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MODELLING A MASS-SPRING SYSTEM USING A SECOND-ORDER 

HOMOGENEOUS LINEAR ORDINARY DIFFERENTIAL EQUATION WITH 

CONSTANT COEFFICIENTS 

VIOLETA KRCHEVA 

Abstract. In this paper, a mass-spring system is considered. The system is modelled using 

a second-order homogeneous linear (ODE) with constant coefficients. Using this model, 

the behaviour of the system is studied. The most significant factor, the value of the 

damping, determines whether the case occurs: no damping, underdamping, critical 

damping, or overdamping. Each case is mathematically analysed to get parameters that 

impact how the motion system performs. The obtained solution, which demonstrates the 

behaviour of the system in a diagram plot of a displacement-time graph and a phase plane 

graph, is graphically presented in MATLAB software. 

1. Introduction 

A mass-spring system is a mechanical system consisting of three components: a mass 

(𝑚) measured in [𝑘𝑔], a damping coefficient (𝑐) measured in [𝑁𝑠/𝑚], and a spring 

constant (𝑘) measured in [𝑁/𝑚]. To solve a mass-spring system (of a physical nature), 

the system must be formulated as a mathematical expression in terms of variables, 

functions, equations, and so forth. Such an expression is called a mathematical model of 

the system. The process of setting up the model, solving it mathematically, and 

interpreting the results in physical or other terms, is known as modelling. [5], [9]  

Since many physical concepts, such as velocity and acceleration, are derivatives, the 

model of the system is very often an equation containing one or more derivatives of an 

unknown function. Such an equation, which is a relation between unknown functions and 

their derivatives, is known as an ordinary differential equation (ODE). A first-order ODE 

involves only the first derivative of the function, while a second-order ODE involves a 

second derivative of the function. A mass-spring system is a second-order linear ODE that 

has a variety of applications in science and engineering. The solution to this ODE, its 

properties, values, and graphs, interpreted in physical terms, lead to understanding the 

dynamic behaviour of the mass of the system. [3], [13], [15]  

Mass-spring systems are extensively studied in a variety of mathematical literatures 

(for example [1] - [15]). They are often mathematically modelled and analysed using 

second-order homogeneous linear ODEs with constant coefficients (see [4] and [7]). 

Such systems can also be modelled in MATLAB software, where appropriate simulations 

are presented to understand the analysis of the system and predict its behaviour (see [7], 

[8], [13] and [14]).1  

 
Date: September 08, 2023.  

Keywords. Mass, damping coefficient, spring constant, modelling, energy.  
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This paper is structured in five sections. After the introduction, the second section 

refers to the analysis of the mass-spring system using a second-order homogeneous linear 

ODE with constant coefficients. In the third section, the model of the system is created, 

and in the fourth section, the results are presented. According to the obtained  

results, the fifth section draws a conclusion and a potential application of the research. 

2. Analysis of a Mass-Spring System Using a Second-Order Homogeneous Linear 

ODE with Constant Coefficients 

An ordinary spring that resists compression as well as extension is suspended vertically 

from a fixed point (Fig. 1). At the lower end of the spring, a body of mass m is attached. 

It is assumed that the mass of the body is so large that the mass of the spring can be 

neglected. If the body is pulled down a certain distance and then released, it starts moving. 

That motion is assumed to be strictly vertical.  

 
Figure 1. Mechanical mass-spring system [10] 

The motion of the body, i.e., the displacement 𝑦(𝑡)  as a function of time 𝑡 , is 

determined by Newton's second law:  

𝑀𝑎𝑠𝑠 𝑥 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑚𝑦‘‘ = 𝐹𝑜𝑟𝑐𝑒      (2.1) 

where 𝑦‘‘ = 𝑑2𝑦/𝑑𝑡2 and “𝐹𝑜𝑟𝑐𝑒” is the resultant of all the forces acting on the body.  

According to Figure 1a), the spring is first unstretched. When the body is attached, the 

spring stretches by the amount 𝑠0 shown in the figure. This causes an upward force 𝐹0 in 

the spring, which is proportional to the stretch: 

𝐹0 = −𝑘𝑠0                                         (2.2) 

where: 𝑘 is the spring constant (𝑘 > 0), and the minus sign indicates that 𝐹0 is directed 

upward, in the opposite (or negative) direction.  

As a result of the extension 𝑠0 , the force 𝐹0  in the spring balances the weight  

(𝑊 = 𝑚𝑔) of the body (where 𝑔 is the gravitational constant). Consequently: 𝐹0 + 𝑊 =
−𝑘𝑠0 + 𝑚𝑔 = 0. These forces have no effect on the motion. Therefore, the spring and 

the body are at rest, and the system is in a state known as ‘static equilibrium’. The 
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displacement 𝑦(𝑡) of the body is measured from this ‘equilibrium point’ as the origin 𝑦 =
0 (Fig. 1b).  

When the body is pulled down from this position (Fig. 1c), the spring stretches by some 

amount 𝑦 > 0, which is the appropriate distance to the new position. By principle  

of Hooke's law, this displacement causes an additional upward force 𝐹1 in the spring: 

                                                                𝐹1 = −𝑘𝑦                                    (2.3) 

Therefore, 𝐹1 is also known as a restoring force because it tends to restore the system, 

i.e., to pull the body back to 𝑦 = 0.  

2.1. Undamped system 

Every system has damping because, without it, it would move forever. But, at a 

practical level, the impact of damping may often be negligible. The only force in (2.1) 

that causes the movement is 𝐹1. Accordingly, (2.1) gives the model 𝑚𝑦‘‘ = −𝑘𝑦 or: 

    𝑚𝑦‘‘ + 𝑘𝑦 = 0                               (2.1.1) 

The general solution to this equation is: 

       𝑦(𝑡) = 𝐴 cos 𝜔0𝑡 + 𝐵 sin 𝜔0𝑡                                    (2.1.2) 

where: 𝜔0 = √𝑘/𝑚, and the particular motion is called a harmonic oscillation.  

Given that the trigonometric function in (2.1.2) has an angular frequency 𝜔0 and a 

period  𝑇 = 2𝜋/𝜔0, the body performs 𝜔0/2𝜋 cycles per second. This is the frequency 

of the oscillation 𝑓, also called the natural frequency of the system. It is expressed as 

cycles per second, or hertz (Hz).  

Considering the sum in the previous formula, it can be combined into a phase-shifted 

cosine with amplitude 𝐶 = √𝐴2 + 𝐵2 and phase angle 𝛿 = 𝑎𝑟𝑐 tan(𝐵/𝐴), expressed as: 

             𝑦(𝑡) = 𝐶 cos(𝜔0𝑡 − 𝛿)                                        (2.1.3) 

It is obvious that the equation (2.1.2) is simpler in connection with initial value 

problems, while the equation (2.1.3) is physically more informative because it shows the 

amplitude and phase of the oscillation. Typical forms of harmonic oscillations (2.1.2) and 

(2.1.3) are illustrated in Figure 2a, all corresponding to some positive initial displacement 

𝑦(0)  that determines 𝐴 = 𝑦(0)  in (2.1.2) and different initial velocities 𝑦′(0)  that 

determine 𝐵 = 𝑦′(0)/𝜔0.  

2.2. Damped system  

With the addition of a damping force: 

       𝐹2 = −𝑐𝑦‘                    (2.2.1) 

to the model 𝑚𝑦‘‘ = −𝑘𝑦, that results in 𝑚𝑦‘‘ = −𝑘𝑦 − 𝑐𝑦‘ or 
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𝑚𝑦‘‘ + 𝑐𝑦‘ + 𝑘𝑦 = 0                     (2.2.2) 

the system becomes a damping system.  

From a physical point of view, this can be achieved by attaching the body to a dashpot 

(Fig. 1d). The new force is assumed to be proportional to the velocity 𝑦′ = 𝑑𝑦/𝑑𝑡, and 

the parameter 𝑐 (called the damping coefficient) is always positive.  

When 𝑦′ is positive, the body is moving downward in the positive direction. Accordingly, 

the damping force 𝐹2 = −𝑐𝑦′, as an upward force always acting in the opposite direction 

of the motion, i.e., in the negative direction, must be negative, 𝐹2 = −𝑐𝑦′ < 0, so −𝑐 <
0 and 𝑐 > 0.  

On the other hand, for an upward movement 𝑦′ < 0 and a downward force 𝐹2 =
−𝑐𝑦′ > 0, it follows that −𝑐 < 0 and 𝑐 > 0 (as in the previous case).  

In the case where the damping system is modelled by the second-order homogeneous 

linear ODE with constant coefficients (2.2.2), 𝜆  is a solution to the important 

characteristic equation (divided (2.2.2) by 𝑚): 

𝜆2 +
𝑐

𝑚
𝜆 +

𝑘

𝑚
= 0                    (2.2.3) 

and the exponential function: 

          𝑦 = 𝑒𝜆𝑥                                 (2.2.4) 

is a solution to (2.2.2).  

Depending on the amount of damping (much, medium, or little), there are three types 

of motion:  

• 𝑐2 > 4𝑚𝑘 (distinct real roots 𝜆1 and 𝜆2) → Overdamping, 

• 𝑐2 = 4𝑚𝑘 (a real double root) → Critical damping, 

• 𝑐2 < 4𝑚𝑘 (complex conjugate roots) → Underdamping.  

The roots of the quadratic equation are: 

        𝜆1 = −𝛼 + 𝛽, 𝜆2 = −𝛼 − 𝛽                                      (2.2.5)  

where: 𝛼 = 𝑐/(2𝑚), and 𝛽 = (1/2𝑚)√𝑐2 − 4𝑚𝑘.  

2.2.1. Overdamping 

Since the amount of the damping coefficient  𝑐 is so large that 𝑐2 > 4𝑚𝑘, then 𝜆1 and 

𝜆2 are distinct real roots. The corresponding general solution to (2.2.2) is: 

      𝑦(𝑡) = 𝑐1𝑒−(𝛼−𝛽)𝑡 + 𝑐2𝑒−(𝛼+𝛽)𝑡                                (2.2.6) 

In a case like this, the body does not oscillate because the damping takes out energy so 

rapidly. When 𝑡 > 0, both exponents in (2.2.6) are negative because of 𝛼 > 0, 𝛽 > 0, and 

also 𝛽2 = 𝛼2 − 𝑘/𝑚 < 𝛼2.  
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Consequently, both terms in (2.2.6) approach zero when 𝑡 → ∞. Practically speaking, 

the mass will be at rest at the static equilibrium position (𝑦 = 0) after a sufficiently long 

time. An example of characteristic motions in the overdamped case (2.2.6) for certain 

typical initial conditions is shown in Figure 2b and Figure 2c. 

  
Figure 2. a) Harmonic oscillations, (b) Positive and (c) Negative initial displacement in the 

overdamped case [10] 

2.2.2. Critical damping 

Critical damping is the boundary between non-oscillatory motions and oscillations, 

i.e., the boundary case between overdamping and underdamping. In this case (when 𝑐2 =

4𝑚𝑘 ), the characteristic equation has a real double root 𝜆1 = 𝜆2 = −𝛼 , where 𝛼 =

𝑐/(2𝑚) and 𝛽 = 0. Then the appropriate general solution is: 

𝑦(𝑡) = (𝑐1 + 𝑐2𝑡)𝑒−𝛼𝑡        (2.2.7) 

This solution can pass through the equilibrium position 𝑦 = 0 once at most because 

𝑒−𝛼𝑡 is never zero and the sum 𝑐1 + 𝑐2𝑡 can have at most one positive zero. If both 𝑐1 

and 𝑐2 are positive (or both are negative), it has no positive zero, so 𝑦 does not pass 

through zero at all. An example of characteristic motions in the case of critical damping 

(2.2.7) for certain typical initial conditions is illustrated in Figure 3a).  

2.2.3. Underdamping  

This case occurs when the damping coefficient  𝑐 is so small that 𝑐2 < 4𝑚𝑘. Then 𝛽 

in (2.2.5) is no longer real but imaginary, and: 

𝛽 = 𝑖𝜔∗                                                    (2.2.8) 

where: 𝜔∗ = (1/2𝑚)√4𝑚𝑘 − 𝑐2 = √(𝑘/𝑚) − (𝑐2/4𝑚2)   > 0.  

The roots of the characteristic equation are complex conjugate: 

       𝜆1 = −𝛼 + 𝑖𝜔∗, 𝜆2 = −𝛼 − 𝑖𝜔∗                               (2.2.9) 

where: 𝛼 = 𝑐/(2𝑚).  

Consequently, the corresponding general solution is: 

𝑦(𝑡) = 𝑒−𝛼𝑡(𝐴 cos 𝜔∗𝑡 + 𝐵 sin 𝜔∗𝑡) = 𝐶𝑒−𝛼𝑡 cos(𝜔∗𝑡 − 𝛿)     (2.2.10) 

where: 𝐶2 = 𝐴2 + 𝐵2, and tan 𝛿 = 𝐵/𝐴 as in (2.1.3).  



MODELLING A MASS-SPRING SYSTEM USING A SECOND-ORDER HOMOGENEOUS  

LINEAR ORDINARY DIFFERENTIAL EQUATION WITH CONSTANT COEFFICIENTS  

12 
 

This is a representation of damped oscillations. Their curve lies between the dashed 

curves 𝑦 = 𝐶𝑒−𝛼𝑡 and 𝑦 = −𝐶𝑒−𝛼𝑡 in Figure 3b). It touches them when 𝜔∗𝑡 − 𝛿 is an 

integer multiple of 𝜋 because at these points cos(𝜔∗𝑡 − 𝛿) equals 1 or −1.  

The frequency 𝑓 in the underdamping case is 𝜔∗/2𝜋 Hz. According to (2.2.8), the 

smaller damping coefficient  𝑐 (> 0)  is, the angular frequency 𝜔∗  is larger, and the 

oscillations become more rapid. If 𝑐 approaches zero, then 𝜔∗ approaches 𝜔0 = √𝑘/𝑚 

and the harmonic oscillation (2.1.2), whose frequency is 𝜔0/2𝜋, becomes the natural 

frequency of the system.  

  
Figure 3. (a) Critical damping, (b) Damped oscillation in the underdamping case [10]  

3. Setting up the model  

The physical model of the mass-spring system and its characteristics were explained in 

Figure 1. The amount of damping coefficient, as a significant parameter that affects the 

system and causes various cases of damping oscillations, was also exposed in Figures 2 

and 3. Four particular cases of motion in the damping system, depending on the presence 

and amount of the damping, were modelled and expressed by the ODEs specified above.  

Considering that the components of a spring-mass system are mass  𝑚 , damping 

coefficient 𝑐,  and spring constant 𝑘,  an unforced, damped oscillator can be 

mathematically modelled by the second-order homogeneous linear ODE with constant 

coefficients in the form of (2.2.2).  

The values of the mass (𝑚 = 1), and the spring constant (𝑘 = 16) are assumed to be 

constant, while the value of the damping coefficient gradually increases in the four 

following cases:  

• 𝑐 = 0 → Case of no damping, 

• 𝑐 = 2 → Case of under damping, 

• 𝑐 = 8 → Case of critical damping,  

• 𝑐 = 10 → Case of overdamping. 

The ODE (2.2.2) is mathematically analysed and solved for each case, and an 

appropriate mathematical model based on the values of the components is obtained.  

These cases are also modelled and solved in the Matlab software with the function 

‘Van der Pol (VDP) oscillator’, a simulation of the Van der Pol differential equation. In 

order to use this function, the second-order ODE (2.2.2) is first converted to a system of 

first-order ODEs, i.e., when: 
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𝑦1
′ = 𝑦2, 𝑦2

′ = 𝑦1
′′ and 𝑦1 = 𝑦                                (3.1) 

then: 

    𝑚𝑦2′ + 𝑐𝑦2 + 𝑘𝑦1 = 0                                        (3.2) 

The equation (3.2) can be written as: 

      𝑚𝑦2
′ = −𝑐𝑦2 − 𝑘𝑦1                                           (3.3) 

where: 

     𝑦2
′ =

−𝑐𝑦2−𝑘𝑦1

𝑚
= 𝑦′′                                           (3.4) 

Hence, the resulting system of first-order ODEs is the following: 

       {
𝑦1

′ = 𝑦2

𝑦2
′ =

−𝑐𝑦2−𝑘𝑦1

𝑚

                                                 (3.5) 

The Matlab code for this system is written as: 

Matlab Code 1  

function dydt = vdpt(t,y,c,k,m); 

dydt = zeros (2,1); 

dydt(1) = y(2); 

dydt(2) = (-c*y(2)-k*y (1)) /m; 

 

To compute the solution in the software, the initial conditions 𝑦(0) = 1 and 𝑦′(0) =

0 over the interval [0,20] are taken. They are the same in the four cases, for which a plot 

of displacement versus time, i.e., a plot of the current position of the displacement as a 

function of time, and a plot of 𝑦‘  versus 𝑦 , i.e., a phase plane plot, are particularly 

computed. 

4. Results and discussion 

The behaviour of the spring-mass system with a variable value of the damping 

coefficient, which is modelled using (2.2.2) for four cases, is explained in following. 

• Case of no damping → 𝑚 = 1, 𝑐 = 0, and 𝑘 = 16, 

In the case of no damping, the mass 𝑚 = 1, the damping coefficient 𝑐 = 0, and the 

spring constant 𝑘 = 16, the mathematical model of (2.1.1) has the form: 

    𝑦′′ + 16𝑦 = 0                                                      (4.1) 

According to (2.1.3), the general solution is: 
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                                                          𝑦 = cos 4𝑥                                                          (4.2) 

This equation represents the motion of the mass on the spring, graphically shown in 

Figure 4a) on a plot of the current position of the displacement as a function of time. It is 

obvious that the mass undergoes harmonic oscillation, which takes between +1 and -1 for 

the value of the amplitude 𝐶 , repeats itself over period 𝑇 = 1.57 , has the angular 

frequency 𝜔0 = 4, the frequency of oscillations 𝑓 = 0.64𝐻𝑧, and the phase angle 𝛿 = 0. 

This indicates that the oscillation is almost equal to or strictly equal to its natural 

frequency of the system.  

The phase space plot in Figure 4b) clearly shows the phase relationship between 

velocity and position. As the spring oscillates, the phase diagram creates a clockwise 

ellipse. This direction is determined by the negative sign on the equation of motion (2.2). 

Without damping, the system will perform endless motion with a specified velocity in this 

phase space.  

 
Figure 4. (a) Plot of 𝑦 versus 𝑡, (b) Plane plot of 𝑦‘ versus 𝑦 

• Case of underdamping → 𝑚 = 1, 𝑐 = 2, and 𝑘 = 16,  

In the case of underdamping, the mass 𝑚 = 1, the damping coefficient 𝑐 = 2, and the 

spring constant 𝑘 = 16, the mathematical model of (2.2.2) has the form: 

         𝑦′′ + 2𝑦′ + 16𝑦 = 0                                                   (4.3) 

The roots of the characteristic equation are complex conjugate (2.2.9): 

𝜆1 = −1 + 𝑖√15, 𝜆2 = −1 − 𝑖√15                                     (4.4) 

Solving the coefficients 𝐴 = 1 , 𝐵 = 0 , 𝐶 = 1 , 𝛼 = 1, 𝛽 = 𝑖√15 , the angular 

frequency 𝜔∗ = √15, and the phase angle 𝛿 = 0, the general solution (2.2.10) is: 

𝑦 = 𝑒−𝑥 cos √15𝑥     (4.5) 

This equation represents the underdamped motion with a small amount of damping, 

which is illustrated in Figure 5a) on a plot of the current position of the displacement as a 

function of time. It is significant that the amplitude gradually decreases (to zero), but the 



        MODELLING A MASS-SPRING SYSTEM USING A SECOND-ORDER HOMOGENEOUS         

          LINEAR ORDINARY DIFFERENTIAL EQUATION WITH CONSTANT COEFFICIENTS 

   

 

15 
 

period and the frequency are nearly the same as if the system were not damped at all. This 

happens because of the system losing energy because of the active damping force.  

The phase plane plot in Figure 5b) also shows that the system is losing energy. As the 

amplitude of the position decreases, the phase diagram spirals inward, suggesting that the 

motion of the system will be oscillating with decreasing amplitude. The direction of the 

trajectory, according to the initial conditions, starts from zero and continues in a clockwise 

direction again (as in the case of no damping), indicating that the energy continuously 

decreases with time and eventually disappears.  

 
Figure 5. (a) Plot of 𝑦 versus 𝑡, (b) Plane plot of 𝑦‘ versus 𝑦  

When the amount of damping in a system gradually increases, the period and 

frequency begin to be affected. The damping force opposes the forces in the spring and 

slows the motion of the spring in both directions. In cases where the amount of damping 

is larger (the next two cases), the system does not even oscillate, but it slowly moves 

towards equilibrium. 

• Case of critical damping → 𝑚 = 1, 𝑐 = 8, and 𝑘 = 16,  

In the case of critical damping, the mass 𝑚 = 1, the damping coefficient  𝑐 = 8, and 

the spring constant 𝑘 = 16, the mathematical model of (2.2.2) has the form: 

         𝑦′′ + 8𝑦′ + 16𝑦 = 0                                                   (4.6) 

The roots of the characteristic equation are complex conjugate (2.2.5): 

    𝜆1 = −4, 𝜆2 = −4                                              (4.7) 

Solving the coefficients 𝐶1 = 1, 𝐶2 = 4, 𝛼 = 4, 𝛽 = 0, the general solution (2.2.7) is: 

𝑦 = (1 + 4)𝑒−4𝑥     (4.8) 

This equation represents the case of critical damping by the curve in Figure 6a) where 

a plot of displacement versus time is given. It is obvious that the spring returns to 

equilibrium (at 𝑦 = 0 ) rapidly and remains in that position without exceeding or 

oscillating about it.  
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The phase plane plot in Figure 6b) is radically different from that of the no damping 

and underdamping cases. It illustrates that the direction of the trajectory, according to the 

initial conditions, starts from zero and continues in a clockwise direction (as in the 

previous cases), indicating that the velocity of the mass starts from zero, reaches its 

maximum value, and in the shortest possible time, i.e., for the smallest displacement, 

returns to zero.  

  
Figure. (a) Plot of 𝑦 versus 𝑡, (b) Plane plot of 𝑦‘ versus 𝑦  

• Case of overdamping → 𝑚 = 1, 𝑐 = 10, and 𝑘 = 16,  

In the case of overdamping, the mass 𝑚 = 1, the damping coefficient 𝑐 = 10, and the 

spring constant 𝑘 = 16, the mathematical model of (2.2.2) has the form: 

𝑦′′ + 10𝑦′ + 16𝑦 = 0                                             (4.9) 

The roots of the characteristic equation are complex conjugate (2.2.5): 

𝜆1 = −2, 𝜆2 = −8          (4.10) 

Solving the coefficients 𝐶1 = 4/3, 𝐶2 = −1/3, 𝛼 = 5, 𝛽 = 3 , the general solution 

(2.2.6) is: 

𝑦 =
4

3
𝑒−2𝑥 −

1

3
𝑒−8𝑥          (4.11) 

The curve in Figure 7a) illustrates the function of displacement versus time for the 

overdamping case. It returns (exponentially decays) to equilibrium without exceeding or 

oscillating about it. So, the difference between the overdamping case and the critical 

damping case is that in the critical damping case oscillations do not happen at all, and the 

amplitude of oscillation in the overdamping case moves more slowly towards equilibrium 

than in the critically damped system.  

The phase plane plot in Figure 7b) can also be considered similar for the critical 

damping case. The direction of the trajectory in the phase plane starts from zero, continues 

in a clockwise direction again, reaches its maximum value, and returns to zero, confirming 

that the mass is slowly reaching equilibrium.  
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Figure 7. (a) Plot of 𝑦 versus 𝑡, (b) Plane plot of 𝑦‘ versus 𝑦 

5. Conclusion 

In this paper, an analysis of a mass-spring system using a second-order homogeneous 

linear ODE with constant coefficients is presented. Considering the value of the damping 

as the most significant component of the system, four different cases are analysed with 

exact equations, solved analytically, and computed in MATLAB software.  

In real mass-spring systems, the damping slows the motion of the systems. In the case 

of underdamping, the mass oscillates with amplitude decreasing to zero in comparison to 

the case of no damping. In the case of critical damping, the mass returns to equilibrium 

as fast as possible without oscillating, and in the overdamping case, the mass returns to 

equilibrium for a longer period of time, compared to the critically damped case, without 

oscillating.  

Therefore, the main advantage of the study in this paper is the opportunity to examine 

the impact of the presence and value of damping in the mass-spring system in order to 

visualise and monitor the dissipation of the energy stored in the system. Despite the 

variable value of the damping, with variations in the value of the mass, spring constant, 

initial conditions, or interval in MATLAB software (using the created code), different 

mass-spring systems can be examined.  

This study is further recommended for analysis and research when discussing the 

potential energy (which depends on the position) and kinetic energy (which depends on 

the velocity of the mass) when attempting to make an appropriate application of the mass-

spring systems. 
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