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GENERALIZATION OF THE APPLICATION OF A FUNDAMENTAL 

LEMMA OF VARIATIONAL CALCULUS TO REVOLUTIONIZE 

TRANSPORTATION BY USING THE SOLUTION OF BRACHISTOCHRONE 

 
Aleksandra Risteska-Kamcheski 

Abstract Variational calculus studied methods for finding maximum and minimum 

values of functional. It has its inception in 1696 year by Johan Bernoulli with its glorious 

problem of the brachistochrone: to find a curve connecting two points A and B, which 

does not lie in a vertical, so that the heavy point descends along this curve from position 

A to reach position B in the shortest time.  In functional analysis, variational calculus 

takes the same space, as well as the theory of maximum and minimum intensity in the 

classic analysis. We will prove a theorem for functional where we prove that the 

necessary condition for the extreme of the functional is the variation of functional to be 

equal to zero. We describe the solution of the equation of Euler with an example of 

application, such as the problem of brachistochrone, and its generalization that has the 

potential to completely revolutionize transportation.  

Key words: extreme, functional, variation, condition, transportation. 

1. Introduction 

 Many problems in mathematics are naturally formulated in terms of identifying 

a function that minimizes some quantity of interest. A natural example from geometry 

is the seemingly simple question: which is the shortest length path between two points 

in 𝑅𝑛? While everyone knows that such a path is the straight line segment connecting 

the two points, proving that such is the case is more subtle than such a simple question 

would suggest. A more complex example of a question in the same vein is to ask: 

given some open set Ω and some boundary conditions, can we identify a surface 

defined on this set, satisfying the boundary conditions, that has the minimum possible 

area? 

 The setting of the calculus of variations is over functionals on general normed 

vector spaces, specifically vector spaces of functions, the methods of results of the 

calculus of variations are remarkably simple and powerful and bear a great deal of 

resemblance to the machinery of a finite-dimensional real analysis. 

 The Euler-Lagrange equations are a very useful result in variational analysis, 

since many naturally occurring problems in mathematics, physics and other domains 

of application can be formulated in terms of minimizing or maximizing an integral on 

a given domain.  
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2. Results and discussion  

 

 We will explore for the extreme of the functional 

1

0

[ ( )] ( , ( ), '( ))

x

x

v y x F x y x y x dx   , (2.1) 

with the limit points of the allowable set of curves: 0 0( )y x y  and 1 1( )y x y . We will 

consider that the function ( , , ')F x y y  is three times differentiable. We know that the 

necessary condition for the extreme is the variation of the functional to be equal to 

zero ([1]). We will now show how the main theorem is applied to the given functional 

(2.1). 

Let us assume that the extreme reached on the two times differentiable curve ( )y y x  

(required only the existence of a derived from the first line of residue curves, otherwise 

it may be that of the curve on which the extreme is reached, there is a second derived). 

We are taking some close to ( )y y x  limit curves ( )y y x  and  include curves 

( )y y x and ( )y y x  to the family curves with one parameter 

( , ) ( ) ( ( ) ( ))y x y x y x y x     . 

When 0  , we receive the curve ( )y y x  , when 1  , we receive ( )y y x  . 

As we already know, the difference ( ) ( )y x y x  is called the variation of the function 

( )y x  and means with the y .   

The variation y in variational problems plays a role analogous to the role of the 

increase ∆𝑥 of an independent variable x  in problems for the study of the extreme of 

the function ( )f x . The variation of function ( ) ( )y y x y x   is a function of the x

([2]). 

This function can be differentiated once or several times, as 

( ) ' '( ) '( ) 'y y x y x y     it is generated of the variance to be equal to the variance 

of the generated, and similarly 

( ) ( ) ( ) ( )

( ) '' ''( ) ''( ) '',

( ) ( ) ( ) .k k k k

y y x y x y

y y x y x y

 

 

  

  

 

And so, we analyze the family ( , )y y x  , where ( , ) ( )y x y x y   , containing 

the 0   curves,  which  reaches an extreme, and in some 1   close tolerances and 

curves that are called curves of comparison ([3]). 

If we look at the values of the functional (0.1), only of the family curves ( , )y y x 

, the functional passes into a functional of  : 

[ ( , )] ( ),v y x     
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As in the case that we consider [ ( , )]v y x   is functional depending on parameter, the 

value of the parameter   determines the curve of the family ( , )y y x   and so 

determines and the value of functional [ ( , )]v y x   . 

Theorem. If the functional 
1

0

( ) ( , , ')

x

x

y F x y y dx    has a local extreme in y , the 

necessary condition for the extreme of the functional is 

1

'

0

[ ] 0,

x

y y

x

d
F F y dx

dx
     (2.2) 

Proof. We analyze the function ( )  . It reaches its extreme at 0   , and when 

0  , we receive ( )y y x , and the functional, in assumption, reaches the extreme 

compared with any permissible curve, and in particular, in terms of the near  families 

curves ( , )y y x   . 

The necessary condition for the extreme of the function ( )   at 0   , as is known, 

is the derivative to be equal to zero at 0   , i.e., 

'(0) 0   . 

Since 

1

0

( ) ( , ( , ), '( , )) ,

x

x

x

F x y x y x dx      

It 

1
'
'

0

'( ) ' ( , ) '( , )) ,

x

y y

x

F y x F y x dx   
 

  
    
  

Where 

'
'

' ( , ( , ), '( , )),

( , ( , ), '( , )),
'

y

y

F F x y x y x
y

F F x y x y x
y

 

 









 

( , ) [ ( ) ]y x y x y y  
 

 
  

 
 

'( , ) [ '( ) '] ',y x y x y y  
 

 
  

 
   

And we get 
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1
'( ) ( , ( , ), '( , )) ( , ( , ), '( , )) ' ,'

0

1
'(0) ( , ( ), '( )) ( , ( ), '( )) ' ( 0).'

0

x
F x y x y x y F x y x y x y dxy y

x

x
F x y x y x y F x y x y x y dx приy y

x

       

   

 

  

 
 

 
 

 

 

As we know, '(0)  is called a variation of the functional and means v  ([4]). 

The necessary condition for the extreme of the functional is its variation to be equal 

to zero 

  0v   . 

 

For the functional (0.1), this condition has a type of 

1
'
'

0

[ ' '] 0

x

y y

x

F y F y dx      (2.3) 

 Integrate the equation (2.3) in parts, whereas ' ( ) 'y y   , we get 

1
1' '

' '
0

0

1
' ' '

' 1 1 1 1 ' 0 0 0 0

0

1
' '

' 1 1 1 1 1

0

'
' 0 0 0

[ '] [ ' ]

( , ( , ), '( , )) ( ) ( , ( , ), '( , )) ( )

( , ( , ), '( , ))( ( ) ( ))

( , ( , ), '( , ))( (

x
x

y y y
x

x

x

y y y

x

x

y y

x

y

d
v F y F F y dx

dx

F y dx F x y x y x y x F x y x y x y x

F y dx F x y x y x y x y x

F x y x y x y x

  

      

  

 

   

   

  









1
'

0 0 '

0

1
' '

' 1 1 1

0

1
' '
' 0 0 0 '

0

) ( )) ( )

( , ( , ), '( , ))(0)

( , ( , ), '( , ))(0) ( )

x

y

x

x

y y

x

x

y y

x

y x y dF

F y dx F x y x y x

d
F x y x y x y F

dx



  

  

  

 

 






 

 

Since, all of the possible (permissible) curves in the given problem pass through fixed 

limit points, we get 

1
'
'

0

[ ' ]

x

y y

x

d
v F F y dx

dx
  

 .                            
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Note. The first multiplier '
''y y

d
F F

dx
  of the curve ( )y y x  reaches the extreme of the 

continuous function, and the second multiplier y , random for the choice of the curve 

in comparison ( )y y x  , is an arbitrary function having passed only certain general 

conditions, namely: the function y  in the border points 0x x , and 1x x   is equal 

to zero, continuous and differentiable  one or several times, y  or y  and 'y  are 

small in  absolute value. 

To simplify the obtained necessary condition (2.2), we will use the following lemma: 

 

Fundamental lemma of the variational calculus. If for any continuous function 

( )x  it is true that 

1

0

( ) ( ) 0, [6]

x

x

x x dx 
 

Where the function ( )x  
is continuous in the interval 0 1[ , ]x x  , it 

( ) 0x   

in this interval ([5]). 

Proof. We accept that, in the point x x , resting in the interval 0 1( , )x x  , ( ) 0x  , 

is a contradiction. 

Indeed, the continuity of the function ( )x , it follows that if ( ) 0x   it ( )x  keeps 

characters in vicinity of x  ( 0 1x x x   ). We choose the function ( )x  which also 

retains the mark in that vicinity and is equal to zero outside of this vicinity. We receive 

11

00

( ) ( ) ( ) ( ) 0,

x x

x x

x x dx x x dx       

 Since the product ( ) ( )x x  retains its mark in the interval 0 1x x x   and is equal 

to zero in the same interval. 

And so, we come to a contradiction, therefore ( ) 0x   .    

Note. The adoption of the lemma and its proof remain unchanged if the function ( )x  

requires the following restrictions: 

0 1( ) ( ) 0,x x    

( )x  There is a continuous derived to line n  , 

( ) ( ) , ( 0,1, , ; )s x s q q n     . 

 

The function ( )x  can be selected, e.g.: 
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2 2
0 1 0 1

0 10 1

( ) ( ) , [ , ]
( )

0 [ , ] \ [ , ] ,

n nk x x x x x x x
x

x x x x x


   
 



 

 where n is a positive number, k is a constant. 

Apparently, the function ( )x  satisfies the above conditions: it is a continuous, there 

is a continuous derived to line 2 1n   , in the points 0x  and 1x  is equal to zero and by 

reducing the factor by k we can do ( ) ( )s x   for the 0 1[ , ]x x x  . 

Now we will apply the fundamental lemma of variational calculus to simplify the 

above necessary condition for the extreme (2) of the functional (2.1). 

 

Consequence. If the functional 
1

0

( ) ( , , ')

x

x

y F x y y dx    reaches the extreme of the 

curve ( )y y x  , and 
'
yF  are '

'y
d

F
dx

 continuous, then ( )y y x  is a solution to the 

differential equation (equation of Euler)([1]) 

' 0,y y
d

F F
dx

   

Or in an expanded form 

' ' ' '' '' 0y xy yy y yF F F y F y     . 

Proof. The proof of consequence 1.1 follows immediately from the fundamental 

lemma of the variational calculus.       

 

This equation is called the equation of Euler (1744 year) ([2]). The integral curve  

1 2( , , )y y x C C  the equation of Euler is called extreme. 

To find a curve, on which the extreme of the functional is reached (2.1) we integrate 

the equation of Euler and spell out random constants, satisfying the general solution 

of this equation, of the conditions of borders 0 0 1 1( ) , ( )y x y y x y   . 

Only if they are satisfied with these conditions, the extreme of the functional can be 

reached. 

 However, in order to determine whether they are really extreme (maximum or 

minimum), sufficient conditions for the extreme must also be studied. 

To recall, that border problem 

'
' 0 0 1 1' 0, ( ) , ( )y y

d
F F y x y y x y

dx
     , 

not always has a solution, and if there is a solution, then this may not be the only one. 

It should be taken into account that in many variational problems the existence of 

solutions is evident, from physical or geometrical sense of the problem, and in the 
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solution of the equations of Euler satisfying the border conditions, only a single 

extreme may be the solution of the given problem. 

 

Problem of the brachistochrone. To determine the curve, connecting two given 

points A and B, in whose movement, material item provided for the shortest time from 

A point to point B (friction and resistance of the environment). We will shift the origin 

of the coordinate system in the point A, we will put the axis Ox  horizontally, and the 

axis Oy  vertically. The speed of movement of the stock point is  
𝑑𝑠

𝑑𝑡
= √2𝑔𝑦, where 

we find the time spent in the movement of the point from position A(0,0)  to position 

1 1( , )B x y  

21

1 1

0

1 '1
[ ( )] ; (0) 0, ( )

2

x
y

t y x dx y y x y
g y


  

 . 

Since this functional is one of the simplest types, and the integrand function does not 

contain x , so the equation of Euler has a first integral 

'
'' yF y F C   , 

or in this case, 

 

2 2

2

1 ' '

1 '

y y
C

y y y


 



 , 

where after a simplification, 

  

 

2 2

2

1 ' '

1 '

y y
C

y y

 




 , 

 

we have  

 
1

2
1 '

C

y y





 , or 2
1(1 ' )y y C  .   

We are introducing the parameter t  by the application of 'y ctgt  . Therefore, we 

have 

2 21 1
12

21
1

1 1

sin (1 cos );
21

2 sin cos
2 sin

'

1
2 (1 cos2 ) (1 cos2 ) ;

2

C C
y C t t

ctg t

dy C t tdt
dx C tdt

y ctgt

C t dt C t dt

   


   

   

 

Integrate, and obtain 

 



56                                                Aleksandra Risteska-Kamcheski 

 
 

 
 

 

2
1 2 2

sin 2
(2 sin 2 )

2 2

t C
x C t C t t C

 
      

 

 . 

 

 

The equation of the curve in parametric form has the type 

1
2

1

(2 sin 2 ),
2

(1 cos2 )
2

C
x C t t

C
y t

  

 

 

If we replace for parameter 
12t t  , and take into account that the 

2 0C  , 0x  , 

0y  , we receive the equation of  family cycloids in normal form: 

1
1 1

1
1

( sin ),
2

(1 cos ),
2

C
x t t

C
y t

 

 

 

where 1

2

C  is the radius of the rolling circle, which is determined by the conditions of 

the passing cycloid through the point  
1 1( , )B x y . And so, the brachistochrone is a 

cycloid.  

We will now discuss a generalization of the brachistochrone that has the potential (in 

theory) to completely revolutionize transportation. Suppose we could build a tunnel 

through the Earth’s crust connecting any city A to any other city B in the world. If we 

neglect friction, a train departing from A with zero speed would accelerate as the 

tunnel gets closer to the center of the Earth and then decelerate as it gets further, finally 

arriving at B with exactly zero speed. There would be no need for engines, fuel, or 

brakes. We will push the limits of this fantasy further yet: we will determine the profile 

of the tunnel that will be traversed in the shortest time. 

                    

 

 

                                                          

 

 

 

 

 

 

 

 

 

B 
A 

Figure 1. Distance from point(city) A to point(city) B 
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We can model this situation using physics. We model the Earth as a uniform solid 

sphere of material with constant density, and the two cities A and B as points on its 

surface. We will draw the tunnel in the plane defined by the two cities and the center 

of the sphere and parameterize it with the curve (𝑥, 𝑦(𝑥)). The goal of this is again to 

find the curve (𝑥, 𝑦(𝑥)) that will be traversed in the shortest amount of time when 

powered by gravity alone. What is the difference between this problem and the 

brachistochrone? The main difference is that the strength and the direction of the force 

of gravity changes as a function of our position along the path. As with the 

brachistochrone, the problem is to minimize the integral 

𝑇 = ∫
𝑑𝑠

𝑣
, 

where 𝑣 designates the speed of the object at point (𝑥, 𝑦(𝑥)) along its path and 𝑑𝑠 is 

an infinitesimally small piece of the trajectory with the length 

𝑑𝑠 = √1 + (𝑦′)2𝑑𝑥. 

 

3. Conclusion 

 
It should be taken into account that in many variational problems the existence of 

solutions is evident, from physical or geometrical sense of the problem, and in the 

solution of the equations of Euler satisfying the border conditions, only a single 

extreme may be the solution of the given problem. 
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