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MATRIX METHOD FOR LARGE SCALE SYSTEMS ANALYSIS 

 
SASKO S. DIMITROV, DEJAN KRSTEV, ALEKSANDAR KRSTEV 

 
Abstract: The mathematical model of a pilot operated pressure relief valve is described by a large system 
of nonlinear differential and algebraic equations. To analyze the stability condition of the valve, 
linearization of the mathematical model and getting the transfer function, i.e., the characteristic equation of 
the system is necessary. Obtaining the transfer function with elimination of the intermediate parameters is 
very complex and sometimes impossible. In this paper, a state space matrix method is used to reduce the 
large system of equation and to get the transfer function of the system.  

 
 

1. Introduction 
 

The dynamic behavior of the pilot operated pressure relief valve is described by a large system of nonlinear 
differential and algebraic equations. To analyze the stability of the dynamic system contained of a valve, a 
volume of oil in front of it, and an outlet pipeline a linearization of the mathematical model of the system 
around the steady state it is necessary. Very often it is difficult to obtain the transfer function of large-scale 
systems with mathematical elimination because of the complexity of the mathematical model. To obtain the 
transfer function of the dynamic system, the matrix method in the state space presented in [3] is used. The 
transfer function and the characteristic equation of the system is found and analysis of the location of the 
characteristic equation roots and the stability criteria of the system has been done.  

In Fig. 1 a functional diagram and its symbolic representation of the pilot operated pressure relief valve 
with compressible volume of oil at its inlet and return pipeline at its outlet has been shown. The system contains 
three successively connected subsystems. The outlet parameters of the previous subsystem are inlet parameters 
to the next subsystem, Fig. 1-b.          
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2. Linear mathematical model of the valve 
 
The mathematical model of the plane pilot operated pressure relief valve, without the inlet volume of oil 

and the outlet pipeline, is described by the following equation: 
• Equation of motion of the closing element of the pilot valve 

𝑚𝑚!" ∙
𝑑𝑑#𝑥𝑥"
𝑑𝑑𝑡𝑡#

+ 𝑐𝑐" ∙ (ℎ" + 𝑥𝑥"* + 𝑟𝑟" ∙ 𝑥𝑥" ∙ 𝑝𝑝$,# = 𝑝𝑝&,$ ∙ 𝐴𝐴! + 𝑝𝑝$,# ∙ 𝐴𝐴"																							(2.1) 
Where 𝑚𝑚!" = 𝑚𝑚! +𝑚𝑚" – is the sum of masses of the compensating control piston and the cone of the pilot 
valve; 𝑐𝑐"- the spring constant of the pilot valve; ℎ"- the previous spring deformation of the pilot valve; 𝑥𝑥"- the 
displacement of the pilot valve; 𝑟𝑟" – the coefficient of the hydrodynamic force of the pilot valve; 𝑝𝑝$,# – the 
pressure drop at the pilot valve; 𝑝𝑝&,$ – the pressure drop at the orifice 𝑅𝑅'; 𝐴𝐴! - the area of the compensating 
control piston; 𝐴𝐴" - the area of the seat of the pilot valve. 
With the linearization of the equation (2.3) around the steady state, and if we introduce a dimensionless time 

with the substitution 𝑡𝑡 = 𝜏𝜏 ∙ 𝑇𝑇",  𝑇𝑇" = 8
(!"

)"*+"∙-.#,%/&
 - time constant of the pilot valve,  the following is obtained: 

�̈�𝑋" = −𝑋𝑋" + 𝑘𝑘."' ∙ 𝑃𝑃& − 𝑘𝑘."( ∙ 𝑃𝑃$ − 𝑘𝑘."% ∙ 𝑃𝑃#																																												(2.2) 

Where the coefficients are: 𝑘𝑘."' =
0!∙-.',%/&

1)"*+"∙-.#,%/&2∙3",)
; 𝑘𝑘."% =

-0"4+"∙3",)/∙-.',%/&
1)"*+"∙-.#,%/&2∙3",)

; 𝑘𝑘."( = 𝑘𝑘."' − 𝑘𝑘."% , 𝑋𝑋" , 𝑃𝑃& 

and 𝑃𝑃$ – the linear values of the appropriate parameters. 
With introducing the substitution �̇�𝑋" = 𝑋𝑋5", (2) is transforming into: 

�̇�𝑋" = 𝑋𝑋5"																																																																																																								(2.3) 
�̇�𝑋5" = −𝑋𝑋" + 𝑘𝑘."' ∙ 𝑃𝑃& − 𝑘𝑘."( ∙ 𝑃𝑃$ − 𝑘𝑘."% ∙ 𝑃𝑃#																																						(2.4) 

𝑋𝑋5" - the linear velocity of the closing element of the pilot valve. 
• Equation of motion of the closing element of the main valve 

𝑚𝑚6 ∙
𝑑𝑑#𝑥𝑥6
𝑑𝑑𝑡𝑡#

+ 𝑐𝑐6 ∙ (ℎ6 + 𝑥𝑥6) + 𝑟𝑟6 ∙ 𝑥𝑥6 ∙ 𝑝𝑝7,# = 𝑝𝑝7 ∙ 𝐴𝐴8 + 𝑝𝑝# ∙ ∆𝐴𝐴 − 𝑝𝑝' ∙ 𝐴𝐴6																				(2.5) 
Where 𝑚𝑚9 – is the mass of the closing element of the main valve; 𝑐𝑐9- the spring constant of the main valve; 
ℎ9 - the previous spring deformation of the main valve; 𝑥𝑥9 - the displacement of the main valve; 𝑟𝑟9  – the 
coefficient of the hydrodynamic force of the main valve; 𝑝𝑝7,# – the pressure drop at the main valve; 𝐴𝐴8 - the 
area of the main valve seat; 𝐴𝐴6 - the area of the closing element of the main valve. 
With the linearization of the equation (3) around the steady state, we obtain: 

�̈�𝑋9 =
1
𝑇𝑇9"

(−𝑋𝑋9 + 𝑘𝑘.' ∙ 𝑃𝑃7 − 𝑘𝑘.% ∙ 𝑃𝑃# − 𝑘𝑘.( ∙ 𝑃𝑃'*																																				(2.6) 

Where the coefficients are: 𝑘𝑘.' =
-0*4+)∙3),)/∙-.',%/&
3),)∙1)&*+&∙-.',%/&2

; 𝑘𝑘.% =
-0*40&4+)∙3),)/∙-.',%/&
3),)∙1)&*+&∙-.',%/&2

  𝑘𝑘.( =
0&∙-.',%/&

3),)∙1)&*+&∙-.',%/&2
 , 𝑋𝑋9, 

𝑃𝑃7 and 𝑃𝑃' – the linear values of the appropriate parameters. The time constant of the main valve is:  𝑇𝑇9" =
:)
:"

,  

𝑇𝑇9 = 8
(&

)&*+&∙-.',%/&
 . 

 
b) 

Figure.1 Functional diagram of the valve 
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Introducing the substitution �̇�𝑋9 = 𝑋𝑋59, (2.6) is transforming into: 
�̇�𝑋9 = 𝑋𝑋59																																																																																																							(2.7) 

�̇�𝑋59 =
1
𝑇𝑇9"

(−𝑋𝑋9 + 𝑘𝑘.' ∙ 𝑃𝑃7 − 𝑘𝑘.% ∙ 𝑃𝑃# − 𝑘𝑘.( ∙ 𝑃𝑃'*																																(2.8) 

𝑋𝑋59 - the linear velocity of the closing element of the main valve. 
• Equation for pressure drop in the resistance 𝑅𝑅7 

𝑝𝑝7 = 𝑝𝑝& + 𝑅𝑅7; ∙ 𝑞𝑞"' + 𝑅𝑅7( ∙ 𝑞𝑞"'
# + 𝐿𝐿7 ∙

𝑑𝑑𝑞𝑞"'
𝑑𝑑𝑑𝑑

																																										(2.9) 
Where 𝑅𝑅7; – is the linear resistance in the orifice 𝑅𝑅7; 𝑅𝑅7(- the local resistance in the orifice 𝑅𝑅7; 𝐿𝐿7 – the inertial 
resistance in the orifice 𝑅𝑅7; 𝑞𝑞"' – the pilot oil flow. 
With the linearization of the equation (2.9) around the steady state, we obtain: 

�̇�𝑄"' =
1
𝑇𝑇+'
∙ J𝑃𝑃7 − 𝑃𝑃& − 𝑅𝑅7 ∙ 𝑄𝑄"'K																																																																			(2.10) 

Where 𝑅𝑅7 = (𝑅𝑅7; + 2 ∙ 𝑅𝑅7( ∙ 𝑞𝑞"',6* ∙
<"',&
-.',%/&

 – is the dimensionless coefficient of the linear and local resistance 

of the orifice 𝑅𝑅7; 𝑇𝑇+' =
='∙<"',&
-.',%/&∙:"

 - the dimensionless coefficient of the inertial resistance of the orifice 𝑅𝑅7, 𝑄𝑄"' 

– the linear value of the pilot flow 𝑞𝑞"'. 
• Equation for pressure drop in the resistance 𝑅𝑅' 

𝑝𝑝& = 𝑝𝑝$ + 𝑅𝑅'; ∙ 𝑞𝑞"( + 𝑅𝑅'( ∙ 𝑞𝑞"(
# + 𝐿𝐿' ∙

𝑑𝑑𝑞𝑞"(
𝑑𝑑𝑑𝑑

																																																					(2.11) 
Where 𝑅𝑅';  – is the linear resistance in the orifice 𝑅𝑅'; 𝑅𝑅'(- the local resistance in the orifice 𝑅𝑅'; 𝐿𝐿' – the 
inertial resistance in the orifice 𝑅𝑅'; 𝑞𝑞"( – the pilot oil flow through the orifice 𝑅𝑅'. 
With the linearization of the equation (2.11) around the steady state, the following is obtained: 

�̇�𝑄"( =
1
𝑇𝑇+(
∙ J𝑃𝑃& − 𝑃𝑃$ − 𝑅𝑅' ∙ 𝑄𝑄"(K																																																																	(2.12) 

Where 𝑅𝑅' = (𝑅𝑅'; + 2 ∙ 𝑅𝑅'( ∙ 𝑞𝑞"',6* ∙
<"',&
-.',%/&

 – is the dimensionless coefficient of the linear and local resistance 

of the orifice 𝑅𝑅'; 𝑇𝑇+( =
=(∙<"',&
-.',%/&∙:"

 - the dimensionless coefficient of the inertial resistance of the orifice 𝑅𝑅', 𝑄𝑄"( 

- the linear value of the pilot flow	𝑞𝑞"(. 
• Equation of compressibility in the spring chamber in the main valve 

𝑞𝑞"% = 𝐴𝐴6 ∙
𝑑𝑑𝑥𝑥6
𝑑𝑑𝑑𝑑

−
𝑉𝑉>
𝐾𝐾
∙
𝑑𝑑𝑝𝑝'
𝑑𝑑𝑑𝑑
																																																																			(2.13) 

Where 𝑉𝑉> – is the volume of oil in the spring chamber of the main valve; 𝐾𝐾 - bulk modulus of the oil. 
With the linearization of the equation (2.13) around the steady state, we obtain: 

�̇�𝑃' =
1
𝑇𝑇?+

∙ (𝑇𝑇0) ∙ �̇�𝑋9 + 𝑄𝑄"%*																																																																		(2.14) 

𝑇𝑇?+ =
?+
@
∙
-.',%/&
<"',&∙:"

 – is the dimensionless coefficient of the oil volume in the spring chamber in the main valve; 

𝑇𝑇0) =
0&∙3),)
<"',&∙:"

 - the dimensionless coefficient of the closing element of the main valve. 

• Equation for pressure drop in the resistance 𝑅𝑅# 

𝑝𝑝' = 𝑝𝑝$ + 𝑅𝑅#; ∙ 𝑞𝑞"% + 𝑅𝑅#( ∙ 𝑞𝑞"%
# + 𝐿𝐿# ∙

𝑑𝑑𝑞𝑞"%
𝑑𝑑𝑑𝑑

																																												(2.15) 
Where 𝑅𝑅#;  – is the linear resistance in the orifice 𝑅𝑅#; 𝑅𝑅#(- the local resistance in the orifice 𝑅𝑅#; 𝐿𝐿# – the 
inertial resistance in the orifice 𝑅𝑅#; 𝑞𝑞"% – the pilot oil flow through the orifice 𝑅𝑅#. 
With the linearization of the equation (2.15) around the steady state, this is obtained: 

�̇�𝑄"% =
1
𝑇𝑇+%
∙ J𝑃𝑃' − 𝑅𝑅# ∙ 𝑄𝑄"% − 𝑃𝑃$K																																																														(2.16) 
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Where 𝑅𝑅# = 𝑅𝑅#; ∙
<"',&
-.',%/&

 – is the dimensionless coefficient of the linear resistance of the orifice 𝑅𝑅#; 𝑇𝑇+% =
=%∙<"',&
-.',%/&∙:"

 - the dimensionless coefficient of the inertial resistance of the orifice 𝑅𝑅#,  𝑄𝑄"% - the linear value of the 

pilot flow  𝑞𝑞"%. 
• Equation of continuity in front of the compensating control piston 

𝑞𝑞"' = 𝑞𝑞"( +
𝑉𝑉!
𝐾𝐾
∙
𝑑𝑑𝑝𝑝&
𝑑𝑑𝑑𝑑

+ 𝐴𝐴" ∙
𝑑𝑑𝑥𝑥"
𝑑𝑑𝑑𝑑
																																																							(2.17) 

Where 𝑉𝑉! – is the oil volume in front of the compensating control piston. 
With the linearization of the equation (2.18) around the steady state, this is obtained: 

�̇�𝑃& =
1
𝑇𝑇?!

∙ O−𝑇𝑇0" ∙ 𝑋𝑋5" + 𝑄𝑄"' − 𝑄𝑄"(P																																															(2.18) 

𝑇𝑇?! =
?!
@
∙
-.',%/&
<"',&∙:"

 – is the dimensionless coefficient of the oil volume in front of the compensating control 

piston; 𝑇𝑇0" =
0"∙3",&
<"',&∙:"

 - the dimensionless coefficient of the pilot valve seat. 

• Flow equation through the pilot valve 

𝐾𝐾" ∙ 𝑥𝑥" ∙ Q𝑝𝑝$,# = 𝑞𝑞"( + 𝑞𝑞"% − 𝐴𝐴" ∙
𝑑𝑑𝑥𝑥"
𝑑𝑑𝑑𝑑

+ 𝐴𝐴! ∙
𝑑𝑑𝑥𝑥"
𝑑𝑑𝑑𝑑
																																					(2.19) 

𝐾𝐾" = 𝜇𝜇" ∙ 𝜋𝜋 ∙ 𝑑𝑑" ∙ 8
#
A
 – is the coefficient of the pilot valve. 

With the linearization of the equation (2.19) around the steady state, we obtain: 
0.5 ∙ 𝑃𝑃$,# = −𝑋𝑋" + O𝑇𝑇0! − 𝑇𝑇0"P ∙ 𝑋𝑋5" + 𝑄𝑄"( + 𝑄𝑄"% 																																									(2.20) 

• Flow equation through the main valve 

𝑞𝑞' = 𝜇𝜇6 ∙ 𝜋𝜋 ∙ 𝐷𝐷8 ∙ 𝑥𝑥6 ∙ U
2
𝜌𝜌
∙ 𝑝𝑝7,# = 𝐾𝐾6 ∙ 𝑥𝑥6 ∙ Q𝑝𝑝7,#																																																																																				(2.21) 

Where 𝜇𝜇6 – is the flow coefficient of the main valve; 𝐷𝐷8 - the seat diameter of the main valve; 

𝐾𝐾6 = 𝜇𝜇6 ∙ 𝜋𝜋 ∙ 𝐷𝐷8 ∙ 8
#
A
  – the coefficient of the main valve. 

With the linearization of the equation (2.21) around the steady state, the following is obtained: 

𝑄𝑄' = 𝑋𝑋6 +
1
2
∙ 𝑃𝑃7,#																																																																																	(2.22) 

• Equation of continuity in front of the main valve 

𝑞𝑞7 = 𝑞𝑞' + 𝑞𝑞"' + 𝐴𝐴8 ∙
𝑑𝑑𝑥𝑥6
𝑑𝑑𝑑𝑑
																																																																				(2.23) 

With the linearization of the equation (2.23) around the steady state, we obtain: 
−(1 − 𝑎𝑎7) ∙ 𝑄𝑄' = 𝑎𝑎7 ∙ 𝑄𝑄"' + 𝑇𝑇0* ∙ 𝑋𝑋56 − 𝑄𝑄7																																															(2.24) 

Where 𝑎𝑎7 =
<"'
<'

 – is the dimensionless coefficient; 𝑇𝑇0* =
0*∙3&,&
<',&∙:"

 - the dimensionless coefficient of the main 

valve seat. 
As can be seen from the above consideration, the linear mathematical model of the pilot operated pressure 

relief valve with a compensating control piston is described by a large system of differential and algebraic 
equations. To obtain the transfer function of the valve as a system a complex mathematical transformation and 
elimination [2] is needed. Very often it is difficult to obtain the transfer function of large-scale systems with 
mathematical elimination because of the complexity of the mathematical model. To solve this problem, it is 
possible to use the matrix method in the state space [3]. 

 
3. State space method for large scale systems analyses 

 
The dynamic characteristics of the valve as a subsystem of the whole system with oil volume in front of 

the valve and the outlet pipeline in the state space can be represented as follows: 
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𝑥𝑥BXXX⃗̇ = 𝐴𝐴C ∙ 𝑥𝑥BXXX⃗ + 𝐵𝐵C ∙ 𝑢𝑢BXXX⃗  
𝑦𝑦BXXX⃗ = 𝐶𝐶C ∙ 𝑥𝑥BXXX⃗ + 𝐷𝐷C ∙ 𝑢𝑢BXXX⃗ 																																																																								(3.1) 

Where 𝑥𝑥C, 𝑢𝑢C and 𝑦𝑦C are phase coordinates, inlet coordinates and outlet coordinates; 𝐴𝐴C - system matrix, 𝐵𝐵C - 
control matrix, 𝐶𝐶C - outlet matrix and 𝐷𝐷C - linkage matrix. 

To express the dynamics of the valve in the form (3.1), first the transformation is necessary of the output 
equations to eliminate the intermediate coordinates, as 𝑃𝑃$, 𝑄𝑄' etc. If it is expressed: the phase coordinates: 
𝑥𝑥7 = 𝑋𝑋" , 𝑥𝑥# = 𝑋𝑋5" , 𝑥𝑥' = 𝑋𝑋9 , 𝑥𝑥$ = 𝑋𝑋59 , 𝑥𝑥& = 𝑄𝑄"' , 𝑥𝑥D = 𝑄𝑄"( , 𝑥𝑥E = 𝑃𝑃' , 𝑥𝑥F = 𝑄𝑄"%  and 𝑥𝑥G = 𝑃𝑃& ; the 
intermediate coordinates: 𝑣𝑣7 = 𝑃𝑃$ , 𝑣𝑣# = 𝑃𝑃7  and 𝑣𝑣' = 𝑄𝑄' ; the inlet coordinate: 𝑢𝑢 = 𝑄𝑄7 ; and the outlet 
coordinate: 𝑦𝑦 = 𝑃𝑃7 = 𝑣𝑣#, the mathematical model of the valve can be expressed with the system of matrix 
equations: 

�̇⃗�𝑥 = 𝐾𝐾 ∙ 𝑥𝑥 + 𝐿𝐿 ∙ 𝑣𝑣 + 𝑅𝑅 ∙ 𝑢𝑢X⃗  
𝑃𝑃 ∙ 𝑣𝑣 = 𝑄𝑄 ∙ �⃗�𝑥 +𝑊𝑊 ∙ 𝑢𝑢X⃗                                                                                 (3.2) 

�⃗�𝑦 = 𝑁𝑁 ∙ �⃗�𝑥 + 𝑀𝑀 ∙ 𝑣𝑣 + 𝑆𝑆 ∙ 𝑢𝑢X⃗  
 Eliminating the vector of the intermediate coordinates in the system (3.2)  matrices A, B, C and D are 

obtained.  
𝐴𝐴 = 𝐾𝐾 + 𝐿𝐿 ∙ 𝑃𝑃47 ∙ 𝑄𝑄 
𝐵𝐵 = 𝐿𝐿 ∙ 𝑃𝑃47 ∙ 𝑊𝑊 + 𝑅𝑅 

𝐶𝐶 = 𝑀𝑀 ∙ 𝑃𝑃47 ∙ 𝑄𝑄 + 𝑁𝑁                                                                       (3.3) 
𝐷𝐷 = 𝑀𝑀 ∙ 𝑃𝑃47 ∙ 𝑊𝑊 + 𝑆𝑆 

• Transfer function of the valve 
According to the mathematical model (2.1) – (2.24), the matrix K, L, R, P, Q, W, M and S  are: 
 

𝑄𝑄 = c
−1 𝑇𝑇0! − 𝑇𝑇0" 0 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 𝑇𝑇0* 𝑎𝑎7 0 0 0 0

d ; 			𝑃𝑃 = f
0.5 0 0
0 −0.5 1
0 0 −1

g ; 					𝑊𝑊 = f
0
0
−1
g ;			 

 
𝑁𝑁 = [0 0 0 0 0 0 0 0 0]; 			𝑀𝑀 = [0 1 0]; 			𝑆𝑆 = [0]; 

 

𝐾𝐾 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 1 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 𝑘𝑘."'
0 0 0 1 0 0 0 0 0

0 0 −
1
𝑇𝑇9"#

0 0 0 −
𝑘𝑘.(
𝑇𝑇9"#

0 0

0 0 0 0 −
𝑅𝑅7
𝑇𝑇+'

0 0 0 −
1
𝑇𝑇+'

0 0 0 0 0 −
𝑅𝑅'
𝑇𝑇+(

0 0 −
1
𝑇𝑇+(

0 0 0
𝑇𝑇0)
𝑇𝑇?+

0 0 0 −
1
𝑇𝑇?+

0

0 0 0 0 0 0
1
𝑇𝑇+%

−
𝑅𝑅#
𝑇𝑇+%

0

0 −
𝑇𝑇0"
𝑇𝑇?!

0 0
1
𝑇𝑇?!

−
1
𝑇𝑇?!

0 0 0
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

; 	𝐿𝐿 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0

−𝑘𝑘."( 0 0
0 0 0

0
𝑘𝑘.'
𝑇𝑇9"#

0

0
1
𝑇𝑇+'

0

−
1
𝑇𝑇+(

0 0

0 0 0
1
𝑇𝑇+%

0 0

0 0 0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

; 	𝑅𝑅 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0
0
0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

.	 

 
Inserting matrices K, L, R, P, Q, W, M and S into (3.3) and then inserting matrices A, B, C  and D  in the 

state equations (3.1), it is possible to obtain the transfer function of the valve. For this purpose, a MATLAB 
m-script file was created for calculating the transfer function of the valve 𝑊𝑊8; =

H'
I'

.  
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The subject of investigation was the Denison pressure relief valve type R4V 06, shown in Fig. 2 [4]. 
Working pressure is 150 bar and the flow is 30 l/min. In front of the valve a volume of oil 0.5 l was assumed. 
The valve outlet was connected with the tank by the pipeline with a diameter of 20 mm and length 1.5 m. 

 
 

Figure 2. The analyzed valve type R4V 06-Denison [4] 
 

 
The other parameters of the valve are: 𝑑𝑑" = 5	𝑚𝑚𝑚𝑚, 𝑐𝑐" = 250	

J
((

, 𝑑𝑑! = 5.5	𝑚𝑚𝑚𝑚, 𝜇𝜇" = 0.7, 𝑑𝑑K+7 =

𝑑𝑑K+' = 0.8	𝑚𝑚𝑚𝑚 ,𝑑𝑑K+# = 0.6	𝑚𝑚𝑚𝑚 , 𝑙𝑙K+7 = 𝑙𝑙K+' = 1	𝑚𝑚𝑚𝑚 , 𝐷𝐷8 = 28.5	𝑚𝑚𝑚𝑚 , 𝐷𝐷9 = 28	𝑚𝑚𝑚𝑚 , 𝑐𝑐9 = 7	
J
((

, ℎ9 =

16.5	𝑚𝑚𝑚𝑚,	 the parameters of the oil are: 𝜈𝜈 = 34	𝑐𝑐𝑐𝑐𝑐𝑐, 𝜌𝜌 = 890	 8L
(( and 𝐾𝐾 = 1.45 ∙ 10G	𝑁𝑁/𝑚𝑚# 

• Transfer function of the rest of the system 
• Flow equation through the output pipeline 

𝑝𝑝# = 𝑅𝑅;,M+ ∙ 𝑞𝑞# + 𝐿𝐿M+ ∙
𝑑𝑑𝑞𝑞#
𝑑𝑑𝑐𝑐
																																																															(3.4) 

Where 𝑅𝑅;,M+ – is the linear resistance of the output pipeline; 𝐿𝐿M+ – the inertial resistance of the output pipeline; 
𝑞𝑞# = 𝑞𝑞7 - the flow in the output pipeline. 
With the linearization of the equation (3.4) around the steady state, thee following is obtained: 

𝑃𝑃# = (𝑅𝑅: + 𝑇𝑇: ∙ 𝑠𝑠) ∙ 𝑄𝑄#																																																																					(3.5) 
Where 𝑅𝑅: = 𝑅𝑅;,M+ ∙

<',&
-.',%/&

 – is the dimensionless coefficient of linear resistance of the output pipeline; 𝑇𝑇: =
=,-∙<',&
-.',%/&∙:"

 - the dimensionless coefficient of inertial resistance of the output pipeline, 𝑃𝑃#,  𝑄𝑄# - the linear values 

of the appropriate parameters. 
The transfer function of the output pipeline as a subsystem is:  

𝑊𝑊M+ =
𝑃𝑃#
𝑄𝑄#
= 𝑅𝑅: + 𝑇𝑇: ∙ 𝑠𝑠																																																																		(3.6) 

• Equation of continuity at inlet port of the system 

𝑞𝑞6 = 𝑞𝑞7 +
𝑉𝑉6
𝐾𝐾
∙
𝑑𝑑𝑝𝑝7
𝑑𝑑𝑐𝑐

= 𝑞𝑞7 + 𝑞𝑞?& 																																																						(3.7) 

Where 𝑉𝑉6 – is the volume of oil in front of the valve; 𝑞𝑞?& =
?&
@
∙ K.'
KM

 - the flow into the volume 𝑉𝑉6. 
With the linearization of the equation (3.7) around the steady state, this is obtained: 

𝑄𝑄6 = 𝑄𝑄7 + 𝑇𝑇?& ∙ 𝑠𝑠 ∙ 𝑃𝑃7 =	𝑄𝑄7 + 𝑄𝑄?& 																																																				(3.8) 
𝑇𝑇?& - the dimensionless coefficient of the inlet volume of oil; 𝑄𝑄?& = 𝑇𝑇?& ∙ 𝑠𝑠 ∙ 𝑃𝑃7 - the linear flow into the volume  
𝑉𝑉6. 

The transfer function of the inlet volume of oil as a subsystem is:  
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𝑊𝑊?& =
𝑄𝑄?&
𝑃𝑃7
= 𝑇𝑇?& ∙ 𝑠𝑠																																																																										(3.9) 

The block diagram of the whole system containing the pressure relief valve, the outline pipeline, and 
the inlet volume of oil is presented in Fig. 3. 

 
 

Figure 3. The block diagram of the system 
 
• Total transfer function of the system 

Knowing the transfer functions of the separate subsystems: valve, volume of oil in front of it and outlet 
pipeline; the total transfer function	𝑊𝑊6 =

H'
I&

 , using the mentioned MATLAB m-script file, would be of 11-th 
order. In general form it is: 

𝑊𝑊6 =
𝑎𝑎76𝑠𝑠76 + 𝑎𝑎G𝑠𝑠G + 𝑎𝑎F𝑠𝑠F + 𝑎𝑎E𝑠𝑠E + 𝑎𝑎D𝑠𝑠D + 𝑎𝑎&𝑠𝑠& + 𝑎𝑎$𝑠𝑠$ + 𝑎𝑎'𝑠𝑠' + 𝑎𝑎#𝑠𝑠# + 𝑎𝑎7𝑠𝑠 + 𝑎𝑎6

𝑏𝑏77𝑠𝑠77 + 𝑏𝑏76𝑠𝑠76 + 𝑏𝑏G𝑠𝑠G + 𝑏𝑏F𝑠𝑠F + 𝑏𝑏E𝑠𝑠E + 𝑏𝑏D𝑠𝑠D + 𝑏𝑏&𝑠𝑠& + 𝑏𝑏$𝑠𝑠$ + 𝑏𝑏'𝑠𝑠' + 𝑏𝑏#𝑠𝑠# + 𝑏𝑏7𝑠𝑠 + 𝑏𝑏6
							(3.10) 

 
The characteristic equation of the system is the denominator of the equation (30) equal to zero. The 

frequency characteristic of the valve is shown in Fig. 4 which is analog to the frequency characteristic presented 
in [3]. 

To work the valve properly it is necessary that all the roots of the characteristic equation, i.e., all the poles 
of the total transfer function be negative.  

The amplitude characteristic of 𝑊𝑊! shows the presence of two resonance frequencies: the first one has a 
peak of −4	𝑑𝑑𝑑𝑑 at the resonance frequencies 𝑓𝑓" = 70 − 90	𝐻𝐻𝐻𝐻 and is determined by the natural frequency of 
the control valve. The second is above 10000 Hz, during which the main valve poppet practically does not 
move and the valve reacts as a local resistance with an amplitude of 6	𝑑𝑑𝑑𝑑, corresponding to 𝐴𝐴# =

$!
%!
= 2. 

The phase characteristic of 𝑊𝑊! exceeds +90° in the range of frequencies between  420	𝐻𝐻𝐻𝐻 and 600	𝐻𝐻𝐻𝐻 
and the valve in this range will work in an unstable manner at a certain volume of oil 𝑉𝑉& at the inlet. The 
presence of an inlet volume and an outlet pipeline changes the transfer function in the form $!(()

%"(()
= 𝑊𝑊&(𝑠𝑠), 

where the phase characteristic (Phase 𝑊𝑊&) does not exceed +90° and the valve is stable at any volume of oil 
at the inlet. In order to obtain a transfer function 𝑊𝑊&(𝑠𝑠) as close as possible to the plain valve 𝑊𝑊!(𝑠𝑠), it is 
necessary that the volume 𝑉𝑉&  be as small as possible and the return pipeline has very little inertial and active 
resistance. 
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4. Conclusion 
 
The mathematical model of a pilot operated pressure relief valve is described by a large system of nonlinear 
differential and algebraic equations. To analyze the stability condition of the valve the linearization of the 
mathematical model and getting the transfer function, i.e., the characteristic equation of the system is necessary. 
Obtaining the transfer function with the elimination of the intermediate parameters is very complex and 
sometimes impossible. In this paper a state space matrix method is used to reduce the large system of equations 
and to get the transfer function of the system.  
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Figure 4. Frequency characteristic of the valve 
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