCE DELCEV UNIVERSITY - STIP
FACULTY OF COMPUTER SCIENCE

ISSN 2545-4803 on line

YEAR 2022 VOLUME V, Number 2

VOLUME V, Number 2

Managing editor
Mirjana Kocaleva Ph.D.
Zoran Zlatev Ph.D.

Editor in chief
Biljana Zlatanovska Ph.D.

Lectoure
Snezana Kirova

Technical editor
Sanja Gacov

Address of the editorial office
Goce Delcev University – Stip
Faculty of philology
Krste Misirkov 10-A
PO box 201, 2000 Štip,
Republic of North Macedonia

AIMS AND SCOPE:
BJAMI publishes original research articles in the areas of applied mathematics and informatics.

Topics:
1. Computer science;
2. Computer and software engineering;
3. Information technology;
4. Computer security;
5. Electrical engineering;
6. Telecommunication;
7. Mathematics and its applications;
8. Articles of interdisciplinary of computer and information sciences with education,

economics, environmental, health, and engineering.

BALKAN JOURNAL
OF APPLIED MATHEMATICS AND INFORMATICS (BJAMI), Vol 5

ISSN 2545-4803 on line
Vol. 5, No. 2, Year 2022

EDITORIAL BOARD

Adelina Plamenova Aleksieva-Petrova, Technical University – Sofia,
Faculty of Computer Systems and Control, Sofia, Bulgaria

Lyudmila Stoyanova, Technical University - Sofia , Faculty of computer systems and control,
Department – Programming and computer technologies, Bulgaria

Zlatko Georgiev Varbanov, Department of Mathematics and Informatics,
Veliko Tarnovo University, Bulgaria

Snezana Scepanovic, Faculty for Information Technology,
University “Mediterranean”, Podgorica, Montenegro

 Daniela Veleva Minkovska, Faculty of Computer Systems and Technologies,
Technical University, Sofia, Bulgaria

 Stefka Hristova Bouyuklieva, Department of Algebra and Geometry,
Faculty of Mathematics and Informatics, Veliko Tarnovo University, Bulgaria

Vesselin Velichkov, University of Luxembourg, Faculty of Sciences,
Technology and Communication (FSTC), Luxembourg

Isabel Maria Baltazar Simões de Carvalho, Instituto Superior Técnico,
Technical University of Lisbon, Portugal

Predrag S. Stanimirović, University of Niš, Faculty of Sciences and Mathematics,
Department of Mathematics and Informatics, Niš, Serbia

Shcherbacov Victor, Institute of Mathematics and Computer Science,
Academy of Sciences of Moldova, Moldova

Pedro Ricardo Morais Inácio, Department of Computer Science,
Universidade da Beira Interior, Portugal

Georgi Tuparov, Technical University of Sofia Bulgaria
Martin Lukarevski, Faculty of Computer Science, UGD, Republic of North Macedonia

Ivanka Georgieva, South-West University, Blagoevgrad, Bulgaria
Georgi Stojanov, Computer Science, Mathematics, and Environmental Science Department

The American University of Paris, France
Iliya Guerguiev Bouyukliev, Institute of Mathematics and Informatics,

Bulgarian Academy of Sciences, Bulgaria
 Riste Škrekovski, FAMNIT, University of Primorska, Koper, Slovenia
 Stela Zhelezova, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria
 Katerina Taskova, Computational Biology and Data Mining Group,

Faculty of Biology, Johannes Gutenberg-Universität Mainz (JGU), Mainz, Germany.
 Dragana Glušac, Tehnical Faculty “Mihajlo Pupin”, Zrenjanin, Serbia
 Cveta Martinovska-Bande, Faculty of Computer Science, UGD, Republic of North Macedonia
 Blagoj Delipetrov, European Commission Joint Research Centre, Italy
 Zoran Zdravev, Faculty of Computer Science, UGD, Republic of North Macedonia
 Aleksandra Mileva, Faculty of Computer Science, UGD, Republic of North Macedonia
 Igor Stojanovik, Faculty of Computer Science, UGD, Republic of North Macedonia
 Saso Koceski, Faculty of Computer Science, UGD, Republic of North Macedonia
 Natasa Koceska, Faculty of Computer Science, UGD, Republic of North Macedonia
 Aleksandar Krstev, Faculty of Computer Science, UGD, Republic of North Macedonia
 Biljana Zlatanovska, Faculty of Computer Science, UGD, Republic of North Macedonia
 Natasa Stojkovik, Faculty of Computer Science, UGD, Republic of North Macedonia
 Done Stojanov, Faculty of Computer Science, UGD, Republic of North Macedonia
 Limonka Koceva Lazarova, Faculty of Computer Science, UGD, Republic of North Macedonia
 Tatjana Atanasova Pacemska, Faculty of Computer Science, UGD, Republic of North Macedonia

5

C O N T E N T

Sara Aneva, Marija Sterjova and Saso Gelev
SCADA SYSTEM SIMULATION FOR A PHOTOVOLTAIC ROOFTOP SYSTEM 7

Elena Karamazova Gelova and Mirjana Kocaleva Vitanova
SOLVING TASKS FROM THE TOPIC PLANE EQUATION USING GEOGEBRA 17

Sadri Alija, Alaa Khalaf Hamoud and Fisnik Morina
PREDICTING TEXTBOOK MEDIA SELECTION USING
DECISION TREE ALGORITHMS ...27

Goce Stefanov And Biljana Citkuseva Dimitrovska
DESIGN OF TFT SWITCH GRID ..35

Angela Tockova, Zoran Zlatev, Saso Koceski
GRAPE LEAVES DISEASE RECOGNITION USING AMAZON SAGE MAKER 45

Anastasija Samardziska and Cveta Martinovska Bande
NETWORK INTRUSION DETECTION BASED ON CLASIFICATION 57

Aleksandra Risteska-Kamcheski and Vlado Gicev
ANALYSIS OF THE DEFORMATION DISTRIBUTION IN THE SYSTEM
DEPENDING ON THE YIELD DEFORMATION ..69

Aleksandra Risteska-Kamcheski and Vlado Gicev
DEPENDENCE OF ENERGY ENTERING A BUILDING FROM THE
INCIDENT ANGLE, THE LEVEL OF NONLINEARITY IN SOIL, AND
THE FOUNDATION STIFFNESS ..81

Sijce Miovska, Aleksandar Krstev, Dejan Krstev, Sasko Dimitrov
BUSINESS PROCESS MODELING, SYSTEM ENGINEERING AND THEIR
APPROACH TO THEIR APPLICATION IN INDUSTRIAL CAPACITY 89

Sasko S. Dimitrov, Dejan Krstev, Aleksandar Krstev
MATRIX METHOD FOR LARGE SCALE SYSTEMS ANALYSIS ..99

Vasko Gerasimovski and Vlatko Chingoski
SMALL MODULAR NUCLEAR REACTORS – NEW PERSPECTIVES
IN ENERGY TRANSITION ...107

Vesna Dimitrievska Ristovska and Petar Sekuloski
TOPOLOGICAL DATA ANALYSIS AS A TOOL FOR THE
CLASSIFICATION OF DIGITAL IMAGES ..117

Sasko Milev And Darko Tasevski and Blagoja Nestorovski
STRESS DISTRIBUTION ALONG THE CROSS SECTION OF THE
NARROWEST PART OF THE DIAPHRAGM SPRING FINGERS ...127

6

57

NETWORK INTRUSION DETECTION BASED ON CLASIFICATION

ANASTASIJA SAMARDZISKA AND CVETA MARTINOVSKA BANDE

Abstract. Network security is a serious concern for information technology users. Intrusion detection
systems can detect malicious traffic and suspicious activity looking for signatures of known attacks.
This paper describes a network intrusion detection system based on the deep learning approach. The
system uses the ability of the neural network to detect attacks for which the system was not explicitly
trained. The proposed solution can effectively identify network attacks with the accuracy of 98%
tested on the NSL_KDD dataset. The paper analyzes the impact of transformation functions applied
to the features of the dataset.

1. Introduction

Intrusion detection systems (IDSs) and intrusion prevention systems (IPSs) are important for
maintaining network security. IDSs analyze network traffic to identify attacks, attempts to gather
information about the network or systems, or other malicious activities. IDSs are passive
components. If they detect anomalies or deviations from normal activity, they notify the network
administrator, for example, by sending an email. Then it is up to the administrator to examine the
data and decide whether the network is under attack and, if so, decide on how to proceed. IPSs are
active components. They can intercept the direct line of communication between the source and
destination and automatically act on detected anomalies. In this sense, IPSs are an improvement to
passive IDSs. There are different kinds of IDSs/IPSs and they can be divided into different
categories depending either on their location in the network, or the data used to detect attempted
breaches. This paper focuses on Network intrusion detection systems (NIDSs). NIDSs examine
each packet traversing the network looking for indications of malicious activities in both, the packet
header and content payload. NIDSs monitor traffic from the router to the host [1][2]. One way to
implement NIDS is to use signatures. NIDS have to maintain a database of known malicious
patterns referred to as signatures. Monitored traffic is compared to the signatures in the database.
Regular updates of existing attack signatures are important to provide network protection. But this
approach cannot detect novel attacks, the so called zero-day attacks. Several researchers propose
using machine learning techniques to overcome this drawback of the signature-based NIDSs and to
enhance their security [3]. In essence, this approach suggests that if a machine learning model is
created that can learn to generalize the characteristics common to attacks, this model should also be
able to recognize novel attacks that were not explicitly included in the training dataset. This paper
proposes a deep learning approach for NIDS capable to differentiate between normal network
connections and malicious network connections. NSL-KDD (Network Security Laboratory-
Knowledge Discovery and Data Mining) dataset [4] is used to train the model. Each record in NSL-
KDD dataset refers to a particular connection between a source and a destination. The neural
network learns to identify a malicious network connection based on the features in the NSL-KDD
dataset. The model examines the feature values in the NSL-KDD dataset and looks for indications
of malicious activity. If the connection shows characteristics of malicious network traffic, the model
returns a number in the interval [0.0, 1.0] denoting how likely a connection is to be malicious. The
probabilities that fall below the decision boundary are classified as normal traffic and the
probabilities that are above the decision boundary are classified as malicious traffic. The research
on using deep learning methods for NIDS is in an early phase and is actively being investigated.
The goal of this work is to train a model that will learn to recognize most of the attacks that were
included in the training dataset, but also to test how well the model generalizes common
characteristics of malicious connections and therefore how well the model performs in recognizing
variations of these attacks.

Balkan Journal of Applied Mathematics and Informatics
Volume V Number 2 Year 2022

Online ISSN 2545-4803
UDC: 004.72.056.5:004.492.3

58

2. Related work

Over the last decade, many machine learning and deep learning solutions have been proposed
using different methodologies, datasets, and evaluation metrics, to make NIDSs efficient in
detecting malicious attacks. Despite the research efforts to preserve the integrity and confidentiality
of the network traffic, NIDSs still face challenges in improving detection accuracy, reducing false
alarm rates, and detecting novel intrusions. A recent survey of NIDSs is presented in [3]. In Table
1 we compare the model proposed in this paper with several recent approaches to network intrusion
detection through traffic classification. The models that we analyze implement deep learning and
classic machine learning techniques and use different preprocessing schemes of data delivered to
the learning algorithm. Models are created and tested on several available datasets. Both binary
and multiclass approaches are proposed. Some models also address class imbalance through
sampling or perform feature selection. In [5] authors compare the performance of different DL
neural network architectures and conventional ML based models using standardized classification
quality metrics: receiver operating characteristics (ROC), area under RoC curve, accuracy,
precision-recall curve, and mean average precision. The types of deep neural networks that were
compared in this study are: convolutional neural network (CNN), neural network with Long Short-
Term Memory (LSTM) layers, and different autoencoders (sparse, denoising, contractive and
convolutional). These deep neural network models were trained and tested on the NSL-KDD
dataset. All 41 features of the NSL-KDD dataset were used to train the models. Vinayakumar et al.
[6] used the KDDCup99 dataset to train a deep neural network (DNN) for classification of network
traffic and achieved an accuracy of 92.7%. The resulting model was then applied to the NSL-KDD,
UNSW-NB15, Kyoto, WSN-DS and CICIDS2017 datasets. The model trained on the KDDCup99
dataset achieved an accuracy of 93.1% in binary classification when applied to the CICIDS2017
dataset. However, the model performed considerably worse on the NSL-KDD and UNSW-NB15
datasets, achieving an accuracy of 78.9% and 76.1% respectively.

In [5] the authors consider different encoding schemes for categorical features and their impact
on the accuracy using the NSL-KDD dataset and theDecision Tree classifier. They analyze several
new features created by the encoding algorithm, the training time, and the accuracy of the model,
and decide to use LeaveOneOutEncoder for the categorical features in the NSL-KDD dataset. A
similar study is described in [7] using the Random Forest classifier. Cao et al. [8] used the
LabelEncoder from the scikit-learn library to encode the categorical features. Furthermore, the
authors also applied sampling and feature selection in the preprocessing stage. They used a hybrid
sampling method to reduce the class size disparity. The majority class is undersampled with the
Repeated Edited Nearest Neighbours (RENN) algorithm and the minority class is oversampled with
the Adaptive Synthetic Sampling (ADASYN) algorithm. The DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) algorithm is used to remove the noise from the new sampled
datasets, and then the sampled datasets are merged to obtain the balanced dataset. To perform
feature selection, the Random Forest algorithm is used to calculate the contribution of features, and
the Pearson correlation analysis is performed to calculate the correlation between features. The
model achieves an accuracy of 99.69% for multiclass classification on the NSL-KDD dataset. The
model was also tested using the UNSW-NB15 dataset and the CICIDS2017 dataset and achieved
an accuracy of 86.25% and 99.65%, respectively. In [9] the authors present an Adaboost based
binary network traffic classifier. The Decision Tree classifier is used as a primary classifier and the
Adaboost algorithm is used to perform the weight updates. The UNSW-NB15 dataset is adopted to
train and test the model.

Anastasija Samardziska and Cveta Martinovska Bande

59

NETWORK INTRUSION DETECTION BASED ON CLASIFICATION

Table 1. Comparison of several related works listed in the reference section [5]-[10]
 [4] [5] [6] [7] [8] [9]

D
at

as
et

NSL-KDD KDDCup99 NSL-KDD
UNSW-NB15

NSL-KDD
CICIDS2017

UNSW-ND15 NSL-KDD

M
et

ho
ds

Autoencoder (AE)
Contractive AE (C_AE)

Sparse AE (S_AE)
Denoising AE (D_AE)

LSTM
CNN

DNN DCNN CNN-GRU

ANN
SVM

AdaBoost based on
decision trees

ANN that
combines BLSTM,

multiple convolutional
layers and attention

mechanism

Ev
al

ua
tio

n
M

et
ric

s

ROC Curve
Area under RoC curve
precision-recall Curve

mean average precision
accuracy

accuracy
precision
F1-Score

True Positive Rate
(=Recall)

False Positive Rate

ROC Curve
Area under RoC curve
precision-recall curve

mean average
precision
accuracy

accuracy
precision

recall
F1-Score

accuracy
precision

recall
F1-score

accuracy confusion matrix

D
at

a
Pr

ep
ro

ce
ss

in
g LeaveOneOut

Encoder no description in article LeaveOneOutEncoder LabelEncoder LabelEncoder One-hot encoding

Remove mean and scale
according to IQR

(Interquartile Range)
L2 Normalization Remove median and

scale according to IQR min-max normalization no description in article min-max normalization

A
cc

ur
ac

y
(%

)

AE 81

BIN – 92.7
MC – 92.5 85.22

UNSW-NB15 86.25 ANN 89.54

BIN – 82.56
MC – 84.25

C_AE 81

S_AE 79 NSL-
KDD 99.69 SVM 94.7

D_AE 77

LSTM 89
CICIDS2017 99.65 Ada

boost 99.3
CNN 85

B
IN

 \
M

C

BIN

model1 BIN

MC MC BIN BIN and MC model2 MC

model3 MC

FS

No Yes on model3 (MC) No Yes Yes No

So
ftw

ar
e

Keras with Theano
backend

Keras with Tensorflow
backend

Keras with Tensorflow
backend

Keras with
Tensorflow backend

Keras with Tensorflow
backend

Keras with Tensorflow
backend

Feature selection is performed in the data preprocessing stage. The Adaboost based model
achieved higher accuracy than the artificial neural network and the Support Vector Machine
classifier that are used for comparison. The authors in [10] combine a Bidirectional Long Short-
Term Memory layer, multiple convolutional layers, and an attention mechanism to create the BAT-
MC model. BAT-MC is trained using the NSL-KDD dataset and has better performances compared
to classic machine learning techniques in both binary and multiclass classification.

3. Working environment

The prototype of the intrusion detection system was developed and tested using several Python
libraries. The Anaconda3 Individual Edition was installed and used to create the Python virtual
environment mlearn where all the necessary libraries were installed [11]. The Tensorflow open-
source machine learning platform is installed to provide effective execution of low-level tensor
operations and computing of the gradient of arbitrary differentiable expressions. The Кeras library
is integrated in TensorFlow. Keras is a machine learning library that allows the creation of deep
learning algorithms. The Keras API is very efficient, the core structures are layers and models which
are the building blocks used to create neural networks that take advantage of the low-level
computational capabilities of tensorflow [12][13]. The scikit-learn library is an open-source
machine learning library used for preprocessing the data before it being forwarded to a neural
network [14]. Matplotlib [15] and pandas [16] are used as auxiliary libraries for drawing histograms
and data analysis, respectively. The Jupyter Notebook [17] web application is used to create files
that contain Python scripts and interpretation results, LaTeX equations, HTML markup and images.

60

4. Description of the NSL-KDD dataset

The dataset that is used to train and test the model is the NSL-KDD dataset. NSL-KDD is created
by examining and improving the 1999 KDD Cup dataset [18]. The data in the 1999 KDD Cup
dataset is used in the International Knowledge Discovery and Data Mining Tools Competition that
was held alongside the International Conference on Knowledge Discovery and Data Mining in
1999, the so-called KDD-99. The goal of the competition was to design a machine learning model
that will be able to differentiate between malicious network connections and normal network traffic.
The data in the 1999 KDD Cup dataset was generated from network traffic collected and stored in
raw tcpdump format for the DARPA Intrusion Detection Evaluation Program by the MIT Lincoln
Laboratory [19]. The generated traffic was preprocessed, and features that convey useful
information were extracted. Based on these features, a machine learning model can learn to classify
a network connection as either normal traffic or as an attack. The raw tcpdump data was used to
create CSV data where each feature was placed in a separate column. For the purposes of the dataset,
the term “network connection” was defined as a sequence of TCP packets exchanged between two
hosts, starting and ending at well-defined times with well-defined application level protocols. Then
to each record a label was added, either “normal” or an attack, with exactly one particular attack
type. The original 1999 KDD Cup dataset was widely used in intrusion detection research, but
several drawbacks of this dataset were pointed out [20]. Consequently, [4] described and published
a new dataset, NSL-KDD that addressed some of the drawbacks of the 1999 KDD Cup dataset. The
NSL-KDD dataset was created from the 1999 KDD Cup dataset by removing all duplicate records
from the training and testing datasets. Afterwards, a subset of records that showed better statistical
distribution was chosen from the remaining unique records. The resulting NSL-KDD dataset has a
smaller number of records compared to the 1999 KDD Cup dataset. NSL-KDD is already split into
a training and testing dataset. The dataset consists of two files KDDTrain+.txt and KDDTest+.txt.
The KDDTrain+.txt file has 125,973 records and the KDDTest+.txt file has 22.544 records. Each
record is about 100 bytes in one line of the CSV file. It is important to notice that these two files
have a different statistical distribution of attack labels: the KDDTest+.txt dataset includes types of
attacks that were not introduced in KDDTrain+.txt. The dataset was designed in this way to allow
researchers to test how well a trained classifier generalized the training data. The hypothesis is that
new network attacks very often show similarities to known attacks. This means that a classifier
could successfully learn some generalizable properties of several attack categories that allow it to
correctly classify attack types that were not introduced during the training process.

Figure 1. KDDTrain+.txt class distribution Figure 2. Example of one-hot-encoding

The attack types included in the dataset are listed in [21]. The attacks can be classified in one of

five classes: benign, dos, r2l, u2r, and probe. One important observation is that NSL-KDD shows a
notable imbalance between the numbers of records in each of the classes [1]. Figure 1 shows the
distribution of records in the KDDTrain++.txt file across the five classes. So, for example, the dos
class includes three times more samples than the probe class. Instead of dealing with multiclass
data, the task of the network traffic classification was approached as a binary classification problem:
all network traffic must be attributed to exactly one of two categories – either normal or malicious
traffic, as this is the approach taken by the majority of intrusion detection systems. After mapping
each record in the training and testing datasets as either “normal” or as an “attack”, the number of
samples in these two classes is comparable. The last value in each CSV record is the ‘success_pred’

Anastasija Samardziska and Cveta Martinovska Bande

61

column. The ‘success_pred’ column was excluded from the analysis. This feature is not a property
of a connection and is added to the original 1999 KDD Cup dataset by [4] as part of the evaluation
procedure. After that, it is used to create the improved NSL-KDD dataset. The column ‘attack_type’
is the label of the category to which the sample belongs. The rest of the features in NSL-KDD can
be divided into three groups: basic, content and traffic features [4]. The features in the first group
(basic) contain aggregated packet header data from packets associated with the same connection.
Although the packet header data provides valuable information that should be considered when
analyzing network traffic, it is not sufficient to identify all types of attacks that are included in NSL-
KDD [22]. The attacks in the categories ‘r2l’ and ‘u2r’ can only be identified by inspecting the data
portion of network packets. For instance, attacks such as buffer and heap overflow and SQL
injection, most commonly occur over one legitimate network connection and can only be detected
by examining the content of network packets. To detect such content-based attacks, the analysis
must also consider:
• application level protocols (e.g., Telnet, HTTP, FTP, or SMTP)
• failed login attempts
• successful login attempts
• attempts to gain root access (check if the command su root was issued)
• whether root access was granted
• attempts to create files, etc.
Attacks in the ‘dos’ and ‘probe’ categories involve many connections to the same host/hosts over

a very short period of time. To detect these types of attacks, the data about more than one network
connection must be considered. The data in the “time-based traffic features” group considers
connections from the last 2 seconds. However, there are slow probing attacks that can scan hosts
(or ports) over a time interval longer than 2 seconds, for example every minute. To get a model
capable of identifying slow probing attacks as well, values in the “time-based traffic features” were
recalculated, this time based on a fixed number of connections instead of a fixed time interval and
“connection-based traffic features” were created [4][1]. Table 2 lists all 41 features in the NSL-
KDD dataset and shows which features belong to groups: basic, content, and traffic. The distinction
between “same host” and “same service” features is also represented in the table. According to the
authors of [23], a disadvantage of the NSL-KDD dataset is that this dataset has been created two
decades ago and therefore does not represent a realistic situation of recently encountered network
and application-level attacks. However, the dataset continues to be used in research, for models
training and for comparison. There is a huge amount of previous work incorporated in the NSL-
KDD dataset that can be used for learning and comparison. Several new datasets for network
intrusion detection have been proposed, such as the UNSW-NB15 dataset [24][25] and the
CICIDS2017 dataset [23]. Different types of network security attacks are evenly distributed
between the UNSW-NB15 training and testing sets. All attack types included in the UNSW-NB15
test set have previously been introduced in the UNSW-NB15 train set. The NSL-KDD and
CICIDS2017 datasets are created by capturing both normal network traffic and attacks in a
simulated environment. UNSW-NB15 is generated using a combination of normal activities and
synthetic attack behaviors created using IXIA Perfect Storm. The field of network security is
dynamic, and attack strategies evolve continuously. Any machine learning model applicable to
network security would need to continuously be retrained on new datasets that are representative of
current attacks.

5. Data preprocessing

NSL-KDD is already split into a training (KDDTrain+.txt) and testing dataset (KDDTest+.txt).
Additionally, the training dataset is split into a training and validation dataset. The validation set is
necessary to estimate the generalizing capacity of the model on new previously unseen data.

NETWORK INTRUSION DETECTION BASED ON CLASIFICATION

62

Table 2. NSL-KDD feature categories
Basic (К1-К9)

(aggregated packet header data from packets associated with one connection)

1 duration
2 protocol_type
3 service
4 flag
5 src_bytes
6 dst_bytes
7 land
8 wrong_fragment
9 urgent

Content (К10-К22)

(information extracted from the data portion of the packets)

10 hot
11 num_failed_logins
12 logged_in
13 num_compromised
14 root_shell
15 su_attempted
16 num_root

17 num_file_creations
18 num_shells
19 num_access_files
20 num_outbound_cmds
21 is_host_login
22 is_guest_login

Traffic (К23-К41)

(statistics about previous connections)

time-based traffic features
(connections from the last 2 seconds are considered)
23 count
24 srv_count
25 serror_rate
26 srv_serror_rate
27 rerror_rate
28 srv_rerror_rate
29 same_srv_rate
30 diff_srv_rate
31 srv_diff_host_rate
“same host” features:
К23, К25, К27, К29, К20
same destination IP as in the current connection record

“same service” features:
К24, К26, К28, К31
same destination port (same service) as in the current connection record

connection-based traffic features
(the last 100 connections are considered)
32 dst_host_count
33 dst_host_srv_count
34 dst_host_same_srv_rate
35 dst_host_diff_srv_rate
36 dst_host_same_src_port_rate
37 dst_host_srv_diff_host_rate
38 dst_host_serror_rate
39 dst_host_srv_serror_rate
40 dst_host_rerror_rate
41 dst_host_srv_rerror_rate

“same host” features:
К32, К34, К35, К36, К38, К40
same destination IP as in the current connection record

“same service” features:
К33, К37, К39, К41
same destination port (same service) as in the current connection record

The features of the NSL-KDD dataset are divided into three groups: Numeric, Nominal/Categorical,
and Binary [1]. Table 3 shows how the features in the NSL-KDD dataset are grouped into categories
according to the data type. NSL-KDD dataset contains five binary, three categorical features and
the remaining are numerical features. Binary features can take a value of either 0 or 1 (i.e., true, or
false), depending on whether the condition was met during the connection or not. Categorical
features are of type string and take values from a discrete, unordered set.

Table 3. NSL-KDD feature categories (according to data type)
Numeric 1, 5, 6, 8, 9, 10, 11, 13, 16, 17, 18, 19, 20, 22-41

Categorical 2, 3, 4

Binary 7, 12, 14, 15, 21

We refer to these features as “categorical” because the value they take indicates a specific
category to which a sample belongs. For instance, the protocol_type feature can take one of three
possible values, ['tcp', 'udp', 'icmp'], meaning that one of these protocols was used during the
connection. However, neural networks cannot be trained on string values. There are several
techniques available to transform categorical features into a form that is suitable for training a neural
network. For this project, categorical features were prepared using the technique one-hot encoding
(Fig. 2). For each possible value of the feature, a new binary feature is created (this feature can take
a value of either 0 or 1 – true or false) [1]. For each sample in the dataset, exactly one of these
binary features is assigned a value of 1 - the feature referring to the category this sample belongs
to. Features created using this technique are strongly correlated, which is not suitable for applying
machine learning algorithms, so an additional common practice of discarding one of the newly
added binary features is applied, so that the features are not strongly correlated, and the model can

Anastasija Samardziska and Cveta Martinovska Bande

63

achieve better results. As explained in [1], we usually have full knowledge of all categorical features
in the dataset, either because we defined them or because the dataset provided this information.
NSL-KDD does not include a detailed list of values for categorical features, so they are obtained
using available methods from the libraries. The protocol_type feature has only three distinct values
(Fig. 2). However, the service feature has many distinct values. All application-level protocols
recognized by tcpdump can be found in /etc/protocols on a Linux system. The one-hot encoding
technique could consume a lot of system memory and will increase the number of features
considerably.

6. Implementation details

The generate_model() function creates a Sequential model with five Dense hidden layers. Each
of these Dense hidden layers has the units parameter set to 128. The activation function parameter
in each of the Dense hidden layers is set to activation=’relu’. The output layer has the activation
function parameter set to activation=’sigmoid’. The value ’relu’ is used to set the activation function
of the hidden layers to the rectified linear function ReLu, while the activation function of the output
layer is to sigmoid function. The sigmoid function always returns a value between 0 and 1, meaning
that the output of the model will be a probability score. The compile() method is called before model
training.

7. Metrics used to evaluate the classification model

First we define two classes using labels consistent with the terminology in NSL-KDD:
• „attack“ – (positive) this network connection is malicious
• „normal“ – (negative) this is normal network traffic

 Precision and recall are common metrics used to evaluate the classifier:

To evaluate the binary classification model, a confusion matrix [26] is used. This matrix is a 2x2

matrix that depicts all four possible outcomes when evaluating binary classification models:

True negative
A true negative occurs when the model correctly predicts the

negative class (normal network traffic was correctly classified as
“normal”).

False positive
A False positive occurs when the model incorrectly predicts

the positive class (normal network traffic was incorrectly
classified as an “attack”).

False negative
A False negative occurs when the model incorrectly predicts the

negative class (a malicious network connection was classified as
„normal“ traffic).

True positive
A True positive occurs when the model correctly predicts the

positive class (a malicious network connection was correctly
classified as an „attack“).

Other metric is accuracy computed as the percentage of examples correctly classified. Accuracy

is not considered to be a helpful and comprehensive metric for this task and will not be used to
evaluate the classification model during training. Despite achieving high accuracy, the model could
still return a high number of false positives and false negatives that are considered as incorrect
predictions. Additionally, the time needed to train the model was tracked with the purpose of
choosing a model that can run in a reasonable amount of time on all data in the large training set.

8. Results and discussion

The proposed prototype takes the features of a network connection as input data and returns a
probability of a connection to be malicious (a number between 0.0 and 1.0). A decision boundary
is introduced to determine if the returned probability is going to be interpreted as a normal or
malicious connection. In the three training runs discussed in this paper, a decision boundary of 80%
is used. If the model returns a probability score greater than 0.8, the connection is classified as an
attack. The objective of this research is to choose the model parameters and the format and

precision= true positives
true positives+ false positives

recall= true positives
true positives+ false negatives

NETWORK INTRUSION DETECTION BASED ON CLASIFICATION

64

representation of the data for the learning algorithm that give as a result a low number of incorrect
predictions. Given that the application area is network intrusion detection, the aim is to create a
prototype that results in a lower number of false negatives despite the cost of increasing the number
of false positives. This tradeoff is preferable because many false negative alerts mean that the model
would fail to detect attacks more frequently [27].

Since recall [28] is the percentage of actual positives that were correctly classified, a conclusion
can be drawn that the larger the value for recall is, the fewer false negatives are returned. For this
reason, during the model training process, recall is calculated on the validation dataset and used as
a validation metric. To determine the optimal number of epochs for model training, EarlyStopping
from the Keras Callbacks API is used. Since the goal of training is to maximize the value of the
recall, the training loop will check at the end of every epoch whether recall is increasing. Once
recall is found to no longer increase for several consecutive epochs, the training procedure
terminates. The resulting model is the one that has the best value for recall. Three separate training
runs were performed, each attempting to improve the results obtained from the previous training
run. During the first training run, the model (model_init) was trained using the NSL-KDD dataset,
with data preprocessed as described in Section 5. Figure 3 shows the confusion matrix generated
from this training run. As confusion matrix illustrates the initial training run resulted in a relatively
low number of false positives. The number of false negatives returned by this model is used as a
base value. The following two variations of the model attempt to improve the result for false
negatives by applying transformation functions to the data. To make the three training runs more
comparable, the weights of the initial model were kept in a checkpoint file and loaded before the
training of the next variation of the model. To improve the performance of the model, the second
training run considers the characteristics of the numeric features. An attempt was made to apply
transformation functions that would result in values that lead to more representative characteristics
of the two classes (normal and malicious traffic) and to better classification results.

Figure 3. model_init Figure5. model_log Figure 6. model_sscaler

The features in the „numeric” category can be divided into two subcategories: rates and integers.
Due to the nature of the rates (they represent rates, percentages), the values in these columns are
already in the range of [0.0, 1.0], which is suitable for training a neural network. Hence, the data in
these columns is kept in its original form, as is provided in the dataset. The results of transformations
of the columns src_bytes and dest_bytes which belong to the integers are presented in Figure 4.
There is a significant range of values between the min and max values in the samples and
furthermore many samples have a zero value for these features. To make the range of values smaller,
a logarithmic function to the values in these columns was applied. The histograms on the right
represent the distribution of the src_bytes and dist_bytes columns after the transformations were
applied. After converting the columns src_bytes and dest_bytes to log space, the second training
run was performed. The resulting model is referred to as model_log (Figure 5). The confusion
matrix corresponding to model_log shows some decrease in the number of false negatives compared
to model_init. However, this decrease in false negatives comes at the cost of increasing the number
of false positives.

Anastasija Samardziska and Cveta Martinovska Bande

65

Figure 4. Histograms of the features src_bytes and dest_bytes before (left) and after (right) the
transformation

The next step in the attempt to improve the model performance was to „standardize” the values
in the numeric columns. For src_bytes and dest_bytes, the log space values were standardized. In
terms of statistics, „standardization” refers to a data scaling technique that results in the feature
having a mean of 0 and standard deviation of 1. Standardization was applied because machine
learning models have poor performance when individual features do not have a normal (Gaussian)
distribution. To standardize the data StandardScaler from the scikit-learn library [29] was applied.
The resulting model is referred to as model_sscaler. Figure 6 shows the confusion matrix for
model_sscaler. We can see that model_sscaler results in relatively small values for the numbers off
the main diagonal of the confusion matrix, indicating incorrect predictions, which was the aim of
the research. Table 4 summarizes the results produced by the three training runs. Converting
features with a large range of values into log space was used to create model_log. Model_log
showed improved accuracy and recall with a 4% decrease in precision. Scaling selected features
further improved the performance of the model. Model_sscaler has an overall accuracy of 98% and
recall of 97.366%. This model has the lowest false positive rate achieved during the three training
runs. In Table 5 we present the values of the characteristics according to which we compared
different approaches to network intrusion detection for the solution proposed in this paper. The main
contribution of our approach is in the data preprocessing techniques which enable the selection of
the model parameters that give a low number of incorrect predictions.

Table 4. Results of the data analysis with data preprocessing
 accuracy precision recall

model_init 0.73572 0.96903 0.55342

model_log 0.77196 0.92667 0.65090

model_sscaler 0.98075 0.99238 0.97366

We used the NSL-KDD dataset and our learning algorithms are implemented using Keras and
Tensorflow. Categorical features are preprocessed using one-hot encoding and we applied scaling
methods for some numerical features. The overall accuracy is 98% which is comparable to current
approaches that use machine learning and deep learning techniques.

NETWORK INTRUSION DETECTION BASED ON CLASIFICATION

66

Table 5. Characteristics of the proposed model relevant for comparison with current models listed in Table
2

Dataset Meth. Eval.
Metrics

Data
Prepr.

Accur. BIN or
MC

FS Software

NSL-KDD ANN confusion
matrix

accuracy
precision

recall

One-hot encoding and
dropping one generated

feature,
Standard Scaler from

scikit-learn on selected
features

98 BIN No Keras with
Tensorflow

backend

9. Conclusion

 This research described, implemented, and analyzed a deep learning model for a binary
classification of network traffic. Network intrusion detection is a possible application area for the
proposed model. An artificial neural network architecture was implemented using Keras with a
Tensorflow backend. The NSL-KDD dataset was used to train and test the model. The features in
the NSL-KDD dataset were grouped according to data type. Categorical features were preprocessed
using one-hot encoding. The numeric features were analyzed and data transformations were applied
to improve the performance of the model. Three training runs were performed with different
transformations of data to improve the classification performance. An overall accuracy of 98% and
a recall of 97.366% was achieved by converting features with a large range of values to log space
and scaling selected features. The obtained results suggest that it is possible to improve the
classification performance of deep learning models by applying transformations to the features in
the dataset. For future research, we can examine the effects of data transformations on new network
intrusion detection datasets proposed in the literature, such as the UNSW-NB15 dataset and the
CICIDS2017 dataset.

References

[1] Chio C., Freeman D.: (2018) Machine Learning and Security, O’Reilly Media, Inc.
[2] Oriyano S.: (2016) Certified Ethical Hacker Version 9 Study Guide, Sybex
[3] Ahmad Z., Khan A. S., Shiang C. W., Abdullah J., Ahmad F. (2021) “Network intrusion detection systems: A systematic
study of machine learning and deep learning approaches”, Transactions on Emerging Telecommunications Technologies,
vol. 32, e4150
[4] Tavallaee M., Bagheri E., Lu W., Ghorbani A., (2009) “A Detailed Analysis of the KDD CUP 99 Data Set”, IEEE
symposium on computational intelligence for security and defense applications (pp.1-6)
[5] Naseer S., Saleem Y., Khalid S., Bashir M. K., Han J., Iqbal M. M., Han., K. (2018) "Enhanced Network Anomaly
Detection Based on Deep Neural Networks", IEEE Access, vol. 6 (pp. 48231-48246)
[6] Vinayakumar R., Alazab M., Soman K. P., Poornachandran P., Al-Nimrat A., Vankatraman S.: (2019) Deep Learning
Approach for Intelligent Intrusion Detection System, IEEE Access, vol. 7 (pp. 41525-41550)
[7] Naseer, S., Saleem, Y. (2018) „Enhanced Network Intrusion Detection using Deep Convolutional Neural
Networks”, KSII Trans. Internet Inf. Syst., vol. 12 (pp. 5159–5178)
[8] Cao, B., Li, C., Song, Y., Qin, Y., Chen, C. (2022) „Network Intrusion Detection Model Based on CNN and GRU”,
Appl. Sci., 12, 4184.
[9] Ahmad, I., Ul Haq, Q.E., Imran, M., Alassafi, M.O., AlGhamdi, R.A., (2022) „An Efficient Network Intrusion
Detection and Classification System”, Mathematics, 10, 530
[10] Su T., Sun H., Zhu j., Wang S, Li Y.: (2020) BAT: Deep Learning Methods on Network Intrusion
Detection Using NSL-KDD Dataset, IEEE Access, vol. 8 (pp. 29575-29585)
[11] Anaconda3 Individual Edition, https://www.anaconda.com/products/individual(accessed: January 2022)
[12] Documentation for Tensorflow 2.5.0,
 https://www.tensorflow.org/versions/r2.5/api_docs/python/tf/keras (accessed: January 2022)
[13] Documentation for Keras, https://keras.io/api/ (accessed: January 2022)
[14] Documentation for scikit-learn 0.24.2, https://scikit-learn.org/0.24/ (accessed: January 2022)
[15] Documentation for matplotlib, https://matplotlib.org/stable/users/index.html (accessed: January 2022)
[16] Documentation for pandas, https://pandas.pydata.org/pandas-docs/ (accessed: January 2022)
[17] Documentation for Jupyter Notebook, https://docs.jupyter.org/en/latest/ (accessed: January 2022)
[18] UCI Knowledge Discovery in Databases Archive, KDD Cup 1999 Data
 https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed: January 2022)
[19] MIT Lincoln Laboratory, 1998 DARPA Intrusion Detection evaluation
 https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
[20] McHugh J.: (2000) Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion
detection system evaluations as performed by Lincoln Laboratory, ACM Transactions on Information and System
Security, vol. 3, no. 4, (pp. 262–294)

Anastasija Samardziska and Cveta Martinovska Bande

Table 5. Characteristics of the proposed model relevant for comparison with current models
listed in Table 2

9. Conclusion

 This research described, implemented, and analyzed a deep learning model for a binary classi-
fication of network traffic. Network intrusion detection is a possible application area for the proposed
model. An artificial neural network architecture was implemented using Keras with a Tensorflow back-
end. The NSL-KDD dataset was used to train and test the model. The features in the NSL-KDD dataset
were grouped according to data type. Categorical features were preprocessed using one-hot encoding.
The numeric features were analyzed and data transformations were applied to improve the performance
of the model. Three training runs were performed with different transformations of data to improve
the classification performance. An overall accuracy of 98% and a recall of 97.366% was achieved by
converting features with a large range of values to log space and scaling selected features. The obtained
results suggest that it is possible to improve the classification performance of deep learning models by
applying transformations to the features in the dataset. For future research, we can examine the effects
of data transformations on new network intrusion detection datasets proposed in the literature, such as
the UNSW-NB15 dataset and the CICIDS2017 dataset.

References
[1] Chio C., Freeman D.: (2018) Machine Learning and Security, O’Reilly Media, Inc.
[2] Oriyano S.: (2016) Certified Ethical Hacker Version 9 Study Guide, Sybex
[2] Ahmad Z., Khan A. S., Shiang C. W., Abdullah J., Ahmad F. (2021) “Network intrusion detection

systems: A systematic study of machine learning and deep learning approaches”, Transactions on
Emerging Telecommunications Technologies, vol. 32, e4150

[4] Tavallaee M., Bagheri E., Lu W., Ghorbani A., (2009) “A Detailed Analysis of the KDD CUP 99
Data Set”, IEEE symposium on computational intelligence for security and defense applications
(pp.1-6)

[5] Naseer S., Saleem Y., Khalid S., Bashir M. K., Han J., Iqbal M. M., Han., K. (2018) “Enhanced
Network Anomaly Detection Based on Deep Neural Networks”, IEEE Access, vol. 6 (pp. 48231-
48246)

[6] Vinayakumar R., Alazab M., Soman K. P., Poornachandran P., Al-Nimrat A., Vankatraman S.:
(2019) Deep Learning Approach for Intelligent Intrusion Detection System, IEEE Access, vol. 7
(pp. 41525-41550)

[7] Naseer, S., Saleem, Y. (2018) „Enhanced Network Intrusion Detection using Deep C o n v o l u -
tional Neural Networks”, KSII Trans. Internet Inf. Syst., vol. 12 (pp. 5159–5178)

[8] Cao, B., Li, C., Song, Y., Qin, Y., Chen, C. (2022) „Network Intrusion Detection Model Based
on CNN and GRU”, Appl. Sci., 12, 4184.

[9] Ahmad, I., Ul Haq, Q.E., Imran, M., Alassafi, M.O., AlGhamdi, R.A., (2022) „An Efficient
Network Intrusion Detection and Classification System”, Mathematics, 10, 530

[10] Su T., Sun H., Zhu j., Wang S, Li Y.: (2020) BAT: Deep Learning Methods on Network I n -
trusion Detection Using NSL-KDD Dataset, IEEE Access, vol. 8 (pp. 29575-29585)

[11] Anaconda3 Individual Edition, https://www.anaconda.com/products/individual(accessed: Janu-
ary 2022)

67

NETWORK INTRUSION DETECTION BASED ON CLASIFICATION

[12] Documentation for Tensorflow 2.5.0,
 https://www.tensorflow.org/versions/r2.5/api_docs/python/tf/keras (accessed: January 2022)
[13] Documentation for Keras, https://keras.io/api/ (accessed: January 2022)
[14] Documentation for scikit-learn 0.24.2, https://scikit-learn.org/0.24/ (accessed: January 2022)
[15] Documentation for matplotlib, https://matplotlib.org/stable/users/index.html (accessed: January

2022)
[16] Documentation for pandas, https://pandas.pydata.org/pandas-docs/ (accessed: January 2022)
[17] Documentation for Jupyter Notebook, https://docs.jupyter.org/en/latest/ (accessed: January 2022)
[18] UCI Knowledge Discovery in Databases Archive, KDD Cup 1999 Data
 https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed: January 2022)
[19] MIT Lincoln Laboratory, 1998 DARPA Intrusion Detection evaluation
 https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
[20] McHugh J.: (2000) Testing intrusion detection systems: a critique of the 1998 and 1999

DARPA intrusion detection system evaluations as performed by Lincoln Laboratory, ACM Trans-
actions on Information and System Security, vol. 3, no. 4, (pp. 262–294)

[21] MIT Lincoln Laboratory, DARPA Intrusion Detection Evaluation: Intrusion Detection Attacks
Database, https://archive.ll.mit.edu/ideval/docs/attackDB.html (accessed: January 2022)

[22] Carnegie Mellon University Software Engineering Institute Blog, Traffic Analysis for Network Se-
curity: Two Approaches for Going Beyond Network Flow Data, https://insights.sei.cmu.edu/blog/
traffic-analysis-for-network-security-two-approaches-for-going-beyond-network-flow-data/

[23] Sharafaldin I., Lashkari A. H., Ghorbani A.: (2018) Toward Generating a New Intrusion
Detection Dataset and Intrusion Traffic Characterization, Proceedings of the 4th International
Conference on Information Systems Security and Privacy (ICISSP 2018) (pp. 108-116)

[24] Nour M., Slay J., (2015) „UNSW-NB15: a comprehensive data set for network intrusion d e -
tection systems (UNSW-NB15 network data set).” Military Communications and Information
Systems Conference (MilCIS), IEEE

[25] Nour M., Slay J., (2016) „The evaluation of Network Anomaly Detection Systems: Statistical
analysis of the UNSW-NB15 dataset and the comparison with the KDD99 dataset.” Information
Security Journal: A Global Perspective, vol.25, (pp. 1-14)

[26] Classification: True vs. False and Positive vs. Negative, https://developers.google.com/ma-
chine-learning/crash-course/classification/true-false-positive-negative (accessed: January 2022)

[27] TensorFlow Tutorials, https://www.tensorflow.org/tutorials/structured_data/imbalanced_data
[28] Classification: Precision and Recall,https://developers.google.com/machine-learning/crash-

course/classification/precision-and-recall (accessed: Jan. 2022)
[29] Documentation for scikit-learn: StandardScaler, https://scikit-learn.org/0.24/modules/generated/

sklearn.preprocessing.StandardScaler.html (accessed: Jan. 2022)

Anastasija Samardziska
Goce Delcev University,
Faculty of Computer Science, “Krste Misirkov” 10-A, North Macedonia
E-mail: anastasija.102036@student.ugd.edu.mk

Cveta Martinovska Bande
Goce Delcev University,
Faculty of Computer Science, “Krste Misirkov” 10-A, North Macedonia
E-mail: cveta.martinovska@ugd.edu.mk

68

