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DETERMINATION OF ALGEBRAIC POINTS OF LOW DEGREE
ON A FAMILY CURVES

MOUSSA FALL AND PAPE MODOU SARR

Abstract. The purpose of this paper is to determine explicitly algebraic points
of low degree over Q on the family curves of affine equation Cn : y3n = x4n − 1
where n is a positive integer. Our goal is to extends the result of O. Debarre
and M. Klassen who determined the algebraic points of low degree in the curve
C1.

1. Introduction

Let C be an algebraic curve defined over a number field K, we denote by C (K) the
set of rational points on K and by C(d) (Q) the set of algebraic points of degree at
most d over the field of rational numbers Q.
If C is a curve of genus g ≥ 2, it has been known since Faltings that the set of
rational points C(K) is finite. Currently, there is no general method for computing
the set C (K); but there are several methods for finding C (K) in special cases.
These methods include the local method, the Chabauty elliptic method [3], the
descent method [9], the Mordell-Weil Sieves method [1], the Sall-Fall method [2]
and [5] . These methods can be used only when the rank of the Mordell-Weil group
J (Q) is finite.
More generally, there is no algorithm to determine the set C(d)(Q). The situation
is more favorable when the Mordell-Weil group of the Jacobian J(Q) is finite; in
this case C(d)(Q) can be effectively determined (see [5], [2]). If we don’t know the
structure of the Mordell-Weil group, then we need to find a way around it.
In this paper, we propose to work around the finiteness of the Mordell-Weil group
by using the Chevalley-Weil theorem and the work of Debarre and Klassen [4] to
determine explicitly the set C(2)

n (Q) on the family curves of affine equation Cn:
y3n = x4n − 1.
The main result of this paper is the following theorem :

Date: December 4, 2024.
Keywords. algebraic point of low degree, Chevalley-Weil theorem, cyclotomic polynomial,

morphism.
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Theorem 1.1. Let n ≥ 2 be an integer and α a cube root of unity and β a fourth
root of unity. The set C(2)

n (Q) of algebraic points of degree at most 2 on the curve
Cn : y3n = x4n − 1 is given by :
If n ≡ +0 [12], then C(2)

n (Q) = {∞, (±α, 0) , (β, 0)}
If n ≡ ±1 [12], then C(2)

n (Q) = {∞, (1, 0) , (0,−1)}
If n ≡ ±2 [12], then C(2)

n (Q) = {∞, (β, 0) , (0,±i)}
If n ≡ ±3 [12], then C(2)

n (Q) = {∞, (±α, 0) , (0,−α)}
If n ≡ ±4 [12], then C(2)

n (Q) = {∞, (β, 0)}
If n ≡ ±5 [12], then C(2)

n (Q) = {∞, (±1, 0) , (0,−1)}
If n ≡ +6 [12], then C(2)

n (Q) = {∞, (±α, 0) , (β, 0) , (0,±i)}.

2. Preliminary results

2.1. Algebraic extension.
A complex number λ ∈ C is called algebraic if there is a non-zero polynomial
f ∈ Q [X] with f(λ) = 0. We define the algebraic closure of Q by

Q = {λ ∈ C | λ algebraic} .
Definition 2.1. An algebraic extension is a field extension L/K such that every
element of the larger field L is algebraic over the smaller field K ; that is every
element of L is a root of a non-zero polynomial with coefficients in K.

Suppose that L/K is a field extension. Then L may be considered as a vector space
over K (the field of scalars). The dimension of this vector space is called the degree
of the field extension, and it is denoted by [L : K].
The algebraic extensions of the field Q of the rational numbers are called algebraic
number fields.
Let θ ∈ L. If θ is algebraic over K, then the smallest subfield of L that contains K
and θ is commonly denoted K(θ). In this case K(θ) is an algebraic extension of K
which has finite degree over K.
We have the classical lemma:

Lemma 2.1. Let K(µ) and K(ν) be two algebraic extensions of the field K, such
that [K(µ) : K] = m > 0 and [K(ν) : K] = n > 0. Then the extension K(µ, ν)
is of finite degree on K. In particular, this degree is a multiple of m and n such
that 1 ≤ [K(µ, ν) : K] ≤ mn. Moreover, if m and n are prime to each other, then
[K(µ, ν) : K] = mn.

Proof. See [7].
□

We give the definition of the Euler function φ.
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Definition 2.2. (Euler φ-function). Let n ∈ N∗ where N∗ is the set of non-zero
positive integers. Then

• φ(1) = 1
• For n = nm1

1 nm2
2 . . . nmr

r where ni, 1 ≤ i ≤ r, are distinct primes and
mi ∈ N∗,

φ (n) = n

(
1− 1

n1

)
. . .

(
1− 1

nr

)
.

In particular, for a prime number n, we have φ(n) = n− 1.

We have the following lemma:

Lemma 2.2. Let n, k ∈ N∗, n ≥ 2, 1 ≤ k ≤ n − 1 and ζn = e2iπ
1
n be an nth root

of unity. Then

[Q (ζn) : Q] = φ(n) and
[
Q
(
ζkn

)
: Q

]
= φ

(
n

gcd(n, k)

)
.

Proof. The first assertion is clear and to prove the second assertion, we combined
the first with [

Q
(
ζkn

)
: Q

]
=

[
Q
(
ζgcd(n,k)n

)
: Q

]
.

□

Definition 2.3. Let C be a algebraic plane curve defined over. The degree of an
algebraic point P ∈ C is the degree of its field of definition over Q.
In other words, if we denote by deg(P ) the degree of P over Q, then

deg(P ) = [Q(P ) : Q] .

• If deg(P ) = 1, then P is a rational point.
• If deg(P ) = 2, then P is a quadratic point.
• If deg(P ) = 3, then P is a cubic point.

2.2. Cyclotomic polynomial.

Definition 2.4. Let n be any positive integer. The nth cyclotomic polynomial is
the irreducible polynomial with integer coefficients that is a divisor of the polynomial
xn − 1 and is not a divisor of the polynomial xp − 1 for any p < n. Its roots are
all nth primitive roots of unity e2iπ

p
n , where p runs over the positive integers not

greater than n and coprime to p (and i2 = −1). This means, the nth cyclotomic
polynomial is equal to the polynomial

Φn(x) =
∏

1≤p≤n

gcd(n,p)=1

(
x− e2iπ

p
n

)
.
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A fundamental relation linking cyclotomic polynomials and primitive roots of unity
is ∏

d|n

Φd(x) = xn − 1.

shows that x is a root of xn − 1 if and only if it is a dth primitive root of unity for
some d that divides n.

Example 2.1. For n up to 6, the cyclotomic polynomials are the following:
• Φ1(x) = x− 1
• Φ2(x) = x+ 1
• Φ3(x) = x2 + x+ 1
• Φ4(x) = x2 + 1
• Φ5(x) = x4 + x3 + x2 + x+ 1
• Φ6(x) = x2 − x+ 1

Φn is monic polynomial of degree φ(n) with integer coefficients that is irreducible
over the field Q.

2.3. Chevalley-Weil theorem.
The Chevalley-Weil theorem that we use here is the following

Theorem 2.1. Let ϕ : X −→ Y be an unramified covering of normal projective
varieties defined over a numbers field K. Then there exists a finite extension L/K
of K such that

ϕ−1 ((Y (K)) ⊂ X(L).

Proof. See [7]. □

If X is a curve of genus g ≥ 2, then theorem 2.1 ensures the finiteness of ϕ−1 (Y (K))
because according to Faltings [6], the set X (L) is finite. We can then determine
X (K) by using the following trivial lemma:

Lemma 2.3. Let ϕ : X −→ Y be a morphism of projective curves defined over a
number field K, then ϕ (X (K)) ⊂ Y (K).

Proof. See [8]. □

If we know or determine the set Y (K) then, we can easily determine X (K) by the
inclusion X (K) ⊂ ϕ−1 (Y (K)).

Theorem 2.2. Let α be a cube root of unity and β a fourth root of unity. The set
of algebraic points of degree at most 2 on the curve C1 : y3 = x4 − 1 is given by :

C(2)
1 (Q) =

{
∞, (0,−α) , (β, 0) ,

(
β
√
3, 2α

)}
.

Proof. See [4]. □
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3. Proof of the Theorem 1.1

Let us consider the morphism :

f : Cn −→ C1

(x, y) 7 −→ (xn, yn)

where n is a positive integer and n ≥ 1.
We have the following inclusion:

C(d)
n (Q) ⊂ f−1

(
C(d)
1 (Q)

)
.

In Theorem 2.2, the set of algebraic points of degree at most 2 of C1 is given by :

C(2)
1 (Q) =

{
∞, (0,−α) , (β, 0) ,

(
β
√
3, 2α

)}
.

According to the Theorem 2.1, for any quadratic number field K over Q, there
exists an algebraic extension L/K such that

Cn (K) ⊂ f−1 (C1 (K)) ⊂ Cn (L) .
We obtain the inclusion

C2
n (Q) ⊂ f−1

(
C2
1 (Q)

)
.

The set f−1
(
C2
1 (Q)

)
is given by:

f−1
(
C2
1 (Q)

)
= f−1 ({(∞)})∪f−1 ({(β, 0)})∪f−1 ({(0,−α)})∪f−1

(
{(β

√
3, 2α)}

)
.

Let the point (a, b) ∈ C2
1 (Q) and the point (x, y) ∈ C2

n (Q) :

(x, y) ∈ f−1 ({(a, b)}) ⇐⇒ f(x, y) = (a, b) ⇐⇒ (xn, yn) = (a, b).

The equation (xn, yn) = (a, b) have exactly n solutions given by :

(xk, yk) =
(

n
√
ae

2ikπ
n ,

n
√
be

2ikπ
n

)
where 0 ≤ k ≤ n− 1.

There are three possible cases for computing f−1
(
C2
1 (Q)

)
:

Case 1 : If (a, b) = ∞, We have f−1(∞) = ∞, so ∞ ∈ C2
n for all integer n ≥ 1.
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Case 2 : If (a, b) ∈ C2
1 (Q) and a ̸= ±1 or b ̸= ±1, then we have :

[Q (xk, yk) : Q] >
[
Q
(

n
√
a,

n
√
b
)
: Q

]
> 2.

The degree of (xk, yk) is strictly greater than 2, therefore:

(xk, yk) /∈ C2
n (Q) .

Case 3 : If (a, b) ∈ {(0,−1), (1, 0), (−1, 0)} ⊂ C2
1 (Q). Then the solution (xk, yk)

verifies:
(xk, yk) ∈

{(
0, e

i(2k+1)π
n

)
,
(
e

i(2k+1)π
n , 0

)
,
(
e

i2kπ
n , 0

)
| 0 ≤ k ≤ n− 1

}
.

We have the following equalities for the degrees of the points:[
Q
(
0, e

i(2k+1)π
n

)
: Q

]
=

[
Q
(
e

i(2k+1)π
n , 0

)
: Q

]
= φ

(
n

gcd(n, k + 1)

)
.

The complex number e
i(2k+1)π

n is solution of the equation un + 1 = 0.
We have also the following equalities for the degrees of the points:[

Q
(
e

i(2k)π
n , 0

)
: Q

]
=

[
Q
(
e

i(2k)π
n

)
: Q

]
= φ

(
n

gcd(n, k)

)
.

The complex number e
i(2k)π

n is solution of un − 1 = 0.
If (x, y) ∈ C(2)

n (Q), then y is solution of the equation un + 1 = 0 and x is solution
of the equation (un − 1)(un + 1) = 0.
This case 3 is subdivided into 7 sub-cases:

(1) If n ≡ 0[12], then :
• un + 1 = 0 have no solution of degree at most 2 over Q.
• un − 1 =

∏
d|nΦd(u) = 0, so u is solution of degree at most 2 if x is a

root of Φd(u) for d ∈ {1, 2, 3, 4, 6}. We obtain
∏

1≤d≤6Φd(u) = 0, then
(u4 − 1)(u3 − 1)(u3 + 1) = 0. Therefore

C2
n (Q) = {∞, (±α, 0), (β, 0)} .

(2) If n ≡ ±1[12], then :
• un +1 = 0 have solution of degree at most 2 if an only if u is a root of
Φ2(u) = 0 then u = −1.

• un − 1 =
∏

d|nΦd(u) = 0, so u is solution of degree at most 2 if u is
the root of Φ1(u) = 0, then u = 1. Therefore :

C2
n (Q) = {∞, (±1, 0), (0,−1)} .

(3) If n ≡ ±2[12], then :
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• un+1 = 0 have a solution u of degree at most 2 if and only if Φ4(u) = 0,
then u = ±i.

• un − 1 =
∏

d|nΦd(u) = 0, so u is solution of degree at most 2 if and
only if u is a root of Φ1(u)Φ2(u) = 0, then u = ±1. Therefore :

C2
n (Q) = {∞, (β, 0), (0,±i)} .

(4) If n ≡ ±3[12], then :
• un + 1 = 0 have a solution u of degree at most 2 if and only if u is a

root of Φ2(y)Φ6(u) = 0, then u = −α.
• un − 1 =

∏
d|nΦd(u) = 0, so u is solution of degree at most 2 if and

only if u is a root of Φ1(u)Φ3(u) = 0, then u = α. Therefore :

C2
n (Q) = {∞, (±α, 0), (0,−α)} .

(5) If n ≡ ±4[12], then :
• un + 1 = 0 have no solution of degree at most 2 over Q.
• un − 1 =

∏
d|nΦd(u) = 0, so u is solution of degree at most 2 if u is a

root of Φ1(u)Φ2(u)Φ4(u) = 0, then u = β. Therefore :

C2
n (Q) = {∞, (β, 0)} .

(6) If n ≡ ±5[12], then :
• un+1 = 0 have a solution u of degree at most 2 if and only if Φ2(u) = 0,

then u = −1.
• un − 1 =

∏
d|nΦd(u) = 0, so u is solution of degree at most 2 if and

only if u is the root of Φ1(u) = 0, then u = 1. Therefore :

C2
n (Q) = {∞, (±1, 0), (0,−1)} .

(7) If n ≡ 6[12], then :
• un+1 = 0 have a solution u of degree at most 2 if and only if Φ4(u) = 0,

then u = ±i.
• un − 1 =

∏
d|nΦd(u) = 0, so u is solution of degree at most 2 if u is

a root of Φd(u) = 0, d ∈ {1, 2, 3, 6} We obtain (u3 − 1)(u3 + 1) = 0.
Therefore :

C2
n (Q) = {∞, (±α, 0), (β, 0) (0,±i)} .■

We deduced in Theorem 1.1 the following corollary :

Corollary 3.1. Let n ≥ 2 a positive integer, the set of rational points on Q of the
family curves Cn : y3n = x4n − 1 is given by
If n is odd, then Cn (Q) = {∞, (±1, 0)}
If n is even, then Cn (Q) = {∞, (±1, 0) , (0,−1)} .
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