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EXIBITION OF PARAMETRIC FAMILY OF ALGEBRAIC
POINTS OF GIVEN DEGREE ON AFFINE EQUATION CURVE:

−y2 = x6 − 20x3 − 8

MOHAMADOU MOR DIOGOU DIALLO

Abstract. We determine explicitly the set of algebraic points of given degree
in the hyperelliptic curve of affine equation −y2 = x6 − 20x3 − 8.
This curve has rang null, so we can use the Riemann-roch espaces and the
Abel-jacobi theorem to determine all the algebraic points of given degree.

1. Introduction

Let C be a projective algebraic curve defined over Q. For any number field K,we
denote by C(K) the set of points on C with coordinates are in K and⋃
[K:Q]⩽ℓ

C(K) = Cℓ(K) the set of algebric points of degree at most ℓ over Q. The degree

of an algebraic point R is the degree of its field of definition on Q i.e
deg(R) = [Q(R) : Q]. We denote by J the Jacobian of C and by j(T ) the class
[T −∞] of T −∞, i.e. j is the Jacobian folding (see [6]):

j : C −→ J(Q),
T 7 −→ [T −∞]

where J(Q) is the Mordell-Weil group of rational points of the Jacobian of C (see
[10]); this group is finite (cf. [1]).
The curve C of affine equation −y2 = x6 − 20x3 − 8 is smooth and is studied in [1]
by Nils BRUIN. The projective equation of the curve C is given by:

−Z4Y 2 = X6 − 20X3Z3 − 8Z6, (1.1)

Date: December 4, 2024.
Keywords. Mordell-Weill group, Rational Points, Jacobian, Galois Conjugate, Linear

Systems.
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16 MOHAMADOU MOR DIOGOU DIALLO

which can be written in this form

C :


Z4

1∏
t=0

(Y − γtZ) = −X3
2∏

r=0

(X − δrZ)

where

−Z4Y 2 =

2∏
k=0

1∏
p=0

(X − ηkpZ)

(1.2)

which also corresponds to the affine equation

C :



1∏
t=0

(y − γt) = −x3
2∏

r=0

(x− δr)

where

y2 =

2∏
k=0

1∏
p=0

(ηkp − x)

(1.3)

with γt = (−1)t2
√
2, δr = 3

√
20e

2rπ
3 and depending on the values respectively taken

by kp = 0, 1 and 2; we have ηkp = 1 + (−1)p
√
3,

−1 +
√
3 + (ı)2p+1

√
12− 6

√
3

2

and
−1−

√
3 + (ı)2p+1

√
12 + 6

√
3

2
; explained in the following table:

k = 0, p ∈ {0, 1} k = 1, p ∈ {0, 1} k = 2, p ∈ {0, 1}

η00 = 1 +
√
3 η10 =

−1 +
√
3 + ı

√
12− 6

√
3

2
η20 =

−1−
√
3 + ı

√
12 + 6

√
3

2

η01 = 1−
√
3 η11 =

−1 +
√
3− ı

√
12− 6

√
3

2
η21 =

−1−
√
3− ı

√
12 + 6

√
3

2

such that ı2 = −1. Let It, Pkp , Qr,t and ∞ be the points of C defined by:
It = [0 : γt : 1], Pkp = [ηkp : 0 : 1], Qr,t = [δr : γt : 1] and ∞ = [0 : 1 : 0].
In this note, we explicitly determine the set of algebric points of given degree over
Q, denoted Cℓ(Q), which is an extension of the result in [1] which exibited the set
of rational points therefore of degree one and that its group J (Q).

2. Main result

The main result of our work is given by the following theorem:
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Theorem 2.1. The set Cℓ(Q) with ℓ ≥ 5 is given by Cℓ(Q) =
⋃

n∈{0,1}

En; with:

En =




x,



ℓ+2n
2∑

i=n

ai
(
xi + nρi

)
ℓ+2n−5

2∑
j=0

bjx
j+2



6


∣∣∣∣∣∣∣∣∣∣∣∣∣

ρi = −1

2

1∑
p=0

(
1 + (−1)p

√
3
)i
, the ai

and bj are scalars such that ai ∈ Q,

bj ∈ Q, a0 ̸= 0, a ℓ+2n
2

̸= 0 if ℓ is even,
b ℓ+2n−5

2
̸= 0 if ℓ if odd and x

is a root of the equation: ℓ+2n
2∑

i=n

ai

(
xi + nρi

x
5ℓ
12

+n

)12

=

 ℓ+2n−5
2∑

j=0

bjx
j+ 24−12n−5ℓ

12

12
2∏

k=0

1∏
p=0

(ηkp − x)


2.1. Auxiliary results.

For a divisor ω on C, let L(ω) denote the Q̄-vector space of rational functions f
defined over Q such that f = 0 or div(f) ≥ −ω ; l(ω) denotes the Q̄-dimension of
L(ω) (see [8]).

Lemma 2.1. For curve C, we have the following rational divisors:

i: div(x) =
1∑

t=0

Qr,t − 2∞,

ii: div(x− δr) =

1∑
t=0

Qr,t − 2∞,

iii: div(x− γt) = 3It +
2∑

r=0

Qr,t − 6∞,

iv: div(y) =
2∑

k=0

1∑
p=0

Pkp − 6∞.

Proof. Let x, y be the affine coordinates and X, Y and Z the projective coordinates.
Let’s: x = X

Z and y = Y
Z . We have:

i: div(x) = div(XZ ) = (X = 0) · C − (Z = 0) · C.

• For X = 0, it follows from (1.2) implie that Z4
1∏

t=0

(Y − γtZ) = 0 which

is equivalent to Z4 = 0 or (Y − γtZ) = 0.
This gives the points Qr,t with t ∈ {0, 1} and ∞ with a the order of
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the multiplication 1 and 4 respectively. Hence

(X = 0) · C =
1∑

t=0

Qr,t + 4∞. (2.1)

• Similarly for Z = 0, then it follows from (1.1) that: X6 = 0.
We therefore obtain the point ∞ with a multiplicitous order equal to
6 . Hence

(Z = 0)· C = 6∞. (2.2)
Thus from relations (2.1) and (2.2), we deduce that:

div(x) =

1∑
t=0

Qr,t − 2∞.

ii: Let’s calculate: div(x−δr) = div(X−δrZ)−div(Z) = (X = δrZ)·C−(Z = 0)·C.
• For X = δrZ, it follows (1.2) that: Y 2 = 0 or Z4 = 0.

This gives the points Qr,t with t ∈ {0, 1} and ∞ whose order of multi-
plicity is 1 and 4 respectively. Hence

(X = δrZ) · C =
1∑

t=0

Qr,t + 4∞. (2.3)

• For Z = 0, we find the relation (2.2).

Thus from relations (2.2) and (2.3), we deduce that:

div(x− δr) =

1∑
t=0

Qr,t − 2∞.

iii: Let’s calculate: div(y−γt) = div(Y −γtZ)−div(Z) = (Y = γtZ)·C−(Z = 0)·C.

• For Y = γtZ, it follows (1.2) that: X3
2∏

r=0

(X − δrZ) = 0 the result

X3 = 0 or (X − δrZ) = 0. This gives the points Qr,t with r ∈ {0, 1, 2}
and It order of multiplicity is 1 and 3 respectively. Hence

(Y = γtZ) · C = 3It +
2∑

r=0

Qr,t. (2.4)

• For Z = 0, we find the relation (2.2).

Thus from relations (2.2) and (2.4), we deduce that:

div(x− γt) = 3It +

2∑
r=0

Qr,t − 6∞.
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iv: div(y) = div(YZ ) = (Y = 0)· C − (Z = 0) · C .

• For Y = 0, it follows from (1.2) that:
2∏

k=0

1∏
p=0

(X − ηkpZ) = 0. This

gives the points: Pkp with a multiplicative order of 1 for each point.
Hence

(Y = 0)· C =

2∑
k=0

1∑
p=0

Pkp . (2.5)

Thus the relations (2.2) and (2.5), we deduce that:

div(y) =
2∑

k=0

1∑
p=0

Pkp − 6∞.

□

Corollary 2.1. The following results are the consequences of Lemma 2.1, we
have:

a:
1∑

t=0

j(Qr,t) = 0 and
2∑

k=0

1∑
p=0

j(Pkp) = 0,

b: 3j(It) +
2∑

r=0

j(Qr,t) = 0.

Lemma 2.2. According to [1], we have:

J(Q) = ⟨j(P00) + j(P01)⟩ ⊗ Z/2Z
= {n (j(P00) + j(P01)) ,with n ∈ {0, 1}}

Remark 2.1: Note that, if λ ∈ J (Q) then: λ = n (j(P00) + j(P01)),
= −n ([P00 −∞] + [P01 −∞]),

= −n

 1∑
p=0

P0p − 2∞

.

Lemma 2.3.
1: We have the following linear systems:

• L(∞) = ⟨1⟩,
• L(2∞) = L(3∞) = ⟨1, x⟩,
• L(4∞) =

〈
1, x, x2

〉
,

• L(5∞) =
〈
1, x, x2, y

1
6x2

〉
,

• L(6∞) =
〈
1, x, x2, y

1
6x2, x3

〉
,

• L(7∞) =
〈
1, x, x2, y

1
6x2, x3, y

1
6x3

〉
,
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• L(8∞) =
〈
1, x, x2, y

1
6x2, x3, y

1
6x3, x4

〉
,

• L(9∞) =
〈
1, x, x2, y

1
6x2, x3, y

1
6x3, x4, y

1
6x4

〉
,

• L(10∞) =
〈
1, x, x2, y

1
6x2, x3, y

1
6x3, x4, y

1
6x4, x5

〉
.

2: Generally, for d intiger a Q-base of L(d∞) is given by:

Bd =

{
xi

∣∣∣∣i ∈ N and i ≤ d

2

}⋃{
y

1
6xj+2

∣∣∣∣j ∈ N and j ≤ d− 5

2

}
.

Proof.

1: There are direct consequences of Lemma 2.1 and the use of Clifford’s theorem
(see [3]).

2: It is easy to show that Bd is a free family, it then remains to show that
#Bd = dimL(d∞). We know that the genus of C is g = 2 (see [2]). Since
the curve has genus 2, according to the Riemann-Roch theorem (see [4, 8]),
we have dimL(d∞) = d− g + 1 = d− 1 since d ≥ 2g − 1 = 3.
Two cases are possible:
First case: suppose that d is even, then d = 2h, we obtain:

i ≤ d
2 ⇔ i ≤ 2h

2 = h the same j ≤ d−5
2 ⇔ j ≤ 2h−5

2 ⇔ j ≤ h − 5
2

=⇒ j < h− 4
2 = h− 2 =⇒ j ⩽ h− 3. It follows that:

Bd =
{
1, x, . . . , xh

}⋃{
y

1
6x2, y

1
6x3, . . . , y

1
6xh−1

}
.

So we have:

#Bd = h+ 1 + h− 3 + 1 = 2h− 1 = d− 1 = dimL(d∞).

Second case: suppose that d is odd, then d = 2h+ 1, we get:
i ≤ d

2 ⇔ i ≤ 2h+1
2 ⇔ i ≤ h + 1

2 =⇒ i < h + 1 =⇒ i ⩽ h the same
j ≤ d−5

2 ⇔ j ≤ 2h−4
2 = h− 2. Thus we have:

Bd =
{
1, x, . . . , xh

}⋃{
y

1
6x2, y

1
6x3, . . . , y

1
6xh

}
.

It follows that:

#Bd = h+ 1 + h− 2 + 1 = (2h+ 1)− 1 = d− 1 = dimL(d∞).

□

2.2. Proof of the main theorem.

The following proof coorrespond to the demonstration of our main theorem.
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Proof. Let R ∈ C(Q̄) be of degree [Q(R) : Q] = ℓ with ℓ ≥ 5 and R /∈
{
It, Qr,t, Pkp ,∞

}
.

Consider R1, . . . , Rℓ the Galois conjugates of R and let λ =

[
ℓ∑

ς=0

Rς − ℓ∞

]
∈ J (Q).

From Remark 2.1, we have λ = −n

 1∑
p=0

P0p − 2∞

 with n ∈ {0, 1}, and hence

[
ℓ∑

ς=0

Rς − ℓ∞

]
=

2n∞− n
1∑

p=0

P0p

. (2.6)

The expression (2.6) gives the following equation: ℓ∑
ς=0

Rς + n
1∑

p=0

P0p − (ℓ+ 2n)∞

 = 0. (2.7)

From equation (2.7), we have deduced that, according to the Abel-Jacobi theorem
[5, 9], there exists a rational function ζ(x, y) defined on Q such that :

div(ζ) =

ℓ∑
ς=0

Rς + n

1∑
p=0

P0p − (ℓ+ 2n)∞. (2.8)

Two cases are possible:
1stcase: n = 0.

The formula (2.8) becomes:

div(ζ) =

ℓ∑
ς=0

Rς − ℓ∞. (2.9)

From expression (2.9), we deduce that ζ ∈ L(ℓP∞). From Lemma 2.3, we
have:

ζ(x, y) =

ℓ
2∑

i=0

aix
i +

ℓ−5
2∑

j=0

bjy
1
6xj+2, (2.10)

where ai and bj are scalars such that bj ∈ Q and ai ∈ Q∗ (otherwise one of
the Rς ’s should be at P00 , which would be absurd), a ℓ

2
̸= 0 (otherwise one of

the Rς ’s should be at ∞, which would be absurd) and b ℓ−5
2

̸= 0 (otherwise
one of the Rς ’s should be at ∞, which would be absurd).

2ndcase: n = 1.
The formula (2.8) implies that ζ ∈ L((ℓ+2)∞), according to Lemma 2.3,
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we have

ζ(x, y) =

ℓ+2
2∑

i=0

aix
i +

ℓ−3
2∑

j=0

bjy
1
6xj+2 (2.11)

and since ordP00
ζ = ordP01

ζ = 1 so ζ(P00) = ζ(P01) = 0 thus implied that

a0 =

ℓ+2
2∑

i=1

aiρ
i where ρi = −1

2

1∑
p=0

(
1 + (−1)p

√
3
)i

, then the equation (2.11)

is then written as follows:

ζ(x, y) =

ℓ+2
2∑

i=1

ai
(
xi + ρi

)
+

ℓ−3
2∑

j=0

bjy
1
6xj+2 (2.12)

where ai and bj are scalars such that aii≥1
, bj ∈ Q, a ℓ+2

2
̸= 0 if ℓ is even

(otherwise one of the Rς ’s should be at ∞, which would be absurd) and
b ℓ−3

2
̸= 0 if ℓ is odd (otherwise one of the Rς ’s should be at ∞, which would

be absurd).
So, from equations (2.10) and (2.12), we deduce that for all n ∈ {0, 1}, we have:

ζn(x, y) =

ℓ+2n
2∑

i=n

ai
(
xi + nρi

)
+

ℓ+2n−5
2∑

j=0

bjy
1
6xj+2.

At point Rς , we have ζn(x, y) = 0, this implies that y =



ℓ+2n
2∑

i=n

ai
(
xi + nρi

)
ℓ+2n−5

2∑
j=0

bjx
j+2



6

.

By replacing the expression for y in (1.3), we obtain the following equation: ℓ+2n
2∑

i=n

ai
(
xi + nρi

)12

=

 ℓ+2n−5
2∑

j=0

bjx
j+2

12
2∏

k=0

1∏
p=0

(ηkp − x). (2.13)

Equation (2.13) can be written as follows: ℓ+2n
2∑

i=n

ai

(
xi + nρi

x
5ℓ
12

+n

)12

=

 ℓ+2n−5
2∑

j=0

bjx
j+ 24−12n−5ℓ

12

12
2∏

k=0

1∏
p=0

(ηkp − x). (2.14)
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The expression (2.14) is an equation of degree ℓ.

Indeed, the first member is degree 12 ×
(
ℓ+ 2n

2
− 5ℓ

12
− n

)
= ℓ and the second

one is degree 12×
(
ℓ+ 2n− 5

2
+

24− 12n− 5ℓ

12
+ 6

)
+ 6 = ℓ.

This gives a degree point family ℓ:

En =




x,



ℓ+2n
2∑

i=n

ai
(
xi + nρi

)
ℓ+2n−5

2∑
j=0

bjx
j+2



6


∣∣∣∣∣∣∣∣∣∣∣∣∣

ρi = −1

2

1∑
p=0

(
1 + (−1)p

√
3
)i
, the ai

and bj are scalars such that ai ∈ Q,

bj ∈ Q, a0 ̸= 0, a ℓ+2n
2

̸= 0 if ℓ is even,
b ℓ+2n−5

2
̸= 0 if ℓ if odd and x

is a root of the equation: ℓ+2n
2∑

i=n

ai

(
xi + nρi

x
5ℓ
12

+n

)12

=

 ℓ+2n−5
2∑

j=0

bjx
j+ 24−12n−5ℓ

12

12
2∏

k=0

1∏
p=0

(ηkp − x)


□
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