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REICH-TYPE CONTRACTIVE MAPPING INTO A COMPLETE METRIC 

SPACE AND CONTINUOUS, INJECTIVE AND SUBSEQUENTIALLY 

CONVERGENT MAPPING 

SAMOIL MALCHESKI  

Abstract. In this paper, a generalization of the fixed point theorem of the Reich-

type mapping on a complete metric space ( , )X d  is given. Continuous, injective 

and sub-sequentially convergent mapping T  was used, as well as it is taken that 

function f  is from the class   continuous monotonically nondecreasing 

functions : [0, )f   [0, )  such that 
1(0) {0}f   , where it is additionally 

assumed that it is subadditive, i.e. ( ) ( ) ( )f x y f x f y   , for each 

, [0, )x y  .  

1. Introduction 

Let ( , )X d  be a metric space. The mapping :S X X  is called a contraction if it exists 

(0,1)   such that for each ,x y X  holds true  

( , ) ( , )d Sx Sy d x y .  (1.1) 

If the metric space ( , )X d  is complete, then the mapping T  for which condition (1.1) 

is satisfied has a unique fixed point. This result is known in the literature as Banach's fixed 

point principle ([4]). Later, in 1968, it was generalized by R. Kannan ([3]), and in 1972 

its generalization was given by S. K. Chatterjea ([5]).   

In 1971, S. Reich ([10]) gave a new generalization of the Banach's fixed point principle 

as follows:  

Theorem 1.1. If the mapping :S X X  where ( , )X d  is a complete metric space, it 

satisfies the inequality  

( , ) ( , ) ( , ) ( , )d Sx Sy ad x Sx bd y Sy cd x y   ,   (1.2) 

where 0, 0a b 
 
and 0c   are such that 1a b c    and ,x y X , then S  has a unique 

fixed point.  

If S  satisfies the condition (1.2), then for S  we say that it is a Reich-type mapping.  

Furthermore, in [9] S. Moradi and D. Alimohammadi generalize R. Kannan's result, 

using the sequentially convergent mappings, and in [1] several generalizations of Kannan 

and Chatterjea's theorems are proved, using the sequentially convergent mappings, which 

are defined as follows.  

 
______________________ 

Keywords. Reich-type contractive mapping, complete metric space, sequentially convergent, subsequentially 

convergent mapping. 
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Definition 1.1. ([8]). Let ( , )X d  be a metric space. A mapping :T X X  is said to be 

sequentially convergent if we have, for every sequence { }ny , if { }nTy  is convergence then 

{ }ny  is also convergence. A mapping T  is said to be sub-sequentially convergent if we 

have, for every sequence { }ny , if { }nTy  is convergence then { }ny  has a convergent 

subsequence. 

In [8] S. Moradi and A. Beiranvand introduce the concept of fT  contractive mapping, 

whereby they use the class   of continuous monotonically nondecreasing functions 

: [0, ) [0, )f     such that 
1(0) {0}f   , which is defined as follows.  

Definition 2 ([8]). Let ( , )X d  be a metric space, , :S T X X  and f  . A mapping 

S  is said to be fT  contraction if there exist (0,1)  such that  

( ( , )) ( ( , ))f d TSx TSy f d Tx Ty  ,  (1.3) 

for all ,x y X .  

Let us note here that, if f  , then from 
1(0) {0}f    it follows that ( ) 0f t  , for each 

0t  . S. Moradi and A. Beiranvand prove that if S  is fT  contractive mapping, then S  

has a unique fixed point. Then, in [2], M. Kir and H. Kiziltunc generalize the result of S. 

Moradi and A. Beiranvand for Kannan and Chatterjea type mappings. In [7] the results of 

Kir and Kiziltunc are generalized and their application is given, while in [6] a 

generalization of the Reich-type mapping using sequentially convergent mappings is 

given. In the following considerations we will give a generalization of the Reich-type 

mapping using sub-sequentially convergent mappings, which were also introduced by S. 

Moradi and A. Beiranvand ([8]).  

 

2. Mains results 

Theorem 2.1. Let ( , )X d  be a complete metric space :S X X , f   is such that 

( ) ( ) ( )f p q f p f q   , for each , [0, )p q   and mapping :T X X  is continuous, 

injective and sub-sequentially convergent. If exist 0, 0a b 
 
and 0c   such that 

1a b c    and  

( ( , )) ( ( , )) ( ( , )) ( ( , ))f d TSx TSy af d Tx TSx bf d Ty TSy cf d Tx Ty  
 

(2.4) 

for each ,x y X , then S  has a single fixed point and for each  0x X  the sequence 

0{ }nS x  converges to the fixed point.  

Proof. Let 0x  be an arbitrary point from X  and let the sequence { }nx  be determined by 

1n nx Sx  , 0,1, 2,3,...n  . From inequality (4) it follows that 

1 1

1 1 1

1 1

( ( , )) ( ( , ))

( ( , )) ( ( , )) ( ( , ))

( ( , )) ( ) ( ( , )),

n n n n

n n n n n n

n n n n

f d Tx Tx f d TSx TSx

af d Tx TSx bf d Tx TSx cf d Tx Tx

af d Tx Tx b c f d Tx Tx

 

  

 



  

  
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i.e.  

1 11
( ( , )) ( ( , ))b c

n n n na
f d Tx Tx f d Tx Tx

 
 . 

According to that, for 
1

1b c
a



    holds true 

1 1( ( , )) ( ( , ))n n n nf d Tx Tx f d Tx Tx   ,  (2.5) 

for each 1,2,3,...n  . From inequality (2.5) it follows that  

1 1 0( ( , ) ) ( ( , ))n
n nf d Tx Tx f d Tx Tx   ,  (2.6) 

for each 1,2,3,...n  . Now, from inequality (2.6), the properties of the metric and the 

monotonicity and subadditivity of the function f , it follows that for each ,m n R  n m  

holds true  
1

1

1

1

1

1 0

1 01

( ( , )) ( ( , ))

( ( , ))

( ( , ))

( ( , )).
m

n

n m k k
k m

n

k k
k m

n
k

k m

f d Tx Tx f d Tx Tx

f d Tx Tx

f d Tx Tx

f d Tx Tx






















 








 

From the last inequality, it follows 

,
lim ( ( , )) 0n m

m n
f d Tx Tx


 , 

and because f   we have 
,
lim ( , ) 0n m

m n
d Tx Tx


 . According to that, { }nTx  is a Cauchy 

sequence. But X  is a complete metric space, so therefore the sequence { }nTx  is 

convergent. Further, the mapping :T X X  is sub-sequentially convergent, therefore the 

sequence { }nx  contains a convergent subsequence ( ){ }n kx , i.e., there exists u X  such 

that ( )lim n k
n

x u


 . From the continuity of T  follows ( )lim n k
n

Tx Tu


 . Now, the sequence 

( ){ }n kTx  is a subsequence of the convergent sequence { }nTx , so the equation holds true  

( )lim limn n k
n n

Tx Tx Tu
 

  . 

We will prove that u X  is a fixed point for the mapping S . We have 

1

1

( ( , )) ( ( , ))

( ( , )) ( ( , )) ( ( , ))

( ( , )) ( ( , )) ( ( , )).

n n

n n n

n n n

f d TSu Tx f d TSu TSx

af d TSu Tu bf d TSx Tx cf d Tu Tx

af d TSu Tu bf d Tx Tx cf d Tu Tx







  

  
 

If in the last inequality we take n , then from lim n
n

Tx Tu


  and the continuity of 

metric and function f  follows the inequality 

1
( ( , )) (0)b c

a
f d TSu Tu f


 . 
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But, 
1

0 1b c
a



 
 
and 1(0) {0}f   , so from the last inequality it follows that ( , ) 0d TSu Tu 

, i.е., TSu Tu . Finally, T  is injection and therefore Su u , i.e., the mapping S  has a 

fixed point.  

Let ,u v X  be two fixed points for S , i.e., Su u  и Sv v . From the inequality, (1.4) 

it follows that   
( ( , )) ( ( , ))

( ( , )) ( ( , )) ( ( , ))

f d Tu Tv f d TSu TSv

af d Tu TSu bf d Tv TSv cf d Tu Tv



    

i.e.  

1
( ( , )) (0)a b

c
f d Tu Tv f


 , 

So, similarly as above, we conclude that ( , ) 0d Tu Tv  . Therefore, Tu Tv . But T  is an 

injection, and therefore u v , i.e., S  has a unique fixed point.  

Finally, from the arbitrariness of the point 0x , it follows that for each 0x X  the 

sequence 0{ }nS x  converges to the fixed point.              □ 
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