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The Appendix 

In honor of the first Doctor of Mathematical Sciences Acad. Blagoj Popov, a mathematician 

dedicated to differential equations, the idea of holding the "Day of Differential Equations" was born, 

prompted by Prof. Ph.D. Boro Piperevski, Prof. Ph.D. Borko Ilievski, and Prof. Ph.D. Lazo Dimov. 

Acad. Blagoj Popov presented his doctoral dissertation on 05.05.1952 in the field of differential 

equations. This is the main reason for holding the "Day  of Differential Equations" at the beginning of 

May. 

This year on May 5th, the "Day of Differential Equations" was held for the seventh time under 

the auspices of the Faculty of Computer Sciences at "Goce Delcev" University in Stip and Dean Prof. 

Ph.D. Saso Koceski, organized by Prof. Ph.D. Biljana Zlatanovska, Prof. Ph.D. Marija Miteva and Prof. 

Ph.D. Limonka Koceva Lazarova.  

The participants of this event were: 

1. Prof. Ph.D. Aleksa Malcheski from the Faculty of Mechanical engineering at Ss. Cyril 

and Methodius University in Skopje; 

2. Prof. Ph.D. Slagjana Brsakoska from the Faculty of Natural Sciences and Mathematics 

at Ss. Cyril and Methodius University in Skopje; 

3. Prof. Ph.D. Natasa Koceska, Prof. Ph.D. Limonka Koceva Lazarova, Prof. Ph.D. Marija 

Miteva and Prof. Ph.D. Biljana Zlatanovska from the Faculty of Computer Sciences at 

Goce Delcev          University in Stip; 

4. Ass. Prof. Ph.D. Biljana Citkuseva Dimitrovska and Ass. M.Sc. Maja Kukuseva Panova 

from the Faculty of Electrical Engineering at   Goce Delcev University in Stip. 
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The papers that emerged from the "Day of Differential Equations" are in the appendix to this 
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ONE APPROACH TO THE ITERATIONS OF THE VEKUA EQUATION 

SLAGJANA BRSAKOSKA AND ALEKSA MALCHESKI 

Abstract. In this paper one old and one new approach to the iterations of 

the Vekua equation in its most simple form are given. Some comparison 

is made and the conclusions are formulated as theorems.  

1. Introduction 

 The equation 

d̂W
AW BW F

dz
     (1.1) 

where  A A z ,  B B z  and  F F z  are given complex functions from a complex 

variable 𝒛 ∈ 𝑫 ⊆ ℂ is the well-known Vekua equation [1] according to the unknown 

function  W W z u iv   . The derivative on the left side of this equation has been 

introduced by G. V. Kolosov in 1909 [2]. During his work on a problem from the theory 

of elasticity, he introduced the expressions:  

ˆ1

2

u v v u dW
i

x y x y dz

     
     

     
     (1.2) 

and 

ˆ1

2

u v v u dW
i

x y x y dz

     
     

     
      (1.3) 

known as operator derivatives of a complex function      , ,W W z u x y iv x y    from a 

complex variable z x iy   and z x iy  correspondingly. The operating rules for these 

derivatives are completely given in the monograph of Г. Н. Положиǔ [3] (pages18-31). 

In the mentioned monograph are defined the so-called operator integrals ( )f z dz



  and 

( )f z dz



  from z x iy   and  z x iy   correspondingly (pages 32-41). As for the 

complex integration in the same monograph it is emphasized that it is assumed that all 

operator integrals can be solved in area D. 

 In the Vekua equation (1.1) the unknown function ( )W W z  is under the sign of 

a complex conjugation which is equivalent to the fact that  B B z  is not identically 

equaled to zero in D. That is why for (1.1) the quadratures that we have for the equations 

where the unknown function ( )W W z  is not under the sign of a complex conjugation, 

stop existing.  

 This equation is important not only for the fact that it came from a practical 

problem, but also because depending on the coefficients A, B and F, the equation (1.1) 
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defines different classes of generalized analytic functions. For example, for   0F F z   

in D the equation (1.1) i.e., 

d̂W
AW BW

dz
   (1.4) 

which is called canonical Vekua equation, defines the so-called generalized analytic 

functions from the fourth class; and for 0A   and 0F   in D, the equation (1.1) i.e., the 

equation 
d̂W

BW
dz

  defines the so-called generalized analytic functions from the third 

class or the (r+is)-analytic functions [3], [4]. 

 Those are the cases when 0B  . But if we put 0B  , we get the following special 

cases. In the case 0A  , 0B   and 0F   in the working area 𝑫 ⊆ ℂ the equation (1.1) 

takes the following expression 
ˆ

0
dW

dz
  and this equation, in the class of the functions 

   , ,W u x y iv x y   whose real and imaginary parts have unbroken partial derivatives 

, ,x y xu u v    and 
yv  in D, is a complex writing of the Cauchy - Riemann conditions. In other 

words, it defines the analytic functions in the sense of the classic theory of the analytic 

functions. In the case 0B   in D, i.e., 
d̂W

AW F
dz

   is the so cold areolar linear 

differential equation [3] (pages 39-40) and it can be solved with quadratures by the 

formula: 

 

   
 A z dz A z dz

W e z F z e dz

 

  
 

   
 
  

 . 

Here ( )z    is an arbitrary analytic function in the role of an integral constant. 

 

2. Iterations in the Vekua equation  ,
W

A z z W
z





  

   

Let us write an integral form of the equation  

 ,
W

A z z W
z





       (2.1) 

i.е.,  

   ,W A z z Wdz C z



        (2.2) 

Let us define a sequence 

         1
, ,

n n
W z z A z z W dz C z




     (2.3) 

with the condition    0
def

W C z          (2.4) 

We have that: 
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       

     

1 0
,

,

def

W C z A z z W dz

C z A z z C z dz





  

 





 

and then 

       

         

         

 

2 1
,

, ,

, ,

def

W C z A z z W dz

C z A z z C z A z z C z dz dz

C z A z z C z A z z C z d z dz

C z ACdz A ACdz dz



 

 

  

  

 
    

  

 
    

 

 
    

 



 

 

  

 

       

   

 

 

3 2
,

def

W C z A z z W dz

C z A C z ACdz A ACdz dz dz

C z A C ACdz A ACdz dz dz

C z A C ACd z dz A A ACdz dz dz



   

   

    

  

  
       

  

  
      
   

    
        
     



   

   

    

 

   

 

 

3
W C z A C ACd z dz A A ACdz dz dz

C z A C ACdz dz A A ACdz d z dz

C z ACdz A ACdz dz A A ACdz dz dz

    

    

     

    
        
     

    
         

    

    
         

    

    

    

     

 

From the previous, we can see that: 

       1 0
,W W A z z C z dz



    

   2 1
W W A ACdz dz

  
   

 
   

   3 2
W W A A ACdz dz dz

    
     

  
    

where from with induction we can approximate the difference: 
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   1

1

n n

n интеграли

W W A A A ACdz dz dz dz

   




   
       

   
     

where the last integral is either ACdz



  or ACdz



  depending on whether n  is even or odd, 

but that is not relevant if we want to take  a module of it. So: 

     1 nn n
W W A A A A C z dz

   

       

since     ,dz dz C z C z  . 

or         
 

1

11
,

1 !

n

nn n z
W W A z z C z

n




 


 

but because of 

           1 0
, max , maxW W A z z C z dz A z z C z z



      

from 

       
 

    

1

1
max , max

1 !

1
max ,

! 1

n

n n

n

z
W W A z z C z

n

z
A z z C z z

n n




   



    


 

we have that 

       1 1 0 1

! 1

n

n n z
W W W W

n n


    


 

Since for every finite z R , the function 
n

z  is smaller than !n , and for large n   

!
n

z n  for z R  or 1
!

n
z

q
n

   

and we will have  

       1 1 0

1

n n q
W W W W

n


   


 

which means that    
   1

0,
n n

W W n

    

i.е., the operator (2.3) is an operator of contraction, and with inequality for connection 

between !n  and na , we can write the following inequalities  
       1 1 0n n nW W q W W

    

where 1q  . So, we have the following: 

 

Theorem 2.1. The process of iteration in the conjugated Vekua equation (2.1) is 

convergent, the operator (2.2) is an operator of contraction and the sequence 
         0 1 2 3

, , , , , ,
n

W W W W W  is convergent and its limit is the solution of the equation 

(2.1). 
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As the function does not have a successful quadrature solution to the equation (2.1), 

mainly due to the absence (or unsuitability) of the integral calculus to the operation 

 ,W z z , or the impossibility of realizing the indefinite integral  ,W z z dz



  exactly 

through finite formulas, this theorem is still attractive in the treatment of the Vequa 

equation to this day, and thus to many tasks of mathematical physics. 

 

3. Vekua equation  ,
W

A z z W
z





 

Attempt for algebraic iterations 

 

Let us avoid the nonlinearity in W , i.е., to replace it with another nonlinearity. So, we 

have: 

 
2

,
WW

A z z
z W





 

If we multiply with 2W , we have that 

 
2

2 2 ,
W

W A z z W
z





 

and the left side is the exact derivative 

   
22 2 ,W A z z W

z





 

where with the areolar integral  

   
22 2 ,W A z z W dz C z



   

where  C z is an analytic function of z  and is a "generalized constant". All equation 

operations require an explicit normal form. Therefore, we must introduce a square root, 

which means a multivalued solution 

     
2

, 2 ,W z z C z A z z W dz



    

so the nonlinearity is transferred to the square root and the square of the modulus 
2

W .  

It will interfere a lot in the iterations, which can be seen from the following. If we 

introduce a sequence 

        
2

1
2 ,

def
n n

W C z A z z W dz




    with    0
def

W C z  

we have that 
           1

2 , 1 2 ,W C z C z A z z dz C z A z z dz

  
    

 
   

but 
 2

W  already gives 

       
2

2 1
2 ,

def

W C z A z z W dz



    
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where from (
           2

2 , 2 ,
def

W C z A z z C z C z A z z dz dz

  
   

 
    ) 

       

 

2
2 2

1 2 4

def

W C z A C z C z Adz dz

C z Adz A Adz dz

 

  

 
    

 

  
     

  

 

  

 

     

   

 

 

2
3 2

2

2 1 2 4

1 2 1 2 4

1 2 4 8

def

W C z A W dz

C z A C z Adz A Adz dz dz

C z A Adz A Adz dz dz

C z Adz A Adz dz A A Adz dz dz



   

   

     

  

   
         

   

   
        

    

     
         

      



   

   

     

 

     

   

 

2
4 3

2

2 1 2 4 8

1 2 4 8 16

def

W C z A W dz

C z A C z Adz A Adz dz A A Adz dz dz dz

C z Adz A Adz dz A A Adz dz dz A A A Adz dz dz



      

       

  

      
                    

        
                       



      

        dz

  
 

  
 

 

etc. 

Here we do not have the part with multiple integrals. Is there any contraction? We have 

 

         

   

 

 

   

 

   

 
    

1 0

1
2

1 1
2 2

1

1 1 1 1

1 1

1 1 1 1

,

W W C z C z Adz C z

C z Adz C z C z Adz

C z C z Adz

C z Adz C z Adz

C z C z Adz

A z z C z z
C z A z



 



 



    

   

     

   

 



 


 


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            

 
       

1
1 1 0 2

1
2

1 0 1 0

1
max ,

! 1

! 1

n

n n

n
n

z
W W W W A z z C z z

n n

M R
W W q W W

n n


      



    


 

where 
 

1
2

1
! 1

n
n M R

q
n n

 


         

for finite R and large enough. We see that in this case the convergence of the iterations is 

preserved and the contraction coefficient is almost the same; however, this algebraic 

method is not suitable for practice, due to the difficulty of calculating the integrals of the 

square roots in the iterations. 

 

4. Vekua equation with one continuous coefficient  ,A z z  

 

Let us consider the Vekua equation a bit more generally,  

 ,
W

A z z
z





 

If we write an integral form (or an integral equation for the unknown  ,W z z ): 

   ,W A z z Wdz C z



   

If, in the same way, we introduce a series of functions, which are determined from each 

other 

         1
, ,

n n
W z z A z z W dz C z




   

with the initial condition 

   0
def

W C z  

then       

       

   

1 0
,

1 ,

def

W A z z W dz C z

C z A z z dz





  

 
  

 





 

       

       

       

2 1
,

, 1 ,

1 , , ,

def

W A z z W dz C z

A z z C z A z z dz dz C z

C z A z z dz A z z dz A z z dz



 

  

  

  
     

   

 
   

 



 

  

 

 

etc. With full induction we have that: 
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         

     

1 , , ,

, , ,

n
W C z A z z dz A z z dz A z z dz

A z z dz A z z dz A z z dz

  

  


   




  



  

  

 

The problem now is how to sum these successive multiple integrals  

     , , ,nI A z z dz A z z dz A z z dz

  

     

Let us take the first multiple integral to be equal to I . The integral  

   2 , ,

dv

u

I A z z dz A z z dz

 

    

If we apply partial integration with 

   , , ,u A z z dz dv A z z dz



   

   , , ,du A z z dz v A z z dz



    

we have that 
!

n

n

Adz

I
n

 
 
 




. 

If in    ,
n

W z z  we substitute 2 3, , , ,nI I I  we get 

     

1 2 3

, [1 ]
1! 2! 3! !

n

n

Adz Adz Adz Adz

W z z C z
n

          
       
       

     

   
 

Also 
1 2

1
1! 2! !

n
t t t t

e
n

       

which is valid not only for real t , but also for complex, for  t f z dz  , for 

 ,t A z z dz



   we have 

1 2 3

1! 2! 3! !

n

Adz
Adz Adz Adz Adz

e
n



          
       

        
     

   
 

whence it follows that    ,
n

W z z  is n-th partial sum for 
Adz

e




. So 

     
0

,
!

k

n
n

k

Adz

W z z C z
k





 
 
 




  
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   

 

 
 ,

0

,

lim , lim
!

k

A z z dzn

n n
k

A z z dz

W z z C z C z e
k





 


 
 

 
 


   (4.1). 

We can formulate the following:  

 

Theorem 4.1. For the solution of the Vequa equation (1.1) where  ,A z z  is a continuous 

coefficient of the two independent variables z  and z , the solution is given by (4.1). 

  

In doing so, the iteration procedure determined by previous formulas converges to (4.1) 

and represents one contraction, and the contraction coefficient is  

 

 

,

1 !

k

n

A z z dz

q
n n




 


 

whereby a contraction condition applies 
       1 1 0

, 1
nn n

W W q W W q

     

in the field z R and  ,A z z  - continuous. 

 

Note: The same can be done for the Vekua equation with generalized derivative 

 ,
W

A z z W
z





. 

Important note: Although the derivation is analytic, the solution will not be analytic 

due to the existence of a non-analytic element  ,A z z . 

 

5. Conclusion 

 

  In the above mentioned iteration methods, all methods have their positive and 

negative properties, but the algebraic method has a more practical value than the first one. 
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