GOCE DELCEV UNIVERSITY - STIP FACULTY OF COMPUTER SCIENCE

The journal is indexed in

EBSCO

ISSN 2545-4803 on line DOI: 10.46763/BJAMI

BALKAN JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS (BJAMI)

2101010

VOLUME VI, Number 2

YEAR 2023

AIMS AND SCOPE:

BJAMI publishes original research articles in the areas of applied mathematics and informatics.

Topics:

- 1. Computer science;
- 2. Computer and software engineering;
- 3. Information technology;

- Computer security;
 Electrical engineering;
 Telecommunication;
 Mathematics and its applications;
- 8. Articles of interdisciplinary of computer and information sciences with education, economics, environmental, health, and engineering.

Managing editor Mirjana Kocaleva Vitanova Ph.D. Zoran Zlatev Ph.D.

Editor in chief Biljana Zlatanovska Ph.D.

Lectoure Snezana Kirova

Technical editor Biljana Zlatanovska Ph.D. Mirjana Kocaleva Vitanova Ph.D.

BALKAN JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS (BJAMI), Vol 6

ISSN 2545-4803 on line Vol. 6, No. 2, Year 2023

EDITORIAL BOARD

Adelina Plamenova Aleksieva-Petrova, Technical University - Sofia, Faculty of Computer Systems and Control, Sofia, Bulgaria Lyudmila Stoyanova, Technical University - Sofia, Faculty of computer systems and control, Department - Programming and computer technologies, Bulgaria Zlatko Georgiev Varbanov, Department of Mathematics and Informatics, Veliko Tarnovo University, Bulgaria Snezana Scepanovic, Faculty for Information Technology, University "Mediterranean", Podgorica, Montenegro Daniela Veleva Minkovska, Faculty of Computer Systems and Technologies, Technical University, Sofia, Bulgaria Stefka Hristova Bouyuklieva, Department of Algebra and Geometry, Faculty of Mathematics and Informatics, Veliko Tarnovo University, Bulgaria Vesselin Velichkov, University of Luxembourg, Faculty of Sciences, Technology and Communication (FSTC), Luxembourg Isabel Maria Baltazar Simões de Carvalho, Instituto Superior Técnico, Technical University of Lisbon, Portugal Predrag S. Stanimirović, University of Niš, Faculty of Sciences and Mathematics, Department of Mathematics and Informatics, Niš, Serbia Shcherbacov Victor, Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, Moldova Pedro Ricardo Morais Inácio, Department of Computer Science, Universidade da Beira Interior, Portugal Georgi Tuparov, Technical University of Sofia Bulgaria Martin Lukarevski, Faculty of Computer Science, UGD, Republic of North Macedonia Ivanka Georgieva, South-West University, Blagoevgrad, Bulgaria Georgi Stojanov, Computer Science, Mathematics, and Environmental Science Department The American University of Paris, France Iliya Guerguiev Bouyukliev, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria Riste Škrekovski, FAMNIT, University of Primorska, Koper, Slovenia Stela Zhelezova, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria Katerina Taskova, Computational Biology and Data Mining Group, Faculty of Biology, Johannes Gutenberg-Universität Mainz (JGU), Mainz, Germany. Dragana Glušac, Tehnical Faculty "Mihajlo Pupin", Zrenjanin, Serbia Cveta Martinovska-Bande, Faculty of Computer Science, UGD, Republic of North Macedonia Blagoj Delipetrov, European Commission Joint Research Centre, Italy Zoran Zdravev, Faculty of Computer Science, UGD, Republic of North Macedonia Aleksandra Mileva, Faculty of Computer Science, UGD, Republic of North Macedonia Igor Stojanovik, Faculty of Computer Science, UGD, Republic of North Macedonia Saso Koceski, Faculty of Computer Science, UGD, Republic of North Macedonia Natasa Koceska, Faculty of Computer Science, UGD, Republic of North Macedonia Aleksandar Krstev, Faculty of Computer Science, UGD, Republic of North Macedonia Biljana Zlatanovska, Faculty of Computer Science, UGD, Republic of North Macedonia Natasa Stojkovik, Faculty of Computer Science, UGD, Republic of North Macedonia Done Stojanov, Faculty of Computer Science, UGD, Republic of North Macedonia Limonka Koceva Lazarova, Faculty of Computer Science, UGD, Republic of North Macedonia Tatjana Atanasova Pacemska, Faculty of Computer Science, UGD, Republic of North Macedonia

CONTENT

Sonja Manchevska, Igor Peshevski, Daniel Velinov, Milorad Jovanovski, Marija Maneva, Bojana Nedelkovska
APPLICATION OF GEOSTATISTICS IN THE ANALYSIS AND ADAPTATION OF
GEOTECHNICAL PARAMETERS AT COAL DEPOSITS 7
Darka Bagatinov Sasa Calev
PROGRAMMING API C CONTROLLER WITH A LADDER DIAGRAM
TROOM MINING AT LE CONTROLLER WITH A EADDER DINORAM
Dalibar Sarafimovski Staica Racanoski Alaksandar Krstav Marija Sarafimovska
ANALYSIS OF THE USAGE OF MOBILE DEVICES AS DISTRIBUTED TOOLS FOR
PATIENT HEALTH MONITORING AND REMOTE PATIENT DATA ACOULSITION 31
Sasko Dimitrov, Dennis Weiler, Simeon Petrov
RESEARCH ON THE INFLUENCE OF THE VOLUME OF OIL IN FRONT OF THE
DIRECT OPERATED PRESSURE RELIEF VALVE ON ITS TRANSIENT
PERFORMANCES 43
Violeta Krcheva, Marija Cekerovska, Mishko Diidrov, Sasko Dimitrov
IMPACT OF CUTTING CONDITIONS ON THE LOAD ON SERVO MOTORS AT A CNC
LATHE IN THE PROCESS OF TURNING A CLUTCH HUB
Samoil Malcheski
REICH-TYPE CONTRACTIVE MAPPING INTO A COMPLETE METRIC SPACE AND
CONTINUOUS INJECTIVE AND SUBSEQUENTIALLY CONVERGENT MAPPING 63
Violeta Krcheva, Mishko Diidrov, Sara Srebrenoska, Dejan Krstev
GANTT CHART AS A PROJECT MANAGEMENT TOOL THAT REPRESENTS A CLUTCH
HUB MANUFACTURING PROCESS. 67
Tanja Stefanova, Zoran Zdravev, Aleksandar Velinov
ANALYSIS OF TOP SELLING PRODUCTS USING BUSINESS INTELLIGENCE
Day of Differential Equations
THE APPENDIX
Slagjana Brsakoska, Aleksa Malcheski
ONE APPROACH TO THE ITERATIONS OF THE VEKUA EQUATION
Saso Koceski, Natasa Koceska, Limonka Koceva Lazarova, Marija Miteva,
Biljana Zlatanovska
CAN CHATGPT BE USED FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS 103
Natasha Stojkovic, Maja Kukuseva Paneva, Aleksandra Stojanova Ilievska,
Cveta Martinovska Bande
SEIR+D MODEL OF TUBERCULOSIS
Jasmina Veta Buralieva, Maja Kukuseva Paneva
APPLICATION OF THE LAPLACE TRANSFORM IN ELECTRICAL CIRCUITS 125

Biljana Zlatanovska, Boro Piperevski ABOUT A CLASS OF 2D MATRIX OF DIFFERENTIAL EQUATIONS
ETIMA THE APPENDIX147
Bunjamin Xhaferi, Nusret Xhaferi, Sonja Rogoleva Gjurovska, Gordana J. Atanasovski
BIOTECHNOLOGICAL PEOCEDURE FOR AN AUTOLOGOUS DENTIN GRAFT FOR
DENTAL AND MEDICAL PURPOSES
Mladen Mitkovski, Vlatko Chingoski
COMPARATIVE ANALYSIS BETWEEN BIFACIAL AND MONOFACIAL SOLAR PANELS
USING PV*SOL SOFTWARE
Egzon Milla, Milutin Radonjić
ANALYSIS OF DEVELOPING NATIVE ANDROID APPLICATIONS USING XML AND
JETPACK COMPOSE
Sonja Rogoleva Gjurovska, Sanja Naskova, Verica Toneva Stojmenova, Ljupka Arsovski, Sandra Atanasava
JANUI A ATAHASUVA TDANISCUTANEAUS ELECTDICAL NEDVE STIMULATION METUOD IN DATIENTS
WITH XEROSTOMIA
Marjan Zafirovski, Dimitar Bogatinov
COMPARATIVE ANALYSIS OF STANDARDS AND METHODOLOGIES FOR MANAGE-
MENT OF INFORMATION-SECURITY RISKS OF TECHNICAL AND ELECTRONIC SYS-
TEMS OF THE CRITICAL INFRASTRUCTURE 187

REICH-TYPE CONTRACTIVE MAPPING INTO A COMPLETE METRIC SPACE AND CONTINUOUS, INJECTIVE AND SUBSEQUENTIALLY CONVERGENT MAPPING

SAMOIL MALCHESKI

Abstract. In this paper, a generalization of the fixed point theorem of the Reichtype mapping on a complete metric space (X,d) is given. Continuous, injective and sub-sequentially convergent mapping T was used, as well as it is taken that function f is from the class Θ continuous monotonically nondecreasing functions $f:[0,+\infty) \rightarrow [0,+\infty)$ such that $f^{-1}(0) = \{0\}$, where it is additionally assumed that it is subadditive, i.e. $f(x+y) \leq f(x) + f(y)$, for each $x, y \in [0,+\infty)$.

1. Introduction

Let (X,d) be a metric space. The mapping $S: X \to X$ is called a contraction if it exists $\lambda \in (0,1)$ such that for each $x, y \in X$ holds true

$$d(Sx, Sy) \le \lambda d(x, y) . \quad (1.1)$$

If the metric space (X,d) is complete, then the mapping *T* for which condition (1.1) is satisfied has a unique fixed point. This result is known in the literature as Banach's fixed point principle ([4]). Later, in 1968, it was generalized by R. Kannan ([3]), and in 1972 its generalization was given by S. K. Chatterjea ([5]).

In 1971, S. Reich ([10]) gave a new generalization of the Banach's fixed point principle as follows:

Theorem 1.1. If the mapping $S: X \to X$ where (X,d) is a complete metric space, it satisfies the inequality

$$d(Sx, Sy) \le ad(x, Sx) + bd(y, Sy) + cd(x, y), \quad (1.2)$$

where a > 0, b > 0 and c > 0 are such that a + b + c < 1 and $x, y \in X$, then S has a unique fixed point.

If S satisfies the condition (1.2), then for S we say that it is a Reich-type mapping.

Furthermore, in [9] S. Moradi and D. Alimohammadi generalize R. Kannan's result, using the sequentially convergent mappings, and in [1] several generalizations of Kannan and Chatterjea's theorems are proved, using the sequentially convergent mappings, which are defined as follows.

Keywords. Reich-type contractive mapping, complete metric space, sequentially convergent, subsequentially convergent mapping.

Definition 1.1. ([8]). Let (X,d) be a metric space. A mapping $T: X \to X$ is said to be sequentially convergent if we have, for every sequence $\{y_n\}$, if $\{Ty_n\}$ is convergence then $\{y_n\}$ is also convergence. A mapping T is said to be sub-sequentially convergent if we have, for every sequence $\{y_n\}$, if $\{Ty_n\}$ is convergence then $\{y_n\}$ has a convergent subsequence.

In [8] S. Moradi and A. Beiranvand introduce the concept of T_f contractive mapping, whereby they use the class Θ of continuous monotonically nondecreasing functions $f:[0,+\infty) \rightarrow [0,+\infty)$ such that $f^{-1}(0) = \{0\}$, which is defined as follows.

Definition 2 ([8]). Let (X,d) be a metric space, $S,T: X \to X$ and $f \in \Theta$. A mapping *S* is said to be T_f – contraction if there exist $\lambda \in (0,1)$ such that

$$f(d(TSx, TSy)) \le \lambda f(d(Tx, Ty)), \qquad (1.3)$$

for all $x, y \in X$.

Let us note here that, if $f \in \Theta$, then from $f^{-1}(0) = \{0\}$ it follows that f(t) > 0, for each t > 0. S. Moradi and A. Beiranvand prove that if S is T_f contractive mapping, then S has a unique fixed point. Then, in [2], M. Kir and H. Kiziltunc generalize the result of S. Moradi and A. Beiranvand for Kannan and Chatterjea type mappings. In [7] the results of Kir and Kiziltunc are generalized and their application is given, while in [6] a generalization of the Reich-type mapping using sequentially convergent mappings is given. In the following considerations we will give a generalization of the Reich-type mapping using sub-sequentially convergent mappings, which were also introduced by S. Moradi and A. Beiranvand ([8]).

2. Mains results

Theorem 2.1. Let (X,d) be a complete metric space $S: X \to X$, $f \in \Theta$ is such that $f(p+q) \leq f(p) + f(q)$, for each $p,q \in [0,+\infty)$ and mapping $T: X \to X$ is continuous, injective and sub-sequentially convergent. If exist a > 0, b > 0 and c > 0 such that a+b+c < 1 and

 $f(d(TSx,TSy)) \le af(d(Tx,TSx)) + bf(d(Ty,TSy)) + cf(d(Tx,Ty))$ (2.4)

for each $x, y \in X$, then S has a single fixed point and for each $x_0 \in X$ the sequence $\{S^n x_0\}$ converges to the fixed point.

Proof. Let x_0 be an arbitrary point from x and let the sequence $\{x_n\}$ be determined by $x_{n+1} = Sx_n$, n = 0, 1, 2, 3, From inequality (4) it follows that

$$\begin{split} f(d(Tx_{n+1},Tx_n)) &= f(d(TSx_n,TSx_{n-1})) \\ &\leq af(d(Tx_n,TSx_n)) + bf(d(Tx_{n-1},TSx_{n-1})) + cf(d(Tx_n,Tx_{n-1})) \\ &= af(d(Tx_n,Tx_{n+1})) + (b+c)f(d(Tx_{n-1},Tx_n)), \end{split}$$

i.e.

$$f(d(Tx_{n+1}, Tx_n)) \le \frac{b+c}{1-a} f(d(Tx_n, Tx_{n-1}))$$

According to that, for $\lambda = \frac{b+c}{1-a} < 1$ holds true

$$f(d(Tx_{n+1}, Tx_n)) \le \lambda f(d(Tx_n, Tx_{n-1})),$$
 (2.5)

for each n = 1, 2, 3, ... From inequality (2.5) it follows that

$$f(d(Tx_{n+1},Tx_n)) \le \lambda^n f(d(Tx_1,Tx_0)),$$
 (2.6)

for each n = 1, 2, 3, Now, from inequality (2.6), the properties of the metric and the monotonicity and subadditivity of the function f, it follows that for each $m, n \in R$ n > m holds true

$$f(d(Tx_n, Tx_m)) \le f(\sum_{k=m}^{n-1} d(Tx_{k+1}, Tx_k))$$

$$\le \sum_{k=m}^{n-1} f(d(Tx_{k+1}, Tx_k))$$

$$\le \sum_{k=m}^{n-1} \lambda^k f(d(Tx_1, Tx_0))$$

$$< \frac{\lambda^m}{1-\lambda} f(d(Tx_1, Tx_0)).$$

From the last inequality, it follows

$$\lim_{m,n\to\infty}f(d(Tx_n,Tx_m))=0\,,$$

and because $f \in \Theta$ we have $\lim_{m,n\to\infty} d(Tx_n, Tx_m) = 0$. According to that, $\{Tx_n\}$ is a Cauchy sequence. But *X* is a complete metric space, so therefore the sequence $\{Tx_n\}$ is convergent. Further, the mapping $T: X \to X$ is sub-sequentially convergent, therefore the sequence $\{x_n\}$ contains a convergent subsequence $\{x_{n(k)}\}$, i.e., there exists $u \in X$ such that $\lim_{n\to\infty} x_{n(k)} = u$. From the continuity of *T* follows $\lim_{n\to\infty} Tx_{n(k)} = Tu$. Now, the sequence $\{Tx_{n(k)}\}$ is a subsequence of the convergent sequence $\{Tx_n\}$, so the equation holds true

$$\lim_{n \to \infty} Tx_n = \lim_{n \to \infty} Tx_{n(k)} = Tu$$

We will prove that $u \in X$ is a fixed point for the mapping S. We have

$$\begin{aligned} f(d(TSu,Tx_{n+1})) &= f(d(TSu,TSx_n)) \\ &\leq af(d(TSu,Tu)) + bf(d(TSx_n,Tx_n)) + cf(d(Tu,Tx_n)) \\ &= af(d(TSu,Tu)) + bf(d(Tx_{n+1},Tx_n)) + cf(d(Tu,Tx_n)). \end{aligned}$$

If in the last inequality we take $n \to \infty$, then from $\lim_{n \to \infty} Tx_n = Tu$ and the continuity of metric and function *f* follows the inequality

$$f(d(TSu,Tu)) \le \frac{b+c}{1-a} f(0) \,.$$

But, $0 < \frac{b+c}{1-a} < 1$ and $f^{-1}(0) = \{0\}$, so from the last inequality it follows that d(TSu, Tu) = 0, i.e., TSu = Tu. Finally, *T* is injection and therefore Su = u, i.e., the mapping *S* has a fixed point.

Let $u, v \in X$ be two fixed points for *S*, i.e., $Su = u \ \bowtie Sv = v$. From the inequality, (1.4) it follows that

$$f(d(Tu,Tv)) = f(d(TSu,TSv))$$

$$\leq af(d(Tu,TSu)) + bf(d(Tv,TSv)) + cf(d(Tu,Tv))$$

i.e.

$$f(d(Tu,Tv)) \le \frac{a+b}{1-c} f(0) ,$$

So, similarly as above, we conclude that d(Tu,Tv) = 0. Therefore, Tu = Tv. But *T* is an injection, and therefore u = v, i.e., *S* has a unique fixed point.

Finally, from the arbitrariness of the point x_0 , it follows that for each $x_0 \in X$ the sequence $\{S^n x_0\}$ converges to the fixed point.

References

- [1] A. Malčeski, S. Malcheski, K. Anevska, R. Malčeski, New extension of Kannan and Chatterjea fixed point theorems on complete metric spaces. British Journal of Mathematics & Computer Science. Vol. 17 No. 1 (2016),1-10.
- M. Kir, H. Kiziltunc, T_F type contractive conditions for Kannan and Chatterjea fixed point theorems, Adv. Fixed Point Theory, Vol. 4, No. 1 (2014), pp. 140-148
- [3] R. Kannan, Some results on fixed points, Bull. Calc. Math. Soc. Vol. 60 No. 1, (1968), 71-77
- [4] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations intégrales, Fund. Math. 2 (1922), 133-181
- [5] S. K. Chatterjea, Fixed point theorems, C. R. Acad. Bulgare Sci., Vol. 25 No. 6 (1972), 727-730
- [6] S. Malcheski, R. Malcheski, Generalization of a Reich-type contractive mapping in a complete metric space, Proceedings of the CODEMA2022, Armaganka, Skopje, 2023
- [7] S. Malcheski, R. Malcheski, Three Theorems about Fixed Points for T_f Contraction in a Complete Metric Space, Proceedings of the CODEMA2020, 13-21
- [8] S. Moradi, A. Beiranvand, Fixed Point of T_F -contractive Single-valued Mappings, Iranian Journal of Mathematical Sciences and Informatics, Vol. 5, No. 2 (2010), pp 25-32
- [9] S. Moradi, D. Alimohammadi, *New extensions of kannan fixed theorem on complete metric and generalized metric spaces*. Int. Journal of Math. Analysis. 2011;5(47):2313-2320.
- [10] S. Reich, *Some remarks concerning contraction mappings*. Canad. Math. Bull. Vol. 14 (1), 1971:121-124.

Samoil Malcheski International Slavic University, Sv. Nikole, R. North Macedonia *E-mail address*: samoil.malcheski@gmail.com