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NETWORK INTRUSION DETECTION BASED ON CLASIFICATION 

ANASTASIJA SAMARDZISKA AND CVETA MARTINOVSKA BANDE 

Abstract. Network security is a serious concern for information technology users. Intrusion detection 
systems can detect malicious traffic and suspicious activity looking for signatures of known attacks. 
This paper describes a network intrusion detection system based on the deep learning approach. The 
system uses the ability of the neural network to detect attacks for which the system was not explicitly 
trained. The proposed solution can effectively identify network attacks with the accuracy of 98% 
tested on the NSL_KDD dataset. The paper analyzes the impact of transformation functions applied 
to the features of the dataset. 

1. Introduction 

Intrusion detection systems (IDSs) and intrusion prevention systems (IPSs) are important for 
maintaining network security. IDSs analyze network traffic to identify attacks, attempts to gather 
information about the network or systems, or other malicious activities. IDSs are passive 
components. If they detect anomalies or deviations from normal activity, they notify the network 
administrator, for example, by sending an email. Then it is up to the administrator to examine the 
data and decide whether the network is under attack and, if so, decide on how to proceed. IPSs are 
active components. They can intercept the direct line of communication between the source and 
destination and automatically act on detected anomalies. In this sense, IPSs are an improvement to 
passive IDSs. There are different kinds of IDSs/IPSs and they can be divided into different 
categories depending either on their location in the network, or the data used to detect attempted 
breaches. This paper focuses on Network intrusion detection systems (NIDSs). NIDSs examine 
each packet traversing the network looking for indications of malicious activities in both, the packet 
header and content payload. NIDSs monitor traffic from the router to the host [1][2]. One way to 
implement NIDS is to use signatures. NIDS have to maintain a database of known malicious 
patterns referred to as signatures. Monitored traffic is compared to the signatures in the database. 
Regular updates of existing attack signatures are important to provide network protection. But this 
approach cannot detect novel attacks, the so called zero-day attacks. Several researchers propose 
using machine learning techniques to overcome this drawback of the signature-based NIDSs and to 
enhance their security [3]. In essence, this approach suggests that if a machine learning model is 
created that can learn to generalize the characteristics common to attacks, this model should also be 
able to recognize novel attacks that were not explicitly included in the training dataset. This paper 
proposes a deep learning approach for NIDS capable to differentiate between normal network 
connections and malicious network connections. NSL-KDD (Network Security Laboratory-
Knowledge Discovery and Data Mining) dataset [4] is used to train the model. Each record in NSL-
KDD dataset refers to a particular connection between a source and a destination. The neural 
network learns to identify a malicious network connection based on the features in the NSL-KDD 
dataset. The model examines the feature values in the NSL-KDD dataset and looks for indications 
of malicious activity. If the connection shows characteristics of malicious network traffic, the model 
returns a number in the interval [0.0, 1.0] denoting how likely a connection is to be malicious. The 
probabilities that fall below the decision boundary are classified as normal traffic and the 
probabilities that are above the decision boundary are classified as malicious traffic. The research 
on using deep learning methods for NIDS is in an early phase and is actively being investigated. 
The goal of this work is to train a model that will learn to recognize most of the attacks that were 
included in the training dataset, but also to test how well the model generalizes common 
characteristics of malicious connections and therefore how well the model performs in recognizing 
variations of these attacks. 
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2. Related work 

Over the last decade, many machine learning and deep learning solutions have been proposed 
using different methodologies, datasets, and evaluation metrics, to make NIDSs efficient in 
detecting malicious attacks. Despite the research efforts to preserve the integrity and confidentiality 
of the network traffic, NIDSs still face challenges in improving detection accuracy, reducing false 
alarm rates, and detecting novel intrusions. A recent survey of NIDSs is presented in [3]. In Table 
1 we compare the model proposed in this paper with several recent approaches to network intrusion 
detection through traffic classification. The models that we analyze implement deep learning and 
classic machine learning techniques and use different preprocessing schemes of data delivered to 
the learning algorithm. Models are created and tested on several available datasets.  Both binary 
and multiclass approaches are proposed. Some models also address class imbalance through 
sampling or perform feature selection. In [5] authors compare the performance of different DL 
neural network architectures and conventional ML based models using standardized classification 
quality metrics: receiver operating characteristics (ROC), area under RoC curve, accuracy, 
precision-recall curve, and mean average precision. The types of deep neural networks that were 
compared in this study are: convolutional neural network (CNN), neural network with Long Short-
Term Memory (LSTM) layers, and different autoencoders (sparse, denoising, contractive and 
convolutional). These deep neural network models were trained and tested on the NSL-KDD 
dataset. All 41 features of the NSL-KDD dataset were used to train the models. Vinayakumar et al. 
[6] used the KDDCup99 dataset to train a deep neural network (DNN) for classification of network 
traffic and achieved an accuracy of 92.7%. The resulting model was then applied to the NSL-KDD, 
UNSW-NB15, Kyoto, WSN-DS and CICIDS2017 datasets. The model trained on the KDDCup99 
dataset achieved an accuracy of 93.1% in binary classification when applied to the CICIDS2017 
dataset. However, the model performed considerably worse on the NSL-KDD and UNSW-NB15 
datasets, achieving an accuracy of 78.9% and 76.1% respectively. 

In [5] the authors consider different encoding schemes for categorical features and their impact 
on the accuracy using the NSL-KDD dataset and theDecision Tree classifier. They analyze several 
new features created by the encoding algorithm, the training time, and the accuracy of the model, 
and decide to use LeaveOneOutEncoder for the categorical features in the NSL-KDD dataset. A 
similar study is described in [7] using the Random Forest classifier. Cao et al. [8] used the 
LabelEncoder from the scikit-learn library to encode the categorical features. Furthermore, the 
authors also applied sampling and feature selection in the preprocessing stage. They used a hybrid 
sampling method to reduce the class size disparity. The majority class is undersampled with the 
Repeated Edited Nearest Neighbours (RENN) algorithm and the minority class is oversampled with 
the Adaptive Synthetic Sampling (ADASYN) algorithm. The DBSCAN (Density-Based Spatial 
Clustering of Applications with Noise) algorithm is used to remove the noise from the new sampled 
datasets, and then the sampled datasets are merged to obtain the balanced dataset. To perform 
feature selection, the Random Forest algorithm is used to calculate the contribution of features, and 
the Pearson correlation analysis is performed to calculate the correlation between features. The 
model achieves an accuracy of 99.69% for multiclass classification on the NSL-KDD dataset. The 
model was also tested using the UNSW-NB15 dataset and the CICIDS2017 dataset and achieved 
an accuracy of 86.25% and 99.65%, respectively. In [9] the authors present an Adaboost based 
binary network traffic classifier. The Decision Tree classifier is used as a primary classifier and the 
Adaboost algorithm is used to perform the weight updates. The UNSW-NB15 dataset is adopted to 
train and test the model. 
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Table 1. Comparison of several related works listed in the reference section [5]-[10] 
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Feature selection is performed in the data preprocessing stage. The Adaboost based model 
achieved higher accuracy than the artificial neural network and the Support Vector Machine 
classifier that are used for comparison. The authors in [10] combine a Bidirectional Long Short-
Term Memory layer, multiple convolutional layers, and an attention mechanism to create the BAT-
MC model. BAT-MC is trained using the NSL-KDD dataset and has better performances compared 
to classic machine learning techniques in both binary and multiclass classification. 

 
3. Working environment 

The prototype of the intrusion detection system was developed and tested using several Python 
libraries. The Anaconda3 Individual Edition was installed and used to create the Python virtual 
environment mlearn where all the necessary libraries were installed [11]. The Tensorflow open-
source machine learning platform is installed to provide effective execution of low-level tensor 
operations and computing of the gradient of arbitrary differentiable expressions. The Кeras library 
is integrated in TensorFlow. Keras is a machine learning library that allows the creation of deep 
learning algorithms. The Keras API is very efficient, the core structures are layers and models which 
are the building blocks used to create neural networks that take advantage of the low-level 
computational capabilities of tensorflow [12][13]. The scikit-learn library is an open-source 
machine learning library used for preprocessing the data before it being forwarded to a neural 
network [14]. Matplotlib [15] and pandas [16] are used as auxiliary libraries for drawing histograms 
and data analysis, respectively. The Jupyter Notebook [17] web application is used to create files 
that contain Python scripts and interpretation results, LaTeX equations, HTML markup and images.  
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4. Description of the NSL-KDD dataset 

The dataset that is used to train and test the model is the NSL-KDD dataset. NSL-KDD is created 
by examining and improving the 1999 KDD Cup dataset [18]. The data in the 1999 KDD Cup 
dataset is used in the International Knowledge Discovery and Data Mining Tools Competition that 
was held alongside the International Conference on Knowledge Discovery and Data Mining in 
1999, the so-called KDD-99. The goal of the competition was to design a machine learning model 
that will be able to differentiate between malicious network connections and normal network traffic. 
The data in the 1999 KDD Cup dataset was generated from network traffic collected and stored in 
raw tcpdump format for the DARPA Intrusion Detection Evaluation Program by the MIT Lincoln 
Laboratory [19]. The generated traffic was preprocessed, and features that convey useful 
information were extracted. Based on these features, a machine learning model can learn to classify 
a network connection as either normal traffic or as an attack. The raw tcpdump data was used to 
create CSV data where each feature was placed in a separate column. For the purposes of the dataset, 
the term “network connection” was defined as a sequence of TCP packets exchanged between two 
hosts, starting and ending at well-defined times with well-defined application level protocols. Then 
to each record a label was added, either “normal” or an attack, with exactly one particular attack 
type. The original 1999 KDD Cup dataset was widely used in intrusion detection research, but 
several drawbacks of this dataset were pointed out [20]. Consequently, [4] described and published 
a new dataset, NSL-KDD that addressed some of the drawbacks of the 1999 KDD Cup dataset. The 
NSL-KDD dataset was created from the 1999 KDD Cup dataset by removing all duplicate records 
from the training and testing datasets. Afterwards, a subset of records that showed better statistical 
distribution was chosen from the remaining unique records. The resulting NSL-KDD dataset has a 
smaller number of records compared to the 1999 KDD Cup dataset. NSL-KDD is already split into 
a training and testing dataset. The dataset consists of two files KDDTrain+.txt and KDDTest+.txt. 
The KDDTrain+.txt file has 125,973 records and the KDDTest+.txt file has 22.544 records. Each 
record is about 100 bytes in one line of the CSV file. It is important to notice that these two files 
have a different statistical distribution of attack labels: the KDDTest+.txt dataset includes types of 
attacks that were not introduced in KDDTrain+.txt. The dataset was designed in this way to allow 
researchers to test how well a trained classifier generalized the training data. The hypothesis is that 
new network attacks very often show similarities to known attacks. This means that a classifier 
could successfully learn some generalizable properties of several attack categories that allow it to 
correctly classify attack types that were not introduced during the training process.  

             
Figure 1. KDDTrain+.txt class distribution           Figure 2. Example of one-hot-encoding 

 
The attack types included in the dataset are listed in [21]. The attacks can be classified in one of 

five classes: benign, dos, r2l, u2r, and probe. One important observation is that NSL-KDD shows a 
notable imbalance between the numbers of records in each of the classes [1]. Figure 1 shows the 
distribution of records in the KDDTrain++.txt file across the five classes. So, for example, the dos 
class includes three times more samples than the probe class. Instead of dealing with multiclass 
data, the task of the network traffic classification was approached as a binary classification problem: 
all network traffic must be attributed to exactly one of two categories – either normal or malicious 
traffic, as this is the approach taken by the majority of intrusion detection systems. After mapping 
each record in the training and testing datasets as either “normal” or as an “attack”, the number of 
samples in these two classes is comparable. The last value in each CSV record is the ‘success_pred’ 
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column. The ‘success_pred’ column was excluded from the analysis. This feature is not a property 
of a connection and is added to the original 1999 KDD Cup dataset by [4] as part of the evaluation 
procedure. After that, it is used to create the improved NSL-KDD dataset. The column ‘attack_type’ 
is the label of the category to which the sample belongs. The rest of the features in NSL-KDD can 
be divided into three groups: basic, content and traffic features [4]. The features in the first group 
(basic) contain aggregated packet header data from packets associated with the same connection. 
Although the packet header data provides valuable information that should be considered when 
analyzing network traffic, it is not sufficient to identify all types of attacks that are included in NSL-
KDD [22]. The attacks in the categories ‘r2l’ and ‘u2r’ can only be identified by inspecting the data 
portion of network packets. For instance, attacks such as buffer and heap overflow and SQL 
injection, most commonly occur over one legitimate network connection and can only be detected 
by examining the content of network packets. To detect such content-based attacks, the analysis 
must also consider: 
• application level protocols (e.g., Telnet, HTTP, FTP, or SMTP) 
• failed login attempts 
• successful login attempts 
• attempts to gain root access (check if the command su root was issued) 
• whether root access was granted 
• attempts to create files, etc. 
Attacks in the ‘dos’ and ‘probe’ categories involve many connections to the same host/hosts over 

a very short period of time. To detect these types of attacks, the data about more than one network 
connection must be considered. The data in the “time-based traffic features” group considers 
connections from the last 2 seconds. However, there are slow probing attacks that can scan hosts 
(or ports) over a time interval longer than 2 seconds, for example every minute. To get a model 
capable of identifying slow probing attacks as well, values in the “time-based traffic features” were 
recalculated, this time based on a fixed number of connections instead of a fixed time interval and 
“connection-based traffic features” were created [4][1]. Table 2 lists all 41 features in the NSL-
KDD dataset and shows which features belong to groups: basic, content, and traffic. The distinction 
between “same host” and “same service” features is also represented in the table. According to the 
authors of [23], a disadvantage of the NSL-KDD dataset is that this dataset has been created two 
decades ago and therefore does not represent a realistic situation of recently encountered network 
and application-level attacks. However, the dataset continues to be used in research, for models 
training and for comparison. There is a huge amount of previous work incorporated in the NSL-
KDD dataset that can be used for learning and comparison. Several new datasets for network 
intrusion detection have been proposed, such as the UNSW-NB15 dataset [24][25] and the 
CICIDS2017 dataset [23]. Different types of network security attacks are evenly distributed 
between the UNSW-NB15 training and testing sets. All attack types included in the UNSW-NB15 
test set have previously been introduced in the UNSW-NB15 train set. The NSL-KDD and 
CICIDS2017 datasets are created by capturing both normal network traffic and attacks in a 
simulated environment. UNSW-NB15 is generated using a combination of normal activities and 
synthetic attack behaviors created using IXIA Perfect Storm. The field of network security is 
dynamic, and attack strategies evolve continuously. Any machine learning model applicable to 
network security would need to continuously be retrained on new datasets that are representative of 
current attacks. 

5. Data preprocessing 

NSL-KDD is already split into a training (KDDTrain+.txt) and testing dataset (KDDTest+.txt). 
Additionally, the training dataset is split into a training and validation dataset. The validation set is 
necessary to estimate the generalizing capacity of the model on new previously unseen data.   
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Table 2. NSL-KDD feature categories 
Basic (К1-К9) 

(aggregated packet header data from packets associated with one connection) 

1 duration 
2 protocol_type 
3 service 
4 flag 
5 src_bytes 
6 dst_bytes 
7 land 
8 wrong_fragment 
9 urgent 

Content (К10-К22) 

(information extracted from the data portion of the packets) 

10 hot 
11 num_failed_logins 
12 logged_in 
13 num_compromised 
14 root_shell 
15 su_attempted 
16 num_root 

17 num_file_creations 
18 num_shells 
19 num_access_files 
20 num_outbound_cmds 
21 is_host_login 
22 is_guest_login 

Traffic (К23-К41) 

(statistics about previous connections) 

time-based traffic features 
(connections from the last 2 seconds are considered) 
23 count 
24 srv_count 
25 serror_rate 
26 srv_serror_rate 
27 rerror_rate 
28 srv_rerror_rate 
29 same_srv_rate 
30 diff_srv_rate 
31 srv_diff_host_rate 
“same host” features: 
К23, К25, К27, К29, К20 
same destination IP as in the current connection record 

“same service” features: 
К24, К26, К28, К31 
same destination port (same service) as in the current connection record 

 

connection-based traffic features 
(the last 100 connections are considered) 
32 dst_host_count 
33 dst_host_srv_count 
34 dst_host_same_srv_rate 
35 dst_host_diff_srv_rate 
36 dst_host_same_src_port_rate 
37 dst_host_srv_diff_host_rate 
38 dst_host_serror_rate 
39 dst_host_srv_serror_rate 
40 dst_host_rerror_rate 
41 dst_host_srv_rerror_rate 

“same host” features: 
К32, К34, К35, К36, К38, К40 
same destination IP as in the current connection record 

“same service” features: 
К33, К37, К39, К41 
same destination port (same service) as in the current connection record 

 

 

 
The features of the NSL-KDD dataset are divided into three groups: Numeric, Nominal/Categorical, 
and Binary [1]. Table 3 shows how the features in the NSL-KDD dataset are grouped into categories 
according to the data type. NSL-KDD dataset contains five binary, three categorical features and 
the remaining are numerical features. Binary features can take a value of either 0 or 1 (i.e., true, or 
false), depending on whether the condition was met during the connection or not. Categorical 
features are of type string and take values from a discrete, unordered set.  
 

Table 3. NSL-KDD feature categories (according to data type) 
Numeric 1, 5, 6, 8, 9, 10, 11, 13, 16, 17, 18, 19, 20, 22-41 

Categorical 2, 3, 4 

Binary 7, 12, 14, 15, 21 

We refer to these features as “categorical” because the value they take indicates a specific 
category to which a sample belongs. For instance, the protocol_type feature can take one of three 
possible values, ['tcp', 'udp', 'icmp'], meaning that one of these protocols was used during the 
connection. However, neural networks cannot be trained on string values. There are several 
techniques available to transform categorical features into a form that is suitable for training a neural 
network. For this project, categorical features were prepared using the technique one-hot encoding 
(Fig. 2). For each possible value of the feature, a new binary feature is created (this feature can take 
a value of either 0 or 1 – true or false) [1]. For each sample in the dataset, exactly one of these 
binary features is assigned a value of 1 - the feature referring to the category this sample belongs 
to. Features created using this technique are strongly correlated, which is not suitable for applying 
machine learning algorithms, so an additional common practice of discarding one of the newly 
added binary features is applied, so that the features are not strongly correlated, and the model can 
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achieve better results. As explained in [1], we usually have full knowledge of all categorical features 
in the dataset, either because we defined them or because the dataset provided this information. 
NSL-KDD does not include a detailed list of values for categorical features, so they are obtained 
using available methods from the libraries. The protocol_type feature has only three distinct values 
(Fig. 2). However, the service feature has many distinct values. All application-level protocols 
recognized by tcpdump can be found in /etc/protocols on a Linux system. The one-hot encoding 
technique could consume a lot of system memory and will increase the number of features 
considerably. 

6. Implementation details 

The generate_model() function creates a Sequential model with five Dense hidden layers. Each 
of these Dense hidden layers has the units parameter set to 128. The activation function parameter 
in each of the Dense hidden layers is set to activation=’relu’. The output layer has the activation 
function parameter set to activation=’sigmoid’. The value ’relu’ is used to set the activation function 
of the hidden layers to the rectified linear function ReLu, while the activation function of the output 
layer is to sigmoid function. The sigmoid function always returns a value between 0 and 1, meaning 
that the output of the model will be a probability score. The compile() method is called before model 
training.  

 
7. Metrics used to evaluate the classification model 

First we define two classes using labels consistent with the terminology in NSL-KDD: 
• „attack“ – (positive) this network connection is malicious 
• „normal“ – (negative) this is normal network traffic 

   Precision and recall are common metrics used to evaluate the classifier:  

 

 
To evaluate the binary classification model, a confusion matrix [26] is used. This matrix is a 2x2 

matrix that depicts all four possible outcomes when evaluating binary classification models: 
 
True negative 
A true negative occurs when the model correctly predicts the 

negative class (normal network traffic was correctly classified as 
“normal”). 

False positive 
A False positive occurs when the model incorrectly predicts 

the positive class (normal network traffic was incorrectly 
classified as an “attack”). 

False negative 
A False negative occurs when the model incorrectly predicts the 

negative class (a malicious network connection was classified as 
„normal“ traffic). 

True positive 
A True positive occurs when the model correctly predicts the 

positive class (a malicious network connection was correctly 
classified as an „attack“). 

 
Other metric is accuracy computed as the percentage of examples correctly classified. Accuracy 

is not considered to be a helpful and comprehensive metric for this task and will not be used to 
evaluate the classification model during training. Despite achieving high accuracy, the model could 
still return a high number of false positives and false negatives that are considered as incorrect 
predictions. Additionally, the time needed to train the model was tracked with the purpose of 
choosing a model that can run in a reasonable amount of time on all data in the large training set.  

 
8. Results and discussion 

The proposed prototype takes the features of a network connection as input data and returns a 
probability of a connection to be malicious (a number between 0.0 and 1.0). A decision boundary 
is introduced to determine if the returned probability is going to be interpreted as a normal or 
malicious connection. In the three training runs discussed in this paper, a decision boundary of 80% 
is used. If the model returns a probability score greater than 0.8, the connection is classified as an 
attack. The objective of this research is to choose the model parameters and the format and 

precision= true positives
true positives+ false positives

recall= true positives
true positives+ false negatives
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representation of the data for the learning algorithm that give as a result a low number of incorrect 
predictions. Given that the application area is network intrusion detection, the aim is to create a 
prototype that results in a lower number of false negatives despite the cost of increasing the number 
of false positives. This tradeoff is preferable because many false negative alerts mean that the model 
would fail to detect attacks more frequently [27].  

Since recall [28] is the percentage of actual positives that were correctly classified, a conclusion 
can be drawn that the larger the value for recall is, the fewer false negatives are returned. For this 
reason, during the model training process, recall is calculated on the validation dataset and used as 
a validation metric. To determine the optimal number of epochs for model training, EarlyStopping 
from the Keras Callbacks API is used. Since the goal of training is to maximize the value of the 
recall, the training loop will check at the end of every epoch whether recall is increasing. Once 
recall is found to no longer increase for several consecutive epochs, the training procedure 
terminates. The resulting model is the one that has the best value for recall. Three separate training 
runs were performed, each attempting to improve the results obtained from the previous training 
run. During the first training run, the model (model_init) was trained using the NSL-KDD dataset, 
with data preprocessed as described in Section 5. Figure 3 shows the confusion matrix generated 
from this training run. As confusion matrix illustrates the initial training run resulted in a relatively 
low number of false positives. The number of false negatives returned by this model is used as a 
base value.  The following two variations of the model attempt to improve the result for false 
negatives by applying transformation functions to the data. To make the three training runs more 
comparable, the weights of the initial model were kept in a checkpoint file and loaded before the 
training of the next variation of the model. To improve the performance of the model, the second 
training run considers the characteristics of the numeric features. An attempt was made to apply 
transformation functions that would result in values that lead to more representative characteristics 
of the two classes (normal and malicious traffic) and to better classification results. 

 
 
 
 
 
 
 

 
Figure 3. model_init               Figure5. model_log          Figure 6. model_sscaler 

The features in the „numeric” category can be divided into two subcategories: rates and integers. 
Due to the nature of the rates (they represent rates, percentages), the values in these columns are 
already in the range of [0.0, 1.0], which is suitable for training a neural network. Hence, the data in 
these columns is kept in its original form, as is provided in the dataset. The results of transformations 
of the columns src_bytes and dest_bytes which belong to the integers are presented in Figure 4. 
There is a significant range of values between the min and max values in the samples and 
furthermore many samples have a zero value for these features. To make the range of values smaller, 
a logarithmic function to the values in these columns was applied. The histograms on the right 
represent the distribution of the src_bytes and dist_bytes columns after the transformations were 
applied. After converting the columns src_bytes and dest_bytes to log space, the second training 
run was performed. The resulting model is referred to as model_log (Figure 5). The confusion 
matrix corresponding to model_log shows some decrease in the number of false negatives compared 
to model_init. However, this decrease in false negatives comes at the cost of increasing the number 
of false positives. 
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Figure 4. Histograms of the features src_bytes and dest_bytes before (left) and after (right) the 
transformation 

The next step in the attempt to improve the model performance was to „standardize” the values 
in the numeric columns. For src_bytes and dest_bytes, the log space values were standardized. In 
terms of statistics, „standardization” refers to a data scaling technique that results in the feature 
having a mean of 0 and standard deviation of 1. Standardization was applied because machine 
learning models have poor performance when individual features do not have a normal (Gaussian) 
distribution. To standardize the data StandardScaler from the scikit-learn library [29] was applied. 
The resulting model is referred to as model_sscaler. Figure 6 shows the confusion matrix for 
model_sscaler. We can see that model_sscaler results in relatively small values for the numbers off 
the main diagonal of the confusion matrix, indicating incorrect predictions, which was the aim of 
the research. Table 4 summarizes the results produced by the three training runs. Converting 
features with a large range of values into log space was used to create model_log. Model_log 
showed improved accuracy and recall with a 4% decrease in precision. Scaling selected features 
further improved the performance of the model. Model_sscaler has an overall accuracy of 98% and 
recall of 97.366%. This model has the lowest false positive rate achieved during the three training 
runs. In Table 5 we present the values of the characteristics according to which we compared 
different approaches to network intrusion detection for the solution proposed in this paper. The main 
contribution of our approach is in the data preprocessing techniques which enable the selection of 
the model parameters that give a low number of incorrect predictions. 

Table 4. Results of the data analysis with data preprocessing 
 accuracy precision recall 

model_init 0.73572 0.96903 0.55342 

model_log 0.77196 0.92667 0.65090 

model_sscaler 0.98075 0.99238 0.97366 

We used the NSL-KDD dataset and our learning algorithms are implemented using Keras and 
Tensorflow. Categorical features are preprocessed using one-hot encoding and we applied scaling 
methods for some numerical features. The overall accuracy is 98% which is comparable to current 
approaches that use machine learning and deep learning techniques. 
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Table 5. Characteristics of the proposed model relevant for comparison with current models listed in Table 
2 

Dataset Meth. Eval. 
Metrics 

Data 
Prepr. 

Accur. BIN or 
MC 

FS Software 

NSL-KDD ANN confusion 
matrix 

accuracy 
precision 

recall 

One-hot encoding and 
dropping one generated 

feature, 
Standard Scaler from 

scikit-learn on selected 
features 

98 BIN No Keras with 
Tensorflow 

backend 

9. Conclusion 

 This research described, implemented, and analyzed a deep learning model for a binary 
classification of network traffic. Network intrusion detection is a possible application area for the 
proposed model. An artificial neural network architecture was implemented using Keras with a 
Tensorflow backend. The NSL-KDD dataset was used to train and test the model. The features in 
the NSL-KDD dataset were grouped according to data type. Categorical features were preprocessed 
using one-hot encoding. The numeric features were analyzed and data transformations were applied 
to improve the performance of the model. Three training runs were performed with different 
transformations of data to improve the classification performance. An overall accuracy of 98% and 
a recall of 97.366% was achieved by converting features with a large range of values to log space 
and scaling selected features. The obtained results suggest that it is possible to improve the 
classification performance of deep learning models by applying transformations to the features in 
the dataset. For future research, we can examine the effects of data transformations on new network 
intrusion detection datasets proposed in the literature, such as the UNSW-NB15 dataset and the 
CICIDS2017 dataset.  
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