
GOCE DELCEV UNIVERSITY - STIP
FACULTY OF COMPUTER SCIENCE

ISSN 2545-4803 on line

BALKAN JOURNAL
OF APPLIED MATHEMATICS

AND INFORMATICS

(BJAMI)

YEAR 2022 VOLUME V, Number 2

2023 VOLUME VI, Number 2

AIMS AND SCOPE:
BJAMI publishes original research articles in the areas of applied mathematics and informatics.

Topics:
1. Computer science;
2. Computer and software engineering;
3. Information technology;
4. Computer security;
5. Electrical engineering;
6. Telecommunication;
7. Mathematics and its applications;
8. Articles of interdisciplinary of computer and information sciences with education,

economics, environmental, health, and engineering.

Managing editor

Mirjana Kocaleva Vitanova Ph.D.
Zoran Zlatev Ph.D.

Editor in chief

Biljana Zlatanovska Ph.D.

Lectoure

Snezana Kirova

Technical editor

Biljana Zlatanovska Ph.D.

Mirjana Kocaleva Vitanova Ph.D.

BALKAN JOURNAL

OF APPLIED MATHEMATICS AND INFORMATICS

(BJAMI), Vol 6

ISSN 2545-4803 on line

Vol. 6, No. 2, Year 2023

EDITORIAL BOARD

Adelina Plamenova Aleksieva-Petrova, Technical University – Sofia,
Faculty of Computer Systems and Control, Sofia, Bulgaria

Lyudmila Stoyanova, Technical University - Sofia , Faculty of computer systems and control,
Department – Programming and computer technologies, Bulgaria

Zlatko Georgiev Varbanov, Department of Mathematics and Informatics,
Veliko Tarnovo University, Bulgaria

Snezana Scepanovic, Faculty for Information Technology,
University “Mediterranean”, Podgorica, Montenegro

 Daniela Veleva Minkovska, Faculty of Computer Systems and Technologies,
Technical University, Sofia, Bulgaria

 Stefka Hristova Bouyuklieva, Department of Algebra and Geometry,
Faculty of Mathematics and Informatics, Veliko Tarnovo University, Bulgaria

Vesselin Velichkov, University of Luxembourg, Faculty of Sciences,
Technology and Communication (FSTC), Luxembourg

Isabel Maria Baltazar Simões de Carvalho, Instituto Superior Técnico,
Technical University of Lisbon, Portugal

Predrag S. Stanimirović, University of Niš, Faculty of Sciences and Mathematics,
Department of Mathematics and Informatics, Niš, Serbia

Shcherbacov Victor, Institute of Mathematics and Computer Science,
Academy of Sciences of Moldova, Moldova

Pedro Ricardo Morais Inácio, Department of Computer Science,
Universidade da Beira Interior, Portugal

Georgi Tuparov, Technical University of Sofia Bulgaria
Martin Lukarevski, Faculty of Computer Science, UGD, Republic of North Macedonia

Ivanka Georgieva, South-West University, Blagoevgrad, Bulgaria
Georgi Stojanov, Computer Science, Mathematics, and Environmental Science Department

The American University of Paris, France
Iliya Guerguiev Bouyukliev, Institute of Mathematics and Informatics,

Bulgarian Academy of Sciences, Bulgaria
 Riste Škrekovski, FAMNIT, University of Primorska, Koper, Slovenia
 Stela Zhelezova, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria
 Katerina Taskova, Computational Biology and Data Mining Group,

Faculty of Biology, Johannes Gutenberg-Universität Mainz (JGU), Mainz, Germany.
 Dragana Glušac, Tehnical Faculty “Mihajlo Pupin”, Zrenjanin, Serbia
 Cveta Martinovska-Bande, Faculty of Computer Science, UGD, Republic of North Macedonia
 Blagoj Delipetrov, European Commission Joint Research Centre, Italy
 Zoran Zdravev, Faculty of Computer Science, UGD, Republic of North Macedonia
 Aleksandra Mileva, Faculty of Computer Science, UGD, Republic of North Macedonia
 Igor Stojanovik, Faculty of Computer Science, UGD, Republic of North Macedonia
 Saso Koceski, Faculty of Computer Science, UGD, Republic of North Macedonia
 Natasa Koceska, Faculty of Computer Science, UGD, Republic of North Macedonia
 Aleksandar Krstev, Faculty of Computer Science, UGD, Republic of North Macedonia
 Biljana Zlatanovska, Faculty of Computer Science, UGD, Republic of North Macedonia
 Natasa Stojkovik, Faculty of Computer Science, UGD, Republic of North Macedonia
 Done Stojanov, Faculty of Computer Science, UGD, Republic of North Macedonia
 Limonka Koceva Lazarova, Faculty of Computer Science, UGD, Republic of North Macedonia
 Tatjana Atanasova Pacemska, Faculty of Computer Science, UGD, Republic of North Macedonia

5

C O N T E N T

 Sonja Manchevska, Igor Peshevski, Daniel Velinov, Milorad Jovanovski, Marija Maneva,

 Bojana Nedelkovska

 APPLICATION OF GEOSTATISTICS IN THE ANALYSIS AND ADAPTATION OF

 GEOTECHNICAL PARAMETERS AT COAL DEPOSITS……………………………………….. 7

Darko Bogatinov, Saso Gelev

 PROGRAMMING APLC CONTROLLER WITH A LADDER DIAGRAM..…………………… 19

Dalibor Serafimovski, Stojce Recanoski, Aleksandar Krstev, Marija Serafimovska

 ANALYSIS OF THE USAGE OF MOBILE DEVICES AS DISTRIBUTED TOOLS FOR

 PATIENT HEALTH MONITORING AND REMOTE PATIENT DATA ACQUISITION…….... 31

Sasko Dimitrov, Dennis Weiler, Simeon Petrov

 RESEARCH ON THE INFLUENCE OF THE VOLUME OF OIL IN FRONT OF THE

 DIRECT OPERATED PRESSURE RELIEF VALVE ON ITS TRANSIENT

 PERFORMANCES …………………………………………………………………………………43

Violeta Krcheva, Marija Cekerovska, Mishko Djidrov, Sasko Dimitrov

 IMPACT OF CUTTING CONDITIONS ON THE LOAD ON SERVO MOTORS AT A CNC

 LATHE IN THE PROCESS OF TURNING A CLUTCH HUB……………...…………………... 51

Samoil Malcheski

 REICH-TYPE CONTRACTIVE MAPPING INTO A COMPLETE METRIC SPACE AND

 CONTINUOUS, INJECTIVE AND SUBSEQUENTIALLY CONVERGENT MAPPING….….. 63

Violeta Krcheva, Mishko Djidrov, Sara Srebrenoska, Dejan Krstev

 GANTT CHART AS A PROJECT MANAGEMENT TOOL THAT REPRESENTS A CLUTCH

 HUB MANUFACTURING PROCESS……………………………………………………….….. 67

 Tanja Stefanova, Zoran Zdravev, Aleksandar Velinov

 ANALYSIS OF TOP SELLING PRODUCTS USING BUSINESS INTELLIGENCE…… .….. 79

 Day of Differential Equations

 THE APPENDI…………………………………………………………………..…………….….. 91

 Slagjana Brsakoska, Aleksa Malcheski

 ONE APPROACH TO THE ITERATIONS OF THE VEKUA EQUATION ……………….….. 93

 Saso Koceski, Natasa Koceska, Limonka Koceva Lazarova, Marija Miteva,

 Biljana Zlatanovska

 CAN CHATGPT BE USED FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS ... 103

 Natasha Stojkovic, Maja Kukuseva Paneva, Aleksandra Stojanova Ilievska,

 Cveta Martinovska Bande

 SEIR+D MODEL OF TUBERCULOSIS …………………………………………………….... 115

Jasmina Veta Buralieva, Maja Kukuseva Paneva

 APPLICATION OF THE LAPLACE TRANSFORM IN ELECTRICAL CIRCUITS ...…….... 125

X

6

Biljana Zlatanovska, Boro Piperevski

 ABOUT A CLASS OF 2D MATRIX OF DIFFERENTIAL EQUATIONS ……….....…….... 135

 ETIMA

 THE APPENDIX…………………………………………………………………..……………147

Bunjamin Xhaferi, Nusret Xhaferi, Sonja Rogoleva Gjurovska, Gordana J. Atanasovski

 BIOTECHNOLOGICAL PEOCEDURE FOR AN AUTOLOGOUS DENTIN GRAFT FOR

 DENTAL AND MEDICAL PURPOSES……………………………………..………………..149

Mladen Mitkovski, Vlatko Chingoski

 COMPARATIVE ANALYSIS BETWEEN BIFACIAL AND MONOFACIAL SOLAR PANELS

 USING PV*SOL SOFTWARE……………………………………..………………………… 155

Egzon Milla, Milutin Radonjić

 ANALYSIS OF DEVELOPING NATIVE ANDROID APPLICATIONS USING XML AND

 JETPACK COMPOSE……………………………………..…………………………………. 167

Sonja Rogoleva Gjurovska, Sanja Naskova, Verica Toneva Stojmenova, Ljupka Arsovski,

Sandra Atanasova

 TRANSCUTANEOUS ELECTRICAL NERVE STIMULATION METHOD IN PATIENTS

 WITH XEROSTOMIA……………………………………..…………………………………. 179

Marjan Zafirovski, Dimitar Bogatinov

 COMPARATIVE ANALYSIS OF STANDARDS AND METHODOLOGIES FOR MANAGE-

 MENT OF INFORMATION-SECURITY RISKS OF TECHNICAL AND ELECTRONIC SYS-

 TEMS OF THE CRITICAL INFRASTRUCTURE ………………………………………….. 187

147

The Appendix

The Faculty of Electrical Engineering at Goce Delcev University (UGD), has organized the

Second International Conference Electrical Engineering, Informatics, Machinery and Automation -

Technical Sciences Applied in Economy, Education and Industry-ETIMA on September, 27th-29th

2023.

ETIMA has a goal to gather scientists, professors, experts, and professionals from the field of

technical sciences in one place as a forum for exchanging ideas, strengthening multidisciplinary

research and cooperation, and promoting the achievements of technology and its impact on every aspect

of living. Conference ETIMA was held as an online conference. More than sixty colleagues contributed

to this event, from five different countries with more than thirty papers.

The Organizing Committee selected five papers that will be published in this number of the

BJAMI.

148

Balkan Journal of Applied Mathematics and Informatics Online ISSN 2545-4083

Volume VI Number 2 Year 2023 UDC: 004.451:621.395.721.5]:004.439

167

ANALYSIS OF DEVELOPING NATIVE ANDROID APPLICATIONS USING

XML AND JETPACK COMPOSE

EGZON MILLA AND MILUTIN RADONJIĆ

Abstract. Native mobile applications have been the first choice for companies and

independent developers to build software that utilizes device hardware and functionality.

For Android development, this means using Java/Kotlin for the program logic and XML

files for the user interfaces. Recently, Jetpack Compose has gained significant attention

in building user interfaces for Android applications. This paper aims to analyze the

benefits and limitations of these two technologies. An intensive literature review is

conducted and presented to identify the benefits and limitations of XML and Jetpack

Compose. In order to compare their development processes and code complexity, we also

developed the same application using both technologies. The analysis of the code used in

each technology provides an insight into how they uniquely solve the same problem,

helping us to identify which one is better suited from a developer’s perspective. The

results of the study indicate that both XML and Jetpack Compose have their respective

strengths and weaknesses. XML provides a structured approach to UI development, fully

respecting the separation of concerns between the view (what is being displayed on the

screen) and the controller (which data is being sent to the view). On the other hand,

Jetpack Compose simplifies the UI development process by offering a declarative

approach, which leads to a more readable and maintainable code. This study identified

the advantages and disadvantages of using XML and Jetpack Compose in the

development of native Android applications and recommended criteria for choosing one

of these tools for new users, as well as switching to a new tool for experienced users.

1. Introduction

The Android operating system is a distribution of Linux, which is used in more than

70% of mobile devices around the world, with the first device running it being released

in 2008 [9]. Its open-source nature quickly made it one of the most used operating

systems. Historically, Java is the most widely used programming language for Android

[7], although Kotlin with its less verbose syntax and “code safety” feature, by which the

compiler protects the developer from variables that can potentially point to a non-existing

(null) object [5], is becoming increasingly more popular.

With Kotlin, there are two ways to build the user interface (UI). The first way is

standard and the most popular, through the use of XML files. In [3], it is stated that the

key components of this approach are fragments. The authors explain that fragments are

comprised of two files: the layout file written in XML, where the developer defines the

screen design (width, height, position of components), and what components should be

on it (some text, buttons, images, etc.). The other file is a Kotlin file where the developer

defines the behavior of the screen and its components. An XML – based project contains

the MainActivity.kt file and its corresponding XML layout file. Every application screen

is created through the XML files using Fragments [3]. As stated in [6], the UI is built

Keywords. Android, Compose, XML, comparison, analysis, code.

168 E. MILLA AND M. RADONJIĆ

through the hierarchy of layouts and components. The layouts are represented as

ViewGroup objects, while the components (widgets) are represented as View objects. The

components defined within the layout files are accessed via view binding, which is the

recommended method for accessing the components from the fragment class, according

to [4].

The second way to build the user interface is by creating composable functions using

a UI library named Jetpack Compose [6]. These functions serve as building blocks for

screens the user sees in the application. A Jetpack Compose project also contains the

MainActivity.kt file but displays application content through the composable functions

[6]. Composable functions are annotated with the @Composable annotation above the

function name. The authors of [1] state that @Composable annotation is used to let the

Compose compiler know that the function intends to convert data into a node of the

composable tree. They explain that a node represents a component or a screen. In the

Jetpack Compose project, every application screen and component is represented by a

composable function in the code.
The primary goal of this paper is to draw a comparison between the two methods and

point out the advantages and disadvantages of both, highlighting their respective

complexity (or simplicity) by reviewing specific parts of the application and the

corresponding code. We performed this by developing the same application twice, using

the aforementioned approaches. The motivation for this study is to provide insight into

the developer experience (DX) of both methods, as each requires a different way of

approaching and reasoning of the problem we are solving.
The paper is organized as follows. In Section 2, the general Android application

architecture is presented and applied accordingly to the applications that we develop.

Section 3 compares the used methodologies with the following criteria: code readability,

complexity, maintainability, and the amount of code required, and it also highlights

potential strengths and weaknesses for each specific application functionality. Finally, we

provide a general comparison of both methodologies based on our research and developed

functionalities, as well as our recommended technology.

2. Material and method

For this study we consulted 9 published books on android technology and development

published in the last 10 years that highlight important aspects of the development process,

as well as the use of the corresponding components depending on the type of technology

used. The key words that were used for this research were the following: Android,

Compose, XML, comparison, analysis, code, along with combinations of each. The search

included: internet articles on the comparison of the methodologies and books regarding

each technology separately. This study was made online by selecting the articles that

contained the research key words, then the books that met the needed criteria were

selected and analyzed in detail. According to the selected material, we implemented the

development of the same application in both XML and Jetpack Compose to gain further

insight into the development process and the respective strengths and weaknesses of each

technology.

 ANALYSIS OF DEVELOPING NATIVE ANDROID APPLICATIONS USING XML 169

AND JETPACK COMPOSE

3. The proposed Android application architecture

The application we built for the purpose of this research is named ‘Oss’. The idea for

the application development was born while trying to solve the problem of journaling the

countless techniques learned in the sport of Brazilian Jiu-Jitsu. ‘Oss’ is a CRUD (Create,

Read, Update, Delete) application that has two entities: Position and Technique, with their

respective properties. The entities share a One-to-Many relationship, where one position

can have many techniques. In both versions of the application, we used the MVVM

(Model View View Model) architecture [2]. Figure 1 shows a simplified graph of how the

application layers function by using the PositionList screen as an example. As can be

noticed from Figure 1, there are three layers in this case:

Figure 1. Application layers for the PositionList screen

 The data layer (the Model) defines where and how data is stored. In this case, we use

the repository pattern to access and modify the data from a database [2].

 The ViewModel is what accesses the data and acts as a link between what appears on

the screen and the data. Every CRUD operation is controlled by the ViewModel [2].

 The View is what the user sees [2]. Through the View, the user sends events to the

ViewModel. The event can be anything, from clicking some button, or selecting some

choice, to performing more complex operations.

4. The Application User Interface

In this section, we will highlight some of the key differences between an application

design using XML and an application design using Jetpack Compose. A commonality is

that both applications are run inside a single activity, and the screens change accordingly.

These screens are fragments in the XML version and composable functions in Jetpack

Compose. A fragment is a user interface component that has a Kotlin class that controls

its behavior, and a layout in the form of an XML file [4]. The fragments that we create

inherit from the Fragment.kt class, which provides our custom fragment with predefined

lifecycle methods, user input handlers, and so on. As mentioned in the introduction, in

Compose, a composable function is a Kotlin function that represents a component or a

screen.
We will present these specific parts of the developed application and their creation in

both methodologies:

 The navigation - navigates the screens of the application,

 The bottom navigation bar,

170 E. MILLA AND M. RADONJIĆ

 The PositionList screen - the screen that displays a list of positions, with an

image, name, and delete button for each position.

4.1. Developing the navigation

Using XML, we have to create a navigation file that holds the navigation graph (shown

in Figure 2). The navigation graph contains fragments, actions, and arguments. The

fragments are the destination screens, the screens can receive arguments, and the arrows

represent the navigation actions.

Figure 2. Navigation graph in design mode

The default destination is the Home screen (Figure 3), which has an action that

navigates the user to the positionList screen named “toPositionListScreen” (shown in

Code 1 below).

Code 1. XML for navigation graph

In activity_main.xml, we define a fragment that hosts our navigation graph (shown in

Code 2):

 <navigation // attributes...

 android:id="@+id/navigation" // id of the navigation graph

 app:startDestination="@id/home"> // set the starting destination

 <fragment

 android:id="@+id/home" // id of the destination

 android:name="com.example.oss_xml.ui.home.Home" // auto-generated destination name

 android:label="fragment_home" // label

 tools:layout="@layout/fragment_home"> //used for previewing the destination in Figure 2Figure
1

 <action

 android:id="@+id/toPositionListScreen" // id of the action

 app:destination="@id/positionList"/> //the destination where the action should lead to

 </fragment>

<fragment // positionList fragment attributes... >

 <argument

 android:name="discipline" // received argument name

 app:argType="string" // received argument type

 android:defaultValue="GI" /> // set an optional default value in case no argument is received

 // actions...

</fragment>

 ANALYSIS OF DEVELOPING NATIVE ANDROID APPLICATIONS USING XML 171

AND JETPACK COMPOSE

Code 2. Navigation host in activity_main.xml

In [4], it is explained that the navigation host acts as an empty container in which the

different destinations can be displayed. Code 3 shows the use of view binding and the

navController.

Code 3. View binding and navController in MainActivity.kt

ActivityMainBinding is a generated class that contains references to all the components

in activity_main.xml. View binding ensures that we cannot reference a non-existing

component and it provides a more efficient way of accessing them [4]. In the Home

fragment, we set an onClickListener for navigating to the PositionList fragment, shown

in Code 4:

Code 4. Navigation using an onClickListener

HomeDirections is a class generated by the navigation component that contains the

actions defined in the navigation graph. In the action, we set the navigation argument. In

the “PositionList” fragment we can access the “discipline” argument in order to list the

positions in a specific discipline and display the text (shown in Code 5 and Code 6

respectively).

Code 5. Access navigation arguments in PositionListFragment.kt

<fragment

 // set width and height here...

 android:id="@+id/fragmentContainerView" // id of the navigation host fragment

 android:name="androidx.navigation.fragment.NavHostFragment"

 app:defaultNavHost="true" // set the default navigation host of the application in case there are more

 app:navGraph="@navigation/navigation" /> // use the navigation graph that we created earlier

class MainActivity : AppCompatActivity() { // below we create binding properties

 private var _binding: ActivityMainBinding? = null

 private val binding get() = _binding!!

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 _binding = ActivityMainBinding.inflate(layoutInflater) // convert XML into kotlin objects

(inflating)

 setContentView(binding.root) // set the activity content to the root (container of the components)

 val navController = findNavController(R.id.fragmentContainerView) // set the navController

binding.gi.setOnClickListener{val action = HomeDirections.toPositionListScreen(Discipline.GI)

 Navigation.findNavController(view).navigate(action)}

val navController = rememberNavController()

NavHost(navController = navController, startDestination = Routes.HOME_SCREEN) { //screens }

172 E. MILLA AND M. RADONJIĆ

Code 6. Display text based on the received argument

In Jetpack Compose, in ActivityMain.kt we create the navController. As stated in [8],

the navController handles navigation between screens and manages the navigation stack.

In simple terms, the navigation stack represents the memory of the navigation (what

screen is the current one, what screen came before it, and so on until the starting (Home)

screen of the application). Then we create the navigation host with the NavHost

composable function. The NavHost is a component that is added to the user interface of

an activity and serves as a placeholder for displaying the different application screens [8].

The required code is shown in Code 7.

Code 7. NavController and NavHost in Jetpack Compose

We can define the screens that can be navigated to with a route, shown in Code 8.

Code 8. Routes for navigation in Jetpack Compose

Arguments can be passed by adding a query/path parameter to the route and defining

each navigation argument with the name, type, and default value, after which we call the

composable function [2]. An example of navigating using provided arguments is

presented in Code 9.

Code 9. Navigation using arguments in Jetpack Compose

Navigation arguments are available in the corresponding ViewModel via

SavedStateHandle, as presented in Code 10.

Code 10. PositionListViewModel.kt

As can be noticed from the presented application code, creating navigation in XML

requires a significant number of steps that lead to more files, and more code: creating the

navigation graph in Code 1, the navigation host shown in Code 2, defining the actions and

arguments for each destination also shown in Code 1, binding the navHost and navigating

using onClickListener, shown in Code 3 and Code 4 respectively. A strength of this

approach can be the provided design tool for the navigation graph by Android Studio,

which makes it easy to visualize how the screens lead to one another.
In Compose, we define the routes for each screen in a Kotlin file as shown in Code 8

and create the navController and the navHost according to Code 7. Inside of the navHost

val discipline = args.discipline

binding.positionListText.text = "$discipline POSITIONS"

val navController = rememberNavController()

NavHost(navController = navController, startDestination = Routes.HOME_SCREEN) { //screens }

const val HOME_SCREEN = "home_screen" // in Routes.kt file

composable(route=Routes.POSITION_LIST+"?discipline={discipline}", // value in curly braces

 arguments = listOf(// defined list of arguments

 navArgument(name = "discipline") {type = NavType.StringType, defaultValue = Discipline.GI})){

 PositionListScreen(onPopBackStack = { navController.popBackStack() }, // to previous screen

 onNavigate = { navController.navigate(it.route) })} // navigate using the navController

var discipline = savedStateHandle.get<String>("discipline")!! // get the “discpline” argument

 ANALYSIS OF DEVELOPING NATIVE ANDROID APPLICATIONS USING XML 173

AND JETPACK COMPOSE

function’s body, we call the composable functions (the screens we created) for navigation

(shown in Code 9) and provide the routes and potential navigation arguments. A weakness

of this approach can be that the navigation code can become somewhat less readable in

the case of many screens. From the provided code, we can conclude that creating

navigation is simpler and requires fewer files in Jetpack Compose compared to the XML-

based approach, improving maintainability.

4.2. Developing the bottom navigation bar

To create a bottom navigation bar in XML, we first create a menu layout where the

menu items are defined (shown in Code 11). In our case, we create a Home and Favorites

item.

Code 11. Menu items in XML

In activity_main.xml, we add a BottomNavigationView and set the menu (shown in

Code 12).

Code 12. BottomNavigationView component

In MainActivity.kt, we bind the view and set an item listener on it, which handles the

navigation between Home and Favourites. The code is shown in Code 13.

Code 13. Bottom bar navigation

For the bottom navigation bar in Compose, we create a sealed class that defines the

properties of a bottom bar item, along with the items themselves (shown in Code 14). The

authors of [5] define a sealed class as a class that restricts our class hierarchy to a specific

<menu // menu attributes >

 <item android:id="@+id/home" // item id

 android:icon="@drawable/ic_baseline_home_24" // we add an icon to the menu item

 app:showAsAction="always" // when the item should be visible />

 <item // similarly for the Favourites item />

<com.google.android.material.bottomnavigation.BottomNavigationView

android:id="@+id/bottomNavigationView" // component id

 app:menu="@menu/bottom_app_bar" /> // here we set the menu that we created

val bottomNavigationView = binding.bottomNavigationView // get the component by view binding

bottomNavigationView.setOnItemSelectedListener {

 when (it.itemId) {

 R.id.home -> navController.navigate(R.id.home) // when Home is selected, navigate to home screen

 R.id.favourites -> navController.navigate(R.id.favourites) }true}// similarly for Favourites

174 E. MILLA AND M. RADONJIĆ

set of subtypes, where each one can define its own properties and functions. In our case:

Home and Favourites.

Code 14. Menu items for the Jetpack Compose approach

Next, we create a composable function named BottomBar in which the menu items are

added, and the navigation is handled. The items are added by creating an extension

function [5] which creates the navigationBarItem with the provided parameters. The code

is presented in Code 15.

Code 15. BottomBar composable and extension function

In Compose, Scaffold provides structuring of commonly used components like a top

app bar, bottom app bar, and floating action button. In MainActivity.kt, we call the

BottomBar function in the scaffold’s bottomBar parameter and set the navController

(shown in Code 16).

Code 16. Scaffold with bottomBar parameter

Creating the bottom navigation bar is straightforward. A few extra steps are needed in

Compose: a function to add a menu item, and a class that contains the menu attributes

(shown in Code 15). In terms of strengths and weaknesses, both approaches provide a

maintainable and readable code with a similar size. A potential strength for Jetpack

Compose is that Scaffold provides easier structuring in case of multiple items. In the

provided code, we found it simpler to create the bottom navigation bar in the XML-based

application.

sealed class BottomBarNav(val route: String, val name: String, val icon: ImageVector) {

object Home : BottomBarNav(route=Routes.HOME_SCREEN, name="Home",

icon=Icons.Default.Home)

// similarly for Favourites }

@Composable

fun BottomBar(navController: NavController) { // the composable function takes navController argument

 val screens = listOf(BottomBarNav.Home, BottomBarNav.Favourites) // a list of possible screens

 val navBackStackEntry by navController.currentBackStackEntryAsState() // backstack functionality

 val currentDestination = navBackStackEntry?.destination // set variable to the latest backstack entry

 BottomAppBar(modifier = Modifier.fillMaxWidth().height(56.dp)) {// call AddItem for each screen...

@Composable

fun RowScope.AddItem(screen: BottomBarNav, currentDestination: NavDestination?, navController:

NavController) {

NavigationBarItem(

// create item, set the icon, current destination, onClick for navigation...)}

Scaffold(bottomBar = {BottomBar(navController = navController)},content = {// navigation

composables})

 ANALYSIS OF DEVELOPING NATIVE ANDROID APPLICATIONS USING XML 175

AND JETPACK COMPOSE

4.3. Developing the PositionList screen

The positionList screen (Figure 4) displays a list of positions that can change

dynamically by adding, deleting, or editing a position.

 Figure 3. PositionList screen

In XML, we create a file for the position with an image, text, and button (shown in

Code 17).

Code 17. PositionItem XML layout

The items are displayed in a recyclerView in the positionList screen along with the

discipline text and add button. The relevant code is presented in Code 18.

Code 18. RecyclerView component in PositionListScreen.xml

RecyclerView is used to display a list where each item is represented by an XML

layout. In [4], it is mentioned that when an item scrolls off the screen, its layout gets

reused by the next item when it scrolls onto the screen, with the corresponding data. To

display the items, we create the recyclerView adapter, which acts as a data source for the

recyclerView [4]. The adapter (shown in Code 19) instructs the recyclerView how to

display a list of items.

Code 19. PositionItemAdapter.kt

<ImageView android:id="@+id/image_view_position_image" // image attributes />

<com.google.android.material.textview.MaterialTextView

 android:id="@+id/text_view_position_name" // textView attributes />

<com.google.android.material.button.MaterialButton android:id="@+id/delete_button" // attributes/>

<androidx.recyclerview.widget.RecyclerView android:id="@+id/recycler_view_positions" // id

app:layoutManager="androidx.recyclerview.widget.LinearLayoutManager"/> //layout type

class PositionItemAdapter(private var positions: List<Position>, val itemClickListener: (Position) ->

Unit,

 val editItemClickListener: (Position) -> Unit, val deleteItemListener: (Position) -> Unit

) : RecyclerView.Adapter<PositionItemAdapter.PositionItemViewHolder>() {

 inner class PositionItemViewHolder(private val binding: LayoutPositionItemBinding) : // item view

 RecyclerView.ViewHolder(binding.root) {

 fun bind(position: Position) = with(binding) { // set item properties and clickListeners...}}

 override fun onCreateViewHolder(parent: ViewGroup, viewType: Int): PositionItemViewHolder {

 val binding = LayoutPositionItemBinding.inflate(LayoutInflater.from(parent.context), parent,false)

 return PositionItemViewHolder(binding)}

 override fun onBindViewHolder(holder: PositionItemViewHolder, position: Int) { // set values and

binding

// setPositions() and getItemCount() functions...

176 E. MILLA AND M. RADONJIĆ

In the PositionListFragment file (as shown in Code 20) we initialize the adapter, set

the itemClickListeners, set the list of positions to display, and set the adapter of the

recyclerView which is created in the positionList.xml file.

Code 20. PositionListFragment.kt

For Compose, we create a composable function that represents the position item

(shown in Code 21). The position that is passed to the function is used to set the correct

data, and onEvent is used to send events to the viewModel according to user input.

Code 21. PositionItem composable

In the PositionListScreen composable, we use LazyColumn with a list of positions.

LazyColumn is equivalent to recyclerView, by lazily loading data (loading data when

needed).

Code 22. LazyColumn composable in PositionListScreen

Creating the positionList screen in XML requires a boilerplate code, as shown in the

relevant code sections from Code 17 to Code 20. We need two files for the PositionList

fragment (layout and class), one for the position item layout, and one for the adapter. In

Compose, we need a composable for the item layout, and a composable for displaying the

list within the PositionList screen (shown in Code 21 and Code 22). The main weakness

of the XML approach in this case is the number of files and code, increasing complexity.

We conclude that it is simpler and faster to create and maintain this kind of list in

Compose, along with requiring significantly less code.

5. Results and discussion

Over time, XML-based applications increase in size and complexity. Once components

are defined and used in layout files, they must be connected to a fragment class and be

inflated (converted into View and ViewGroup objects) in an overridden lifecycle method

(onCreateView) [6]. The separation of concerns is the primary principle of this method,

adapter = PositionItemAdapter(emptyList(), // initialize the adapter with an empty list

 itemClickListener = { position -> // do something}, // other click listeners here...

lifecycle.coroutineScope.launch { positions.collect { adapter.setPositions(it) } } // set the positions

binding.recyclerViewPositions.adapter = adapter // set the recyclerView adapter

@Composable

fun PositionItem(position: Position, onEvent: (PositionListEvent) -> Unit, modifier: Modifier) {

// structure content using rows and columns...(not shown here for sake of brevity)

 AsyncImage(// set image and its attributes)

Text(text = position.name, fontSize = 18.sp, fontWeight = FontWeight.Bold,) //position name

 IconButton(onClick = { onEvent(PositionListEvent.OnDeletePositionClick(position)) }){// delete

button

LazyColumn(modifier = Modifier.fillMaxWidth()) { items(positions.value) { position ->

// for each position

 PositionItem(position = position, // create a PositionItem composable with the required parameters...

 onEvent = positionListViewModel::onEvent,

 modifier = Modifier.fillMaxWidth().combinedClickable(// handle click events...)

 ANALYSIS OF DEVELOPING NATIVE ANDROID APPLICATIONS USING XML 177

AND JETPACK COMPOSE

where the screen layouts are defined in XML files and the logic that handles the

interactions of the user is defined in the fragment files. This principle is not always

beneficial, according to the authors of [6]. In their book, they explain how cohesion (how

parts of a given module are related to one another) relates to Android UI. Namely, the

problem lies with the different languages used for the layout files (XML) and

fragment/activity classes (kotlin), leading to the need for layout inflation in order for these

two parts to communicate. This increases complexity and reduces maintainability, having

to modify multiple files in case of changes. Jetpack Compose-based UI favors the

composition instead of the inheritance tree of XML-based UI. It is declarative, which

means that we describe what the program should do, not how to do it [6]. One of the

potential drawbacks is the lack of forced separation of concerns, meaning that the logic

and the UI can be mixed together. The developer has the freedom to put as much

application logic in a UI component as they wish, which may lead to a less readable and

poorly structured code. Compose sacrifices this forced structuring of UI building to

achieve its simplicity [6]. Writing the UI and the application logic using the same

language solves the problem of cohesion that is prevalent in the XML-based approach.

From a developer’s perspective, the XML method provides a large array of tools to

work with, like the design tools of Android Studio. Along with the many available

resources, and being the standard of Android development, it is usually more convenient

for solving some issues. Jetpack Compose provides simplicity and less boilerplate code,

as can be seen from our examples. However, due to its being a recent technology, there

are limited resources to consult when encountering some problems.

Our primary criteria for choosing a technology for a beginner in Android development

are simplicity and ease of use. The use of one language (kotlin) for both UI and application

logic makes Compose much simpler than the XML method. Additionally, the declarative

code makes it easier to create UI by using functions. Therefore, we recommend it for

developers who are starting out their Android journey. Android developers using the XML

method may consider switching to Compose for the reasons mentioned above. Writing

less UI code switches the focus to logical problems. A good example of this could be

creating screens that can contain multiple lists. It would be faster to create more

composable functions for each list (like PositionList) than to create multiple files for each

list as shown in the XML approach.

6. Conclusion

From our research, and by analyzing specific parts of the application in both

approaches, we have concluded that the XML-based approach for UI design can be quite

complex and time-consuming compared to the Jetpack Compose approach. Even though

XML is the standard method of developing Android applications at the moment, we

assume that Jetpack Compose will slowly replace the XML-based design.

178 E. MILLA AND M. RADONJIĆ

References

[1] Castillo, J, Shikov, A: “Jetpack Compose internals” (2021, Leanpub)

[2] Dumbravan, A: “Clean Android Architecture - Take a layered approach to writing clean, testable, and

decoupled Android applications” (2022, Packt Publishing)

[3] Forrester, A, Boudjnah, E, Dumbravan, A, Tigcal, J: “How to Build Android Apps with Kotlin - A

practical guide to developing, testing, and publishing your first Android apps 2” (2023, Packt Publishing)

[4] Griffiths, D, Griffiths, D: “Head First Android Development - A Learner's Guide to Building Android

Apps with Kotlin” (2021, O'Reilly Media)

[5] Griffiths, D, Griffiths, D: “Head First Kotlin” (2019, O’Reilly)

[6] Kodeco Team, Buketa, D, Prasad, P: “Jetpack Compose by Tutorials (Second Edition) - Building

Beautiful UI With Jetpack Compose” (2023, Kodeco Inc.)

[7] Murphy, M L.: ”The Busy Coder’s Guide to Android Development” (2017, CommonsWare)

[8] Smyth, N: “Jetpack Compose 1.3 Essentials - Developing Android Apps with Jetpack Compose 1.3,

Android Studio, and Kotlin” (2023, eBookFrenzy)

[9] Späth, P: “Pro Android with Kotlin - Developing Modern Mobile Apps with Kotlin and Jetpack” (2023,

Apress)

Egzon Milla

University of Montenegro,
Faculty of Electrical Engineering Podgorica, Montenegro
E-mail address: egzonmilla8@gmail.com

Milutin Radonjić
University of Montenegro,
Faculty of Electrical Engineering
Podgorica, Montenegro
E-mail address: mico@ucg.ac.me

mailto:egzonmilla8@gmail.com

