GOCE DELCEV UNIVERSITY - STIP FACULTY OF COMPUTER SCIENCE

The journal is indexed in

EBSCO

ISSN 2545-4803 on line DOI: 10.46763/BJAMI

BALKAN JOURNAL OF APPLIED MATHEMATICS **AND INFORMATICS (BJAMI)**

CNOWOWO

2024 VOLUME 7, Number 2

AIMS AND SCOPE:

BJAMI publishes original research articles in the areas of applied mathematics and informatics.

Topics:

- 1. Computer science;
- 2. Computer and software engineering;
- 3. Information technology;
- 4. Computer security;
- 5. Electrical engineering;
- 6. Telecommunication;
- 7. Mathematics and its applications;
- 8. Articles of interdisciplinary of computer and information sciences with education, economics, environmental, health, and engineering.

Managing editor Mirjana Kocaleva Vitanova Ph.D. **Zoran Zlatev** Ph.D.

Editor in chief Biljana Zlatanovska Ph.D.

Lectoure Snezana Kirova

Technical editor Biljana Zlatanovska Ph.D. **Mirjana Kocaleva Vitanova** Ph.D.

BALKAN JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS (BJAMI), Vol 7

ISSN 2545-4803 on line Vol. 7, No. 2, Year 2024

EDITORIAL BOARD

Adelina Plamenova Aleksieva-Petrova, Technical University – Sofia, Faculty of Computer Systems and Control, Sofia, Bulgaria **Lyudmila Stoyanova,** Technical University - Sofia , Faculty of computer systems and control, Department – Programming and computer technologies, Bulgaria **Zlatko Georgiev Varbanov**, Department of Mathematics and Informatics, Veliko Tarnovo University, Bulgaria **Snezana Scepanovic**, Faculty for Information Technology, University "Mediterranean", Podgorica, Montenegro **Daniela Veleva Minkovska**, Faculty of Computer Systems and Technologies, Technical University, Sofia, Bulgaria **Stefka Hristova Bouyuklieva**, Department of Algebra and Geometry, Faculty of Mathematics and Informatics, Veliko Tarnovo University, Bulgaria **Vesselin Velichkov,** University of Luxembourg, Faculty of Sciences, Technology and Communication (FSTC), Luxembourg **Isabel Maria Baltazar Simões de Carvalho**, Instituto Superior Técnico, Technical University of Lisbon, Portugal **Predrag S. Stanimirović**, University of Niš, Faculty of Sciences and Mathematics, Department of Mathematics and Informatics, Niš, Serbia **Shcherbacov Victor,** Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, Moldova **Pedro Ricardo Morais Inácio**, Department of Computer Science, Universidade da Beira Interior, Portugal **Georgi Tuparov**, Technical University of Sofia Bulgaria **Martin Lukarevski,** Faculty of Computer Science, UGD, Republic of North Macedonia **Ivanka Georgieva**, South-West University, Blagoevgrad, Bulgaria **Georgi Stojanov**, Computer Science, Mathematics, and Environmental Science Department The American University of Paris, France **Iliya Guerguiev Bouyukliev**, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria **Riste Škrekovski**, FAMNIT, University of Primorska, Koper, Slovenia **Stela Zhelezova**, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria **Katerina Taskova**, Computational Biology and Data Mining Group, Faculty of Biology, Johannes Gutenberg-Universität Mainz (JGU), Mainz, Germany. **Dragana Glušac**, Tehnical Faculty "Mihajlo Pupin", Zrenjanin, Serbia **Cveta Martinovska-Bande**, Faculty of Computer Science, UGD, Republic of North Macedonia **Blagoj Delipetrov**, European Commission Joint Research Centre, Italy **Zoran Zdravev**, Faculty of Computer Science, UGD, Republic of North Macedonia **Aleksandra Mileva**, Faculty of Computer Science, UGD, Republic of North Macedonia **Igor Stojanovik**, Faculty of Computer Science, UGD, Republic of North Macedonia **Saso Koceski**, Faculty of Computer Science, UGD, Republic of North Macedonia **Natasa Koceska**, Faculty of Computer Science, UGD, Republic of North Macedonia **Aleksandar Krstev**, Faculty of Computer Science, UGD, Republic of North Macedonia **Biljana Zlatanovska**, Faculty of Computer Science, UGD, Republic of North Macedonia **Natasa Stojkovik**, Faculty of Computer Science, UGD, Republic of North Macedonia **Done Stojanov**, Faculty of Computer Science, UGD, Republic of North Macedonia **Limonka Koceva Lazarova**, Faculty of Computer Science, UGD, Republic of North Macedonia **Tatjana Atanasova Pacemska**, Faculty of Computer Science, UGD, Republic of North Macedonia

C O N T E N T

Balkan Journal of Applied Mathematics and Informatics Online ISSN 2545-4083

Volume 7 Number 2 Year 2024 UDC: 514.754:511.235

EXIBITION OF PARAMETRIC FAMILY OF ALGEBRAIC POINTS OF GIVEN DEGREE ON AFFINE EQUATION CURVE: $-y^2 = x^6 - 20x^3 - 8$

MOHAMADOU MOR DIOGOU DIALLO

Abstract. We determine explicitly the set of algebraic points of given degree in the hyperelliptic curve of affine equation $-y^2 = x^6 - 20x^3 - 8$. This curve has rang null, so we can use the Riemann-roch espaces and the Abel-jacobi theorem to determine all the algebraic points of given degree.

1. Introduction

Let C be a projective algebraic curve defined over $\mathbb Q$. For any number field K, we denote by $\mathcal{C}(\mathbb{K})$ the set of points on C with coordinates are in \mathbb{K} and

 $\left[\begin{array}{c} \end{array}\right]\mathcal{C}(\mathbb{K})=\mathcal{C}^{\ell}(\mathbb{K})$ the set of algebric points of degree at most ℓ over \mathbb{Q} . The degree $[\mathbb{K}:\mathbb{Q}]\leqslant\ell$

of an algebraic point R is the degree of its field of definition on \mathbb{O} *i.e* $deg(R) = [\mathbb{Q}(R) : \mathbb{Q}]$. We denote by J the Jacobian of C and by $j(T)$ the class $[T - \infty]$ of $T - \infty$, i.e. j is the Jacobian folding (see [\[6\]](#page-14-0)):

$$
\begin{array}{cccc} j & : & \mathcal{C} & \longrightarrow & J(\mathbb{Q}), \\ & T & \longmapsto & [T - \infty] \end{array}
$$

where $J(\mathbb{Q})$ is the Mordell-Weil group of rational points of the Jacobian of C (see $[10]$; this group is finite (cf. $[1]$).

The curve C of affine equation $-y^2 = x^6 - 20x^3 - 8$ is smooth and is studied in \Box by Nils BRUIN. The projective equation of the curve $\mathcal C$ is given by:

$$
-Z^4Y^2 = X^6 - 20X^3Z^3 - 8Z^6,
$$
\n(1.1)

Date: December 4, 2024.

Keywords. Mordell-Weill group, Rational Points, Jacobian, Galois Conjugate, Linear Systems.

which can be written in this form

$$
C: \begin{cases} Z^4 \prod_{t=0}^1 (Y - \gamma_t Z) = -X^3 \prod_{r=0}^2 (X - \delta_r Z) \\ \text{where} \\ -Z^4 Y^2 = \prod_{k=0}^2 \prod_{p=0}^1 (X - \eta_{k_p} Z) \end{cases}
$$
(1.2)

which also corresponds to the affine equation

$$
\mathcal{C}: \begin{cases} \prod_{t=0}^{1} (y - \gamma_t) = -x^3 \prod_{r=0}^{2} (x - \delta_r) \\ \text{where} \\ y^2 = \prod_{k=0}^{2} \prod_{p=0}^{1} (\eta_{k_p} - x) \end{cases}
$$
(1.3)

with $\gamma_t = (-1)^t 2\sqrt{ }$ $\overline{2}$, $\delta_r = \sqrt[3]{20}e^{\frac{2r\pi}{3}}$ and depending on the values respectively taken by $k_p = 0$, 1 and 2; we have $\eta_{k_p} = 1 + (-1)^p \sqrt{\frac{(\eta_{k_p} - 1)^p}{k_p}}$ $\frac{-1 + \sqrt{3} + (i)^{2p+1}\sqrt{12 - 6}}{2}$ $\frac{1}{\sqrt{2}}$ 3 2 and $\frac{-1-1}{}$ √ $\sqrt{3} + (i)^{2p+1}\sqrt{12 + 6\sqrt{3}}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ explained in the following table:

such that $i^2 = -1$. Let I_t , P_{k_p} , $Q_{r,t}$ and ∞ be the points of C defined by: $I_t = [0 : \gamma_t : 1], P_{k_p} = [\eta_{k_p} : 0 : 1], Q_{r,t} = [\delta_r : \gamma_t : 1] \text{ and } \infty = [0 : 1 : 0].$ In this note, we explicitly determine the set of algebric points of given degree over Q, denoted $\mathcal{C}^{\ell}(\mathbb{Q})$, which is an extension of the result in \mathbb{I} which exibited the set of rational points therefore of degree one and that its group $\mathcal{J}(\mathbb{Q})$.

2. Main result

The main result of our work is given by the following theorem:

Theorem 2.1. The set $C^{\ell}(\mathbb{Q})$ with $\ell \geq 5$ is given by $C^{\ell}(\mathbb{Q}) = \lceil \ell \rceil$ $n \in \{0,1\}$ \mathcal{E}_n ; with:

$$
\mathcal{E}_n = \left\{ \left(x, \left(\frac{\sum_{i=n}^{\frac{\ell+2n}{2}} a_i (x^i + n\rho^i)}{\sum_{j=0}^{\frac{\ell+2n-5}{2}} b_j x^{j+2}} \right) \right) \left(\int_{j=0}^{\rho^i} \right) = \left(\sum_{j=0}^{\frac{\ell+2n}{2}} b_j x^{j+2} \right) \left(\int_{j=0}^{b_j} \frac{\sum_{j=0}^{\rho^i} a_i (x^i + n\rho^i)}{\sum_{j=0}^{\frac{\ell+2n}{2}} b_j x^{j+2}} \right) \left(\int_{j=0}^{b_j} \frac{\sum_{j=0}^{\rho^i} a_i (x^i + n\rho^i)}{\sum_{j=0}^{\frac{\ell+2n}{2}} b_j x^{j+2}} \right)^{12} \left(\sum_{j=0}^{\frac{\ell+2n-5}{2}} b_j x^{j+24-12n-5\ell} \right)^{12} \prod_{k=0}^{2} \prod_{p=0}^{1} (\eta_{k_p} - x) \right\}
$$

2.1. Auxiliary results.

For a divisor ω on C, let $\mathcal{L}(\omega)$ denote the \overline{Q} -vector space of rational functions f defined over Q such that $f = 0$ or $div(f) \geq -\omega$; $l(\omega)$ denotes the \overline{Q} -dimension of $\mathcal{L}(\omega)$ (see **8**).

Lemma 2.1. For curve C , we have the following rational divisors:

$$
\begin{aligned}\n\mathbf{i:} \ div(x) &= \sum_{t=0}^{1} Q_{r,t} - 2\infty, \\
\mathbf{ii:} \ div(x - \delta_r) &= \sum_{t=0}^{1} Q_{r,t} - 2\infty, \\
\mathbf{iii:} \ div(x - \gamma_t) &= 3I_t + \sum_{r=0}^{2} Q_{r,t} - 6\infty, \\
\mathbf{iv:} \ div(y) &= \sum_{k=0}^{2} \sum_{p=0}^{1} P_{k_p} - 6\infty.\n\end{aligned}
$$

Proof. Let x, y be the affine coordinates and X, Y and Z the projective coordinates. Let's: $x = \frac{X}{Z}$ $\frac{X}{Z}$ and $y = \frac{Y}{Z}$ $\frac{Y}{Z}$. We have:

\n- **i:**
$$
div(x) = div(\frac{X}{Z}) = (X = 0) \cdot C - (Z = 0) \cdot C
$$
.
\n- For $X = 0$, it follows from [1.2] implies that $Z^4 \prod_{t=0}^{1} (Y - \gamma_t Z) = 0$ which is equivalent to $Z^4 = 0$ or $(Y - \gamma_t Z) = 0$. This gives the points $Q_{r,t}$ with $t \in \{0,1\}$ and ∞ with a the order of $Z^4 = 0$.
\n

the multiplication 1 and 4 respectively. Hence

$$
(X = 0) \cdot C = \sum_{t=0}^{1} Q_{r,t} + 4\infty.
$$
 (2.1)

• Similarly for $Z = 0$, then it follows from (1.1) that: $X^6 = 0$. We therefore obtain the point ∞ with a multiplicitous order equal to 6 . Hence

$$
(Z=0)\cdot \mathcal{C}=6\infty.\tag{2.2}
$$

Thus from relations (2.1) and (2.2) , we deduce that:

$$
div(x) = \sum_{t=0}^{1} Q_{r,t} - 2\infty.
$$

ii: Let's calculate: $div(x-\delta_r) = div(X-\delta_rZ) - div(Z) = (X-\delta_rZ)\cdot C - (Z=0)\cdot C$. • For $X = \delta_r Z$, it follows (1.2) that: $Y^2 = 0$ or $Z^4 = 0$.

This gives the points $Q_{r,t}$ with $t \in \{0,1\}$ and ∞ whose order of multiplicity is 1 and 4 respectively. Hence

$$
(X = \delta_r Z) \cdot C = \sum_{t=0}^{1} Q_{r,t} + 4\infty.
$$
 (2.3)

• For $Z = 0$, we find the relation (2.2) .

Thus from relations (2.2) and (2.3) , we deduce that:

$$
div(x - \delta_r) = \sum_{t=0}^{1} Q_{r,t} - 2\infty.
$$

iii: Let's calculate: $div(y-\gamma_t) = div(Y-\gamma_t Z) - div(Z) = (Y = \gamma_t Z) \cdot C - (Z = 0) \cdot C$. 2

> • For $Y = \gamma_t Z$, it follows (1.2) that: $X^3 \prod$ $r=0$ $(X - \delta_r Z) = 0$ the result $X^3 = 0$ or $(X - \delta_r Z) = 0$. This gives the points $Q_{r,t}$ with $r \in \{0, 1, 2\}$ and I_t order of multiplicity is 1 and 3 respectively. Hence

$$
(Y = \gamma_t Z) \cdot C = 3I_t + \sum_{r=0}^{2} Q_{r,t}.
$$
\n(2.4)

• For $Z = 0$, we find the relation (2.2) .

Thus from relations (2.2) and (2.4) , we deduce that:

$$
div(x - \gamma_t) = 3I_t + \sum_{r=0}^{2} Q_{r,t} - 6\infty.
$$

iv: $div(y) = div(\frac{Y}{Z})$ $(\frac{Y}{Z})=(Y=0)\cdot C-(Z=0)\cdot C$. • For $Y = 0$, it follows from (1.2) that: \prod 2 Π 1 $(X - \eta_{k_p} Z) = 0$. This

 $k=0$ $p=0$ gives the points: P_{k_p} with a multiplicative order of 1 for each point. Hence

$$
(Y = 0) \cdot C = \sum_{k=0}^{2} \sum_{p=0}^{1} P_{k_p}.
$$
\n(2.5)

Thus the relations (2.2) and (2.5) , we deduce that:

$$
div(y) = \sum_{k=0}^{2} \sum_{p=0}^{1} P_{k_p} - 6\infty.
$$

Corollary [2.1](#page-8-0). The following results are the consequences of Lemma $\overline{2.1}$, we have:

a:
$$
\sum_{t=0}^{1} j(Q_{r,t}) = 0 \text{ and } \sum_{k=0}^{2} \sum_{p=0}^{1} j(P_{k_p}) = 0,
$$

b:
$$
3j(I_t) + \sum_{r=0}^{2} j(Q_{r,t}) = 0.
$$

Lemma 2.2. According to \Box , we have:

$$
J(\mathbb{Q}) = \langle j(P_{0_0}) + j(P_{0_1}) \rangle \otimes \mathbb{Z}/2\mathbb{Z}
$$

= { $n(j(P_{0_0}) + j(P_{0_1}))$, with $n \in \{0, 1\}$ }

Remark 2.1: Note that, if $\lambda \in \mathcal{J}(\mathbb{Q})$ then: $\lambda = n(j(P_{00}) + j(P_{01}))$, $= -n ([P_{0_0} - \infty] + [P_{0_1} - \infty]),$ $=-n$ $\sqrt{ }$ $\overline{1}$ \sum 1 $p=0$ P_{0_p} – 2 ∞ \setminus \cdot .

Lemma 2.3.

1: We have the following linear systems:

- $\mathcal{L}(\infty) = \langle 1 \rangle$,
- $\mathcal{L}(2\infty) = \mathcal{L}(3\infty) = \langle 1, x \rangle,$
- $\mathcal{L}(4\infty) = \langle 1, x, x^2 \rangle,$

•
$$
\mathcal{L}(5\infty) = \langle 1, x, x^2, y^{\frac{1}{6}}x^2 \rangle
$$
,

- $\mathcal{L}(6\infty) = \langle 1, x, x^2, y^{\frac{1}{6}}x^2, x^3 \rangle,$
- $\mathcal{L}(7\infty) = \langle 1, x, x^2, y^{\frac{1}{6}}x^2, x^3, y^{\frac{1}{6}}x^3 \rangle,$

 \Box

•
$$
\mathcal{L}(8\infty) = \left\langle 1, x, x^2, y^{\frac{1}{6}}x^2, x^3, y^{\frac{1}{6}}x^3, x^4 \right\rangle
$$
,
\n• $\mathcal{L}(9\infty) = \left\langle 1, x, x^2, y^{\frac{1}{6}}x^2, x^3, y^{\frac{1}{6}}x^3, x^4, y^{\frac{1}{6}}x^4 \right\rangle$,
\n• $\mathcal{L}(10\infty) = \left\langle 1, x, x^2, y^{\frac{1}{6}}x^2, x^3, y^{\frac{1}{6}}x^3, x^4, y^{\frac{1}{6}}x^4, x^5 \right\rangle$.

2: Generally, for d intiger a \mathbb{Q} -base of $\mathcal{L}(d\infty)$ is given by:

$$
\mathcal{B}_d = \left\{ x^i \middle| i \in \mathbb{N} \text{ and } i \leq \frac{d}{2} \right\} \bigcup \left\{ y^{\frac{1}{6}} x^{j+2} \middle| j \in \mathbb{N} \text{ and } j \leq \frac{d-5}{2} \right\}.
$$

Proof.

- 1: There are direct consequences of **Lemma** $\boxed{2.1}$ and the use of Clifford's theorem $(\text{see } 3)$.
- 2: It is easy to show that \mathcal{B}_d is a free family, it then remains to show that
	- $\#\mathcal{B}_d = \dim \mathcal{L}(d\infty)$. We know that the genus of C is $g = 2$ (see [\[2\]](#page-14-5)). Since the curve has genus 2, according to the Riemann-Roch theorem (see $[4, 8]$ $[4, 8]$), we have dim $\mathcal{L}(d\infty) = d - g + 1 = d - 1$ since $d \geq 2g - 1 = 3$. Two cases are possible:

First case: suppose that d is even, then $d = 2h$, we obtain:

 $i \leq \frac{d}{2} \Leftrightarrow i \leq \frac{2h}{2} = h$ the same $j \leq \frac{d-5}{2} \Leftrightarrow j \leq \frac{2h-5}{2} \Leftrightarrow j \leq h - \frac{5}{2}$ $\begin{array}{l}\n\ell \geq 2 \iff \ell \geq 2 - h \text{ the same } J \geq 2 \iff J \geq 2 \iff J \geq h - 2 \\
\implies j < h - \frac{4}{2} = h - 2 \implies j \leq h - 3. \text{ It follows that:}\n\end{array}$

$$
\mathcal{B}_d = \left\{ 1, x, \dots, x^h \right\} \bigcup \left\{ y^{\frac{1}{6}} x^2, y^{\frac{1}{6}} x^3, \dots, y^{\frac{1}{6}} x^{h-1} \right\}.
$$

So we have:

$$
\#B_d = h + 1 + h - 3 + 1 = 2h - 1 = d - 1 = \dim \mathcal{L}(d\infty).
$$

Second case: suppose that d is odd, then $d = 2h + 1$, we get: $i \leq \frac{d}{2} \Leftrightarrow i \leq \frac{2h+1}{2} \Leftrightarrow i \leq h+\frac{1}{2} \Longrightarrow i < h+1 \Longrightarrow i \leq h$ the same

 $j \leq \frac{d-5}{2} \Leftrightarrow j \leq \frac{2h-4}{2} = h-2$. Thus we have:

$$
\mathcal{B}_d = \left\{1, x, \ldots, x^h\right\} \bigcup \left\{y^{\frac{1}{6}}x^2, y^{\frac{1}{6}}x^3, \ldots, y^{\frac{1}{6}}x^h\right\}.
$$

It follows that:

$$
\#\mathcal{B}_d = h + 1 + h - 2 + 1 = (2h + 1) - 1 = d - 1 = \dim \mathcal{L}(d\infty).
$$

 \Box

2.2. Proof of the main theorem.

The following proof coorrespond to the demonstration of our main theorem.

Proof. Let $R \in \mathcal{C}(\overline{\mathbb{Q}})$ be of degree $[\mathbb{Q}(R) : \mathbb{Q}] = \ell$ with $\ell \geq 5$ and $R \notin \{I_t, Q_{r,t}, P_{k_p}, \infty\}$. Consider R_1,\ldots,R_ℓ the Galois conjugates of R and let $\lambda = \left\lceil \sum_{i=1}^\ell A_i \right\rceil$ $\varsigma=0$ $R_{\varsigma}-\ell\infty$ 1 $\in \mathcal{J}(\mathbb{Q}).$

From **Remark** 2.1 we have
$$
\lambda = -n \left(\sum_{p=0}^{1} P_{0p} - 2\infty \right)
$$
 with $n \in \{0, 1\}$, and hence

$$
\left[\sum_{\varsigma=0}^{\ell} R_{\varsigma} - \ell\infty \right] = \left(2n\infty - n \sum_{p=0}^{1} P_{0p} \right).
$$
 (2.6)

The expression (2.6) gives the following equation:

$$
\left[\sum_{\zeta=0}^{\ell} R_{\zeta} + n \sum_{p=0}^{1} P_{0p} - (\ell + 2n)\infty\right] = 0.
$$
 (2.7)

From equation [\(2.7\)](#page-12-1), we have deduced that, according to the Abel-Jacobi theorem $\boxed{5}$, $\boxed{9}$, there exists a rational function $\zeta(x, y)$ defined on $\mathbb Q$ such that :

$$
div(\zeta) = \sum_{\zeta=0}^{\ell} R_{\zeta} + n \sum_{p=0}^{1} P_{0p} - (\ell + 2n)\infty.
$$
 (2.8)

Two cases are possible:

 1^{st} case: $n = 0$.

The formula (2.8) (2.8) becomes:

$$
div(\zeta) = \sum_{\varsigma=0}^{\ell} R_{\varsigma} - \ell \infty.
$$
 (2.9)

From expression (2.9) , we deduce that $\zeta \in \mathcal{L}(\ell P_{\infty})$. From **Lemma [2.3](#page-10-2)**, we have: \overline{a}

$$
\zeta(x,y) = \sum_{i=0}^{\frac{\ell}{2}} a_i x^i + \sum_{j=0}^{\frac{\ell-5}{2}} b_j y^{\frac{1}{6}} x^{j+2},\tag{2.10}
$$

where a_i and b_j are scalars such that $b_j \in \mathbb{Q}$ and $a_i \in \mathbb{Q}^*$ (otherwise one of the R_{ς} 's should be at P_{0_0} , which would be absurd), $a_{\frac{\ell}{2}} \neq 0$ (otherwise one of the R_{ς} 's should be at ∞ , which would be absurd) and $b_{\frac{\ell-5}{2}} \neq 0$ (otherwise one of the R_{ς} 's should be at ∞ , which would be absurd).

$$
2nd case: n = 1.
$$

The formula (2.8) (2.8) implies that $\zeta \in \mathcal{L}((\ell+2)\infty)$, according to **Lemma [2.3](#page-10-2)**

we have

$$
\zeta(x,y) = \sum_{i=0}^{\frac{\ell+2}{2}} a_i x^i + \sum_{j=0}^{\frac{\ell-3}{2}} b_j y^{\frac{1}{6}} x^{j+2}
$$
\n(2.11)

and since $ord_{P_{0_0}}\zeta = ord_{P_{0_1}}\zeta = 1$ so $\zeta(P_{0_0}) = \zeta(P_{0_1}) = 0$ thus implied that $a_0 =$ $\frac{\ell+2}{2}$ $i=1$ $a_i \rho^i$ where $\rho^i = -\frac{1}{2}$ 2 \sum 1 $p=0$ $(1 + (-1)^p \sqrt{1 - (1)^p})$ $\sqrt{3}$, then the equation $\sqrt{2.11}$ is then written as follows:

$$
\zeta(x,y) = \sum_{i=1}^{\frac{\ell+2}{2}} a_i (x^i + \rho^i) + \sum_{j=0}^{\frac{\ell-3}{2}} b_j y^{\frac{1}{6}} x^{j+2}
$$
\n(2.12)

where a_i and b_j are scalars such that $a_{i_{i\geq1}}, b_j \in \mathbb{Q}$, $a_{\frac{\ell+2}{2}} \neq 0$ if ℓ is even (otherwise one of the R_{ς} 's should be at ∞ , which would be absurd) and $b_{\frac{\ell-3}{2}} \neq 0$ if ℓ is odd (otherwise one of the R_{ς} 's should be at ∞ , which would be absurd).

So, from equations (2.10) and (2.12) , we deduce that for all $n \in \{0, 1\}$, we have:

$$
\zeta_n(x, y) = \sum_{i=n}^{\frac{\ell+2n}{2}} a_i (x^i + n\rho^i) + \sum_{j=0}^{\frac{\ell+2n-5}{2}} b_j y^{\frac{1}{6}} x^{j+2}.
$$

At point R_{ς} , we have $\zeta_n(x, y) = 0$, this implies that $y = \begin{pmatrix} \frac{\ell+2n}{2} & \frac{\ell}{2} \\ \frac{\ell}{2} & a_i (x^i + n\rho^i) \\ \frac{\ell+2n-5}{2} & \frac{\ell}{2} \end{pmatrix}^6$.

By replacing the expression for y in (1.3) (1.3) , we obtain the following equation:

$$
\left(\sum_{i=n}^{\frac{\ell+2n}{2}} a_i \left(x^i + n\rho^i\right)\right)^{12} = \left(\sum_{j=0}^{\frac{\ell+2n-5}{2}} b_j x^{j+2}\right)^{12} \prod_{k=0}^2 \prod_{p=0}^1 (\eta_{k_p} - x). \tag{2.13}
$$

Equation (2.13) (2.13) can be written as follows:

$$
\left(\sum_{i=n}^{\frac{\ell+2n}{2}} a_i \left(\frac{x^i + n\rho^i}{x^{\frac{5\ell}{12}+n}}\right)\right)^{12} = \left(\sum_{j=0}^{\frac{\ell+2n-5}{2}} b_j x^{j+\frac{24-12n-5\ell}{12}}\right)^{12} \prod_{k=0}^2 \prod_{p=0}^1 (\eta_{k_p} - x). \quad (2.14)
$$

The expression (2.14) is an equation of degree ℓ . Indeed, the first member is degree $12 \times \left(\frac{\ell+2n}{2}\right)$ $\frac{-2n}{2} - \frac{5\ell}{12}$ $\left(\frac{5\ell}{12} - n\right) = \ell$ and the second one is degree $12 \times \left(\frac{\ell+2n-5}{2}\right)$ $\frac{2n-5}{2} + \frac{24-12n-5\ell}{12}$ $\frac{12n - 5\ell}{12} + 6$ + 6 = ℓ . This gives a degree point family ℓ :

$$
\mathcal{E}_n = \left\{ \left(x, \left(\frac{\sum_{i=n}^{\frac{\ell+2n}{2}} a_i (x^i + n\rho^i)}{\sum_{j=0}^{\frac{\ell+2n-5}{2}} b_j x^{j+2}} \right) \right) \middle|_{j \text{ odd}} \rho^i = -\frac{1}{2} \sum_{p=0}^1 \left(1 + (-1)^p \sqrt{3} \right)^i, \text{ the } a_i \right\}
$$
\n
$$
\mathcal{E}_n = \left\{ \left(\sum_{j=0}^{\frac{\ell+2n}{2}} b_j x^{j+2} \right) \middle|_{j \text{ odd}} \right\} \middle|_{j \text{ odd}} \rho^i = \sum_{p=0}^1 \sum_{p=0}^1 \left(1 + (-1)^p \sqrt{3} \right)^i, \text{ the } a_i \right\}
$$
\n
$$
\left(\sum_{j=0}^{\frac{\ell+2n}{2}} a_i \left(\frac{x^i + n\rho^i}{x^{\frac{5\ell}{12}+n}} \right) \right)^{12} = \left(\sum_{j=0}^{\frac{\ell+2n-5}{2}} b_j x^{j+ \frac{24-12n-5\ell}{12}} \right)^{12} \prod_{k=0}^2 \prod_{p=0}^1 (\eta_{k_p} - x) \right\}
$$

$$
\Box
$$

REFERENCES

- [1] Bruin, N (2000). On powers as sums of two cubes, Algorithmic Number Theory, Tome 21, 4th International Symposium, ANTS-IV Leiden, The Netherlands, pp. 169–184.
- [2] Bruin, N. and Flynn, E.V (2006). Exhibiting SHA [2] on hyperelliptic Jacobians, Journal of Number Theory, No.2, Vol.118, pp. 266–291.
- [3] Coppens, M. and Martens, G (1991). Secant spaces and Clifford's theorem, Compositio Mathematica, No.2, Vol.78, pp. 193–212.
- [4] Faltings, G (1992). Lectures on the arithmetic Riemann-Roch theorem, Princeton University Press, Vol.127.
- [5] Arbarello, E., Cornalba, M., Griffiths P. A. and Harris, J (1985). The Basic Results of the Brill-Noether Theory, Geometry of Algebraic Curves, No.3, Vol.133, pp. 203–224.
- [6] Fuchs, L. and Kahane, J.P. and Robertson, A.P. and Ulam, S (1960). Abelian groups, Vol.960.
- [7] Borel, A. and Serre, J.P (1958). Le théoréme de Riemann-Roch, Bultin de la Société mathématiques de france, Vol.86, pp. 97–136.
- [8] Faddeev, D (1961). On the divisor class groups of some algebraic curves, Dokl. Akad. Nauk SSSR, Vol.136, pp. 296–298. English translation : Soviet Math. Dokl, No.1, Vol.2, pp. 67–69.
- [9] Griffiths, P. A (1989). Introduction to algebraic curves, Translations of mathematical monographs, American Mathematical Society, Providence, RI, Vol.76.
- [10] Gross, B. and Rohrlich, D (1978). Some results on the Mordell-Weil group of the jacobian of the Fermat curve, Invent. Math, Vol.44 , pp. 201–224.

Mohamadou Mor Diogou Diallo ASSANE SECK UNIVERSITY OF ZIGUINCHOR, FACULTY OF SCIENCES AND TECHNOLOGY, DIABIR, BP:523, ZIGUINCHOR, SENEGAL Email address: m.diallo1836@zig.univ.sn