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The Appendix 

In honor of the first Doctor of Mathematical Sciences Acad. Blagoj Popov, a mathematician 

dedicated to differential equations, the idea of holding the "Day of Differential Equations" was born, 

prompted by Prof. Ph.D. Boro Piperevski, Prof. Ph.D. Borko Ilievski, and Prof. Ph.D. Lazo Dimov. 

Acad. Blagoj Popov presented his doctoral dissertation on 05.05.1952 in the field of differential 

equations. This is the main reason for holding the "Day  of Differential Equations" at the beginning of 

May. 

This year on May 5th, the "Day of Differential Equations" was held for the seventh time under 

the auspices of the Faculty of Computer Sciences at "Goce Delcev" University in Stip and Dean Prof. 

Ph.D. Saso Koceski, organized by Prof. Ph.D. Biljana Zlatanovska, Prof. Ph.D. Marija Miteva and Prof. 

Ph.D. Limonka Koceva Lazarova.  

The participants of this event were: 

1. Prof. Ph.D. Aleksa Malcheski from the Faculty of Mechanical engineering at Ss. Cyril 

and Methodius University in Skopje; 

2. Prof. Ph.D. Slagjana Brsakoska from the Faculty of Natural Sciences and Mathematics 

at Ss. Cyril and Methodius University in Skopje; 

3. Prof. Ph.D. Natasa Koceska, Prof. Ph.D. Limonka Koceva Lazarova, Prof. Ph.D. Marija 

Miteva and Prof. Ph.D. Biljana Zlatanovska from the Faculty of Computer Sciences at 

Goce Delcev          University in Stip; 

4. Ass. Prof. Ph.D. Biljana Citkuseva Dimitrovska and Ass. M.Sc. Maja Kukuseva Panova 

from the Faculty of Electrical Engineering at   Goce Delcev University in Stip. 

 

Acknowledgments to Prof. Ph.D. Boro Piperevski, Prof. Ph.D. Borko Ilievski and Prof. Ph.D. 

Lazo Dimov for the wonderful idea and the successful realization of the event this year and in previous 

years. 

Acknowledgments to the Dean of the Faculty of Computer Sciences, Prof. Ph.D. Saso Koceski 
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The papers that emerged from the "Day of Differential Equations" are in the appendix to this 

issue of BJAMI. 
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ABOUT A CLASS OF 2D MATRIX OF DIFFERENTIAL

EQUATIONS

BILJANA ZLATANOVSKA AND BORO PIPEREVSKI

Abstract. A class of 2D matrix di�erential equations and their connection to
second-order di�erential equations with polynomial coe�cients are considered.
By using the method of transformation, appropriate results for their correlation
are obtained. These results enable obtaining appropriate conditions for the
integrability of one of the classes and systems of di�erential equations.The theory
is supported by examples.

Dedicated to the Day of Di�erential Equations in Macedonia 2023.

1. Introduction

In this paper, the class of 2D matrix di�erential equations of the type

PX ′ +MX = O (1.1)

is considered, where

P =

�
a b
c d



,M =

�
A 0
0 B



, X ′(t) =

�
x′1(t)
x′2(t)



, X(t) =

�
x1(t)
x2(t)



, O =

�
0
0



,

a = a1t+ a2, b = b1t+ b2, c = c1t+ c2, d = d1t+ d2,

A,B, a1, a2, b1, b2, c1, c2, d1, d2 ∈ R,

X(t) is matrix function and x1(t), x2(t) are real functions of one real variable t by

frist derivate x′1(t) =
dx1
dt , x

′
2(t) =

dx2
dt .

In [2,3,9] for this class of matrix di�erential equations (1.1), the matrix polyno-
mial solution

Xn =

�
Pn(x)
Qn(x)



is presented, where Pn(x) and Qn(x) are polynomials of the degree n. For this
solution, the following theorem is true.

Date: December 7, 2023.
Keywords. class of 2D matrix di�erential equations, second-order di�erential equations, ex-

amples.
2010 Math. Subject Classi�cation: 34A30 .
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Theorem 1.1. Let the class of 2D matrix di�erential equations (1.1) be given. Let
the conditions a · b · c · d · (a · d − b · c) · A · B ̸= 0, b′ ̸= 0, c′ ̸= 0 are satis�ed. If
there exist a natural number n (the smaller one if there are two) that satis�es the
condition

r(M + nP ′) = 1, r(M + kP ′) = 2, k < n, k ∈ N, r − a rang of the matrix

A+ na′ ̸= 0, B + nd′ ̸= 0,

i.e. the condition (a′d′ − b′c′) · n2 + (Ad′ + Ba′) · n + AB = 0 then the 2D matrix
di�erential equations (1.1) has the matrix pilynomial solution of a degree n and
no other polynomial solution of degree less than n, given by the Rodrigues matrix
formula

Xn = T · dn−1

dtn−1
[T1 · U1],

where

T =

�
f(t) 0
0 f(t)



, T1 =

�
B(k · b+ a) 0

0 A(k · d+ c)



, U1 =

(a · d− b · c)n−1

f(t)

�
1
1




k = − nc′

B + nd′
= −A+ na′

nb′
, f(t) = e−

∫
aB+Ad
ad−bc

dt.

i.e.

Xn = f(t) ·

�
dn−1

dtn−1 [f
−1(t) ·B(kb+ a) · (ad− bc)n−1]

dn−1

dtn−1 [f
−1(t) ·A(kd+ c) · (ad− bc)n−1]

�

In [1,2,4] for this class 2D matrix di�erential equations (1.1), the matrix polyno-

mial solution Xn =

�
Pn−1(t)
Qn(t)



is presented, where Pn−1(t) and Qn(t) are polyno-

mials of degree n− 1 i.e. n.

For this matrix polynomial solution, the following theorem is true.

Theorem 1.2. The subclass of matrix di�erential equations (1.1) with condition

a · b · c · d · (a · d− b · c) ·A ·B ̸= 0, b′ = 0, c′ ̸= 0, a′d′ = 1

has a matrix polynomial solution of degree n and no other polynomial solution of
degree k < n, k ∈ N if and only if there exist a positive integer n such that the
conditions

nd′ +B = 0, ka′ +A ̸= 0, k < n, k ∈ N

are satis�ed. By the Rodrigues matrix formula, the matrix polynomial solution

Xn = f(t) ·

�
dn−1

dtn−1 [(ad− bc)n−1 · f−1(t)]
A
Bb ·

dn−1

dtn−1 [d · (ad− bc)n−1 · f−1(t)]

�

is given, where f(t) = e−
∫

aB+Ad
ad−bc

dt.
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The class second-order di�erential equation with polynomial coe�cients of the
type

(St+ T )(t2 +Qt+R)x′′ + (β2t
2 + β1t+ β0)x

′ + (γ1t+ γ0)x = 0 (1.2)

S, T,Q,R, β2, β1, β0, γ1, γ0 ∈ R

has a fundamental role in the theory of di�erential equations related to numerical
mathematics, special functions, the Sturm-Liouville problem, as well as calculus of
variations and applications.

In [1,2,3], the following theorem was proved.

Theorem 1.3. The second-order di�erential equation (1.2) has one polynomial
solution of degree n and no other polynomial solution of degree k < n, k ∈ N if
there exist a positive integer n (the smaller one if there are two), which is the root
of the characteristical equation Sx2 + (β2 − S)x+ γ1 = 0 and if the conditions

S2(β0 + SR−QT ) + T 2(S + β2)− Tβ1S = 0

S2(γ0β1 + γ20 − γ1β0) + T (γ1 + β2)(Tγ1 − 2Sγ0) = 0 (1.3)

are satis�ed. In this case, the polynomial solution is given by the formula

x(t) = f(t) · dn−1

dtn−1
[(t+K)(t2 +Qt+R)n−1 · f−1(t)],

where f(t) = e
−

∫
Mt+N

t2+Qt+R
dt
,M = β2−S

S , N = Sβ1−Tβ2−TS
S2 , K = 1

Sγ1
[Tγ1+n(2Tβ2−

Sβ1 + Tγ1 − Sγ0)].

For a second-order linear homogeneous di�erential equation of the type

P (x)y′′ +Q(x)y′ + λR(x)y = 0,

Brenke [17] shows that it will satisfy the condition for the existence of polynomial
solutions of degree n for each n ∈ N , for a suitable value of parameter λ and
if P (x), Q(x), R(x) are polynomials of second, �rst and zero degrees respectively.
He also gives the general formula for the sequence of polynomial solutions of that
equation and under certain conditions shows their orthogonality with appropriate
weight. Let us note that in that case, when all members of the sequence (λn), n =
0, 1, 2, ... are di�erent, then λn are called eigenvalues, and the polynomials yn(x)
are eigenfunctions. In [11, 14], this second-order linear homogeneous di�erential
equation is also the subject of studying. For this important class of second-order
di�erential equations, it is important to mention the classical results regarding
polynomial solutions of the very important hypergeometric di�erential equation,
as an equation with polynomial coe�cients of the type (1.2). Legendre, Jacobi,
Tschebysche�, Hermite, Laguerre, etc. polynomials appear as special cases of such
known orthogonal polynomials as solutions of di�erential equations of type (1.2).
which �nds great application in numerical mathematics.
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In the theory of partial di�erential equations and the calculus of variations,
the classic result for solving a Dirichlet interior problem for a contour problem
for Laplace's partial di�erential equation on a sphere is known. By transforming
into spherical coordinates and using the Fourier method of separation of variables,
di�erential equations of the type (1.2) are obtained whose solutions are the clas-
sic orthogonal Legendre's polynomials which are also eigenfunctions for the corre-
sponding Sturm-Liouville problem. In doing so, the solutions of Laplace's partial
di�erential equation are obtained in the form of homogeneous polynomials of the
appropriate degree and they are called spherical harmonic functions. By introduc-
ing elliptic coordinates in Laplace's partial di�erential equation, this approach to
solving the same problem but for an ellipsoid was used by Lame. By using ellip-
tic functions and the Fourier method of separation of variables, the second-order
di�erential equation of the type (1.2) was obtained whose polynomial solutions
are the Lame polynomials [8, 10, 16]. The Lame equation is a special case of the
Schrödinger equation with a periodic potential and a spectrum that has exactly n
layers on the semiaxis. This equation is a special case of Hill's equation.

2. Main results

We consider the connection between a 2D matrix di�erential equation of the form
(1.1) and a second-order di�erential equation of the form (1.2).

Theorem 2.1. Let the 2D matrix di�erential equation (1.1) be given. Let the
conditions a ·b ·c ·d ·(a ·d−b ·c) ·A ·B ̸= 0, b′ ̸= 0, c′ ̸= 0 be satis�ed. If the conditions
(1.3) are satis�ed then the 2D matrix di�erential equation (1.1) corresponds to the
second-order di�erential equation (1.2).

Proof. Let the 2D matrix di�erential equation (1.1) be given. The 2D matrix
equation (1.1) corresponds to the second-order di�erential equations. In relation to
the �rst component function x1(t), the second-order di�erential equation is

b(ad−bc)x′′1+(ad′b−c′b2+a′db−adb′+Abd+abB)x′1+A(bd′−b′d+Bb)x1 = 0 (2.1)

In terms of the second component function x2(t), the equation is

c(ad−bc)x′′2+(ad′c−b′c2+a′dc−adc′+Acd+acB)x′2+B(ca′−c′a+Ac)x2 = 0 (2.2)

The second-order di�erential equation (2.1) is equivalent to the second-order dif-
ferential equation of the form (1.2), if the following relations

b1 = S, b2 = T, a1d1 − b1c1 = 1, a2d2 − b2c2 = R,

a1d2 + a2d1 − b1c2 − b2c1 = Q,

a1d1b1 − c1b
2
1 +Ab1d1 +Ba1b1 = β2,

2d1a1b2 − 2b1c1b2 +Ab1d2 +Ab2d1 +Ba1b2 +Ba2b1 = β1, (2.3)
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d1a2b2 − c1b
2
2 + a1d2b2 − b1a2d2 +Ab2d2 +Ba2b2 = β0,

ABb1 = γ1, A(Bb2 − b1d2 + d1b2) = γ0

are satis�ed. From the equations of the system relations (2.3), the �rst condition
of the conditions (1.3) is obtained. From the equations of the system relations
(2.3) and the �rst condition from the conditions (1.3), the second condition of the
conditions (1.3) is obtained.

The second-order di�erential equation (2.2) is equivalent to the second-order dif-
ferential equation of the form (1.2) if the following relations

c1 = S, c2 = T, a1d1 − b1c1 = 1, a2d2 − b2c2 = R,

a1d2 + a2d1 − b1c2 − b2c1 = Q,

a1d1c1 − b1c
2
1 +Ac1d1 +Ba1c1 = β2,

2d1a1c2 − 2b1c1c2 +Ac1d2 +Ac2d1 +Ba1c2 +Ba2c1 = β1, (2.4)

d1a2c2 − b1c
2
2 + a1d2c2 − c1a2d2 +Ac2d2 +Ba2c2 = β0,

ABc1 = γ1, B(Ac2 − c1a2 + a1c2) = γ0

are satis�ed. From the equations of the system relations (2.4), the �rst condition of
the conditions (1.3) is obtained. From the equations of the system relations (2.4)
and the �rst condition from the conditions (1.3), the second condition of the condi-
tions (1.3) is obtained. According to given a 2D matrix di�erential equation (1.1)
corresponds to two second-order di�erential equations (1.2) that satisfy condition
(1.3). □

Theorem 2.2. Let the second-order di�erential equation (1.2) be given. Let the
conditions (1.3) be satis�ed. Then the second-order di�erential equation (1.2) cor-
responds to the 2D matrix di�erential equation (1.1). The coe�cients of the the
appropriate 2D matrix di�erential equation with the form (1.1) are given by the
formulas

b1 = S, b2 = T, Sd1A
2 − (β2 − S)A+ a1γ1 = 0,

B =
γ1
AS

, c1 =
1

S
(a1d1 − 1), d2 =

1

SA
(
γ1T

S
+Ad1T − γ0), (2.5)

a2 =
1

TB
(β0 + SR− TQ− TAd2), c2 =

1

T
(a2d2 −R)

where a1 and d1 satisfy the conditions a1·d1 ̸= 1, (β2−S)2−4S ·d1·a1·γ1 = k2, k ∈ R
i.e., by the formulas

c1 = S, c2 = T, Sd1A
2 − (β2 − S)A+ a1γ1 = 0,

B =
γ1
AS

, b1 =
1

S
(a1d1 − 1), d2 =

1

TA
(β0 + SR− TQ−BTa2), (2.6)
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a2 =
T

S
a1 +

A

γ1
(
T

S
γ1 − γ0), b2 =

1

T
(a2d2 −R)

where a1 and d1 satisfy the conditions a1·d1 ̸= 1, (β2−S)2−4S·d1·a1·γ1 = k2, k ∈ R.

Proof. By the system relations (2.3), the formulas (2.5) are obtained. By the system
relations (2.4), the formulas (2.6) are obtained. □

Remark 2.1: Due to the quadratic equation for coe�cient A, two 2D matrix equa-
tions (1.1) are obtained. According to the given second-order di�erential equation
(1.2) for which the conditions (1.3) are satis�ed, corresponds to two 2D matrix
di�erential equations (1.1).

So one 2D matrix di�erential equation (1.1) corresponds to two second-order
di�erential equations (1.2) for which the conditions (1.3) are satis�ed. One second-
order di�erential equation (1.2) for which the conditions (1.3) are satis�ed, corre-
sponds to two 2D matrix equations di�erential equations (1.1).

Example 2.1. Let the 2D matrix di�erential equation�
3t+ 1 3t+ 1
t+ 1 2t+ 2



·X ′ +

�
−4 0
0 2



·X = O,X(t) =

�
x1(t)
x2(t)



(2.7)

is given by a matrix polynomial solution X =

�
28t2 + 40

3 t+
4
3

−28
3 t

2 − 8t+ 4
3



. The 2D matrix

di�erential equation (2.7) coresponds to the following two second-order di�erential
eqautions,

(3t+ 1)(3t2 + 4t+ 1)x′′1 + (3t2 − 14t− 5)x′1 + (−24t+ 8)x1 = 0 (2.8)

(t+ 1)(3t2 + 4t+ 1)x′′2 + (t2 − 2t− 3)x′2 + (−8t− 4)x2 = 0 (2.9)

which satisfy the condition (1.3) by polynomial solutions

x1(t) = t2 +
10

21
t+

1

21
, x2(t) = t2 +

6

7
t− 1

7
.

Let the second-order di�erential equation (2.8), i.e., the equation

(t+
1

3
)(t2 +

4

3
t+

1

3
)x′′1 + (

1

3
t2 − 14

9
t− 5

9
)x′1 + (−8

9
t+

8

9
)x1 = 0

is given. By the formulas (2.5) and a1 = 1, d1 = 2, for the quadratic equation per
A, two solutions are obtained. For the solution A = −4

3 , B = 2, the 2D matrix

di�erential equation (2.7) is obtained. But, for the solution A⋆ = 1, B⋆ = −8
3 , the

2D matrix di�erential equation�
t+ 1

3 t+ 1
3

t− 19
9 t− 10

9



· Y ′ +

�
1 0
0 −8

3



· Y = O, Y (t) =

�
y1(t)
y2(t)
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is obtained by a matrix polynomial solution Y =

�
28t2 + 40

3 t+
4
3

−42t2 − 52
3 t−

10
3



. For the new

2D matrix di�erential equation by �nding the corresponding second-order di�erential
equations for y1(t) same di�erential equation (2.8) will be obtained as for x1(t).
While for y2(t) a new second-order di�erential equation

(t− 19

9
)(t2 +

4

3
t+

1

3
)y′′2 + (

1

3
t2 − 130

27
+

29

27
)y′2 + (−8

3
t+

328

27
)y2 = 0

is obtained by a polynomial solution y2(t) = t2 + 26
63 t+

205
2583 .

By repeating the same procedure for the second-order di�erential equation (2.9), the
second-order di�erential equation

(
1

2
t+

1

2
)(t2 +

4

3
t+

1

3
)x′′2 + (

1

6
t2 − 1

3
t− 1

2
)x′2 + (−4

3
t− 2

3
)x2 = 0

is obtained.

By the formulas (2.6) and a1 = 2, d1 = 1, for the quadratic equations per A, two
solutions are obtained. For the solution A = −8

3 , B = 1, the same 2D matrix

di�erential equation (2.7) is obtained. But, for the solution A⋆ = 2, B⋆ = −4
3 , the

new 2D matrix di�erential equation�
2t+ 3 2t+ 16

3
1
2 t+

1
2 t+ 1



· Z ′ +

�
2 0
0 −4

3



· Z = O,Z(t) =

�
z1(t)
z2(t)




is obtained by a polynomial solution Z =

�
56
9 t

2 + 176
9 t− 8

−28
3 t

2 − 8t+ 4
3



. For the new 2D matrix

di�erential equation by �nding the corresponding second-order di�erential equations
for z2(t) same di�erential equation (2.9) will be obtained as for x2(t). While for
z1(t) a new second-order di�erential equation

(2t+
16

3
)(t2 +

4

3
t+

1

3
)z′′1 + (

2

3
t2 +

28

9
t− 38

9
)z′1 + (−16

3
t− 68

9
)z1 = 0

is obtained by a polynomial solution

z1(t) = t2 +
22

7
t− 153

119
.

Remark 2.2: The 2D matrix di�erential equation (1.1) is better for examining the
integrability of second-order di�erential equations and it can also be used to study
systems of di�erential equations.

In [1, 2, 3, 4], the case of the subclass of 2D matrix equation (1.1) when b′ =
0, c′ ̸= 0 connected to a second-order di�erential equation (1.2) is considered.

Theorem 2.3. Let the 2D matrix di�erential equation (1.1) be given. Let the
conditions

a · b · c · d · (a · d− b · c) ·A ·B ̸= 0, b′ = 0, c′ ̸= 0, (2.10)
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be satis�ed.

If the conditions
S = 0, γ1 = 0, β2 = 0 (2.11)

i.e., the conditions (1.3) are satis�ed, then the 2D matrix di�erential equation (1.1)
corresponds to the second-order di�erential equation (1.2)

Proof. Let the 2D matrix di�erential equation (1.1) be given. Let the conditions
(2.10) are satis�ed. The 2D matrix equation (1.1) corresponds to the second-order
di�erential equations. In relation to the �rst component function x1(t), the equation
is

(ad− bc)x′′1 + (ad′ − c′b+ a′d+Ad+ aB)x′1 +A(d′ +B)x1 = 0 (2.12)

In terms of the second component function x2(t), the equation is

c(ad− bc)x′′2 +(ad′c+a′dc−adc′+Acd+acB)x′2+B(ca′− c′a+Ac)x2 = 0 (2.13)

The second-order di�erential equation (2.12) is equivalent to the second-order dif-
ferential equation of the form (1.2), if the following relations

b1 = S = 0, b2 = T, a1d1 = 1, a2d2 − b2c2 = R, a1d2 + a2d1 − b2c1 = Q,

β2 = 0, 2d1a1b2 +Ab2d1 +Ba1b2 = β1, (2.14)

d1a2b2 − c1b
2
2 + a1d2b2 +Ab2d2 +Ba2b2 = β0, γ1 = 0, A(Bb2 + d1b2) = γ0

are satis�ed. The condition (2.11) is obtained by them.

The second-order di�erential equation (2.13) is equivalent to the second-order dif-
ferential equation of the form (1.2), if the following relations

c1 = S, c2 = T, a1d1 = 1, a2d2 − b2c2 = R, a1d2 + a2d1 − b2c1 = Q,

a1d1c1 +Ac1d1 +Ba1c1 = β2,

2d1a1c2 +Ac1d2 +Ac2d1 +Ba1c2 +Ba2c1 = β1, (2.15)

d1a2c2 + a1d2c2 − c1a2d2 +Ac2d2 +Ba2c2 = β0,

ABc1 = γ1, B(Ac2 − c1a2 + a1c2) = γ0

are satis�ed.

From the equations of the system relations (2.14), the �rst condition of (1.3) is
obtained. From the equations of the system relations (2.15) and the �rst condition
from the conditions (1.3), the second condition of (1.3) is obtained.

According to a 2D matrix di�erential equation (1.1) correspond to two second-
order di�erential equations (1.2) that satisfy conditions (1.3), i.e., the conditions
(2.11). □

Theorem 2.4. Let the second-order di�erential equation (1.2) be given. Let the
conditions (2.11), i.e., the condition (1.3) be satis�ed. Then the second-order dif-
ferential equation (1.3) corresponds to the 2D matrix di�erential equation (1.1) for
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which the condition (2.10) is satis�ed. The coe�cients of the appropriate 2D matrix
di�erential equation with the form (1.1) are given by the formulas

b1 = S = 0, b2 = T, TA2 − (β1 − T )A+ a1γ0 = 0,

a1TB = β1 − 2T − d1TA, a2 =
1

B
(
β0
T

−Q−Ad2), (2.16)

c1 =
1

T
(a1d2 + a2d1 −Q), c2 =

1

T
(a2d2 −R), d1 =

1

a1

which satisfy the condition (β1 − T )2 − 4 · T · a1 · γ0 = k2, k ∈ R (a1 and d2 -
parameters for conditions (2.11)), i.e., by the formulas

c1 = S, c2 = T, Sd1A
2 − (β2 − S)A+ a1γ1 = 0, B =

γ1
AS

,

a2 =
T

S
a1 +

A

γ1
(
T

S
γ1 − γ0), d2 =

1

TA
(β0 + SR− TQ−BTa2), (2.17)

b2 =
1

T
(a2d2 −R), d1 =

1

a1

which satisfy the condition (β2 − S)2 − 4S · γ1 = k2, k ∈ R (a1 - parameter for the
conditions (1.3)).

Proof. By relations (2.14), the formulas (2.16) are obtained. By relations (2.15),
the formulas (2.17) are obtained. □

Example 2.2. Let the 2D matrix di�erential equation�
t− 1 3
t+ 2 t− 2



·X ′ +

�
3 0
0 −2



·X = O,Xn(t) =

�
x1(t)
x2(t)



(2.18)

is given by a matrix polynomial solution X =

�
−(3t− 10)
2t2 − 11t+ 8



. The 2D matrix

di�erential equation (2.18) coresponds to two second-order di�erential eqautions,

3(t2 − 6t− 4)x′′1 + (9t− 30)x′1 − 9x1 = 0 (2.19)

(t+ 2)(t2 − 6t− 4)x′′2 + (2t2 + 2t− 16)x′2 − (6t+ 18)x2 = 0 (2.20)

which satisfy the condition (1.3), i.e., the condition (2.11) by polynomial solutions

x1(t) = t− 10

3
, x2(t) = t2 − 11

2
t+ 4.

Let the second-order di�erential equation (2.19) is given. By the formulas (2.16),
for the quadratic equation per A, two solutions are obtained. For the solution A =
3, B = −2, the 2D matrix di�erential equation (2.18) is obtained. But, for the
solution A⋆ = −1, B⋆ = 2, the 2D matrix di�erential equation�

t− 3 3
1
3 t+

10
3 t− 2



· Y ′ +

�
−1 0
0 2



· Y = O, Y (t) =

�
y1(t)
y2(t)
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is obtained by a matrix polynomial solution Y =

�
−3(3t− 10)

t+ 16



. For the new 2D

matrix di�erential equation by �nding the corresponding second-order di�erential
equations for y1(t) same di�erential equation(2.19) will be obtained as for x1(t).
While for y2(t) a new second-order di�erential equation

(
1

3
t+

10

3
)(t2 − 6t− 4)y′′2 + (

2

3
t2 +

26

3
t− 32)y′2 + (−2

3
t+ 2)y2 = 0

i.e., the equation

(t+ 10)(t2 − 6t− 4)y′′2 + (2t2 + 26t− 96)y′2 + (−2t+ 6)y2 = 0

is obtained by a polynomial solution

y2(t) = t+ 16.

The same procedure for the second-order di�erential equation (2.20) is repeated.
By using the formulas (2.17) for the solution of the quadratic equation per A, two
solutions are obtained. For the solution A = 3, B = −2, the same 2D matrix
di�erential equation (2.18) is obtained. But, for the solution A⋆ = −2, A⋆ = 3 , a
new 2D matrix diferential equation�

t+ 4 18
t+ 2 t+ 8



· Z ′ +

�
−2 0
0 3



· Z = O,Z(t) =

�
z1(t)
z2(t)




by a matrix polynomial solution Z =

�
−(5t2 − 32t+ 35)

2t2 − 11t+ 8



. For the new 2D matrix

di�erential equation by �nding the corresponding second-order di�erential equations
for z2(t) same di�erential equation (2.20) will be obtained as for x2(t). While for
z1(t) a new second-order di�erential equation

18(t2 − 6t− 4)z′′1 + (54t− 180)z′1 + 144z1 = 0

is obtained by a polynomial solution z1(t) = t2 − 32
5 t+ 7.

3. Conclusion

In general, it can be concluded that the 2D matrix di�erential equation (1.1)
is connected with the second-order di�erential equation (1.2) and with systems of
di�erential equations, [12, 13, 15]. This connection can be used when studying
the properties of any of them, as of example: conditions for the existence of a
polynomial solution and its formula, a connection with classical polynomials and
polynomials orthogonal to a circular arc, etc., [1, 2, 3, 4, 5, 6]).

In [7] from the same aspect in the form of a system of di�erential equations,
another class of 2D matrix di�erential equations is considered. In fact, that class of
2D matrix di�erential equations is a subclass of the class of 2D matrix di�erential
equations (1.1).
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