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ON THE INTERGRABILITY OF A SUBCLASS OF 2D MATRIX 

DIFFERENTIAL EQUATIONS 

BILJANA ZLATANOVSKA AND BORO M. PIPEREVSKI 

Abstract. In this paper, the 2D matrix differential equations are considered. Under certain 

conditions, using the Rodrigues’ formula for these 2D matrix differential equations, a 

particular solution is obtained. Finally, this theory is supported by examples.  
Dedicated to the Day of Differential Equations in Macedonia 2024 

1. Introduction 

The subclass a 2D matrix differential equation of the form 

    'P X M X O               (1.1) 

is considered, where 

1

2

( ) ( )0 01, , , , '
( )0 02 ( )

x t x tt a A B
P M X O X

x tt b C D x t


    



       
       

          

 

( )X t  is matrix function, , , , , ,A B C D a b  and ( ), ( )1 2x t x t  are real functions of one 

real variable t  by first derivate ' ( ), ' ( )1 2x t x t . 

In [1,2,3], the following theorem is proved: 

Theorem 1.1. The 2D matrix differential equation (1.1) with the condition  

( ) 0A B C D A D B C         has the polynomial solution of a degree n and no other 

polynomial solution of degree less that n  if and only if there exists a natural number n 

such that  

1 0
( ) 1, ( ) 2, , ,

0 1
r M nE r M mE E m n m

 
       

 
natural number, 

i.e., n  is the root of the quadratic equation 

     ( ) ( ) 0A k D k B C                                          (1.2) 

In the case where two natural numbers are the roots of the equation (1.2), then the number 

n is the smaller one. The solution is given by the formula1 

                                                           
Keywords. 2D matrix differential equations, Rodrigues’ formula, integrability .  
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1 1 ( )

1 1 ( )

( ) ( ) [( ) ( ) ]

( ) ( ) [( ) ( ) ]

A D A n D n n

A D A n D n n
X

t a t b t a t b

A n
t a t b t a t b

B

    

    


    
 

     
  

 

Let the differential equation of the form  

2
2 1 0 1 0 0( ) ( ) 0,a t a t a x b t b x c x        

be given and let a  and b  be different real roots of the quadratic equation 

2
2 1 0 20, 0a t a t a a    . Let this differential equation be written in the form 

( ) ( ) [( ) ( )] 0t a t b x p q t aq bp x r x          

i.e., 

                       ( ) 0,
( ) ( )

p q r
x x x

t a t b t a t b
    

   
  

 (1.3) 

where 

1 0 1 0
0, , .

b a b b b b
p q r c

a b b a

 
  

 
 

Using the substitutions 

         

1
1

1
2

1 1
3

( ) ,

( ) ,

( ) ( ) ,

p

q

p q

x t a z

x t b z

x t a t b z





 

 

 

  

                   (1.4) 

the equation (1.3) transforms into at most three other equations of the same type [4, 5, 6], 

which are given with the differential equations  

1 1 1

2 2 2

3 3 3

( ) ( ) [(2 ) ( (2 ))] ( ) 0,

( ) ( ) [(2 ) ( (2 ) (2 ))] ( ) 0,

( ) ( ) [(4 ) ( (2 ) (2 ))] ( 2) 0,

t a t b z p q t aq b p z r p q q z

t a t b z p q t a q b p z r p q p z

t a t b z p q t a q b p z r p q z

            

             

              

 

i.e., with the differential equations 

 

                                       

1 1 1

2 2 2

3 3 3

2
( ) 0,

( ) ( )

2
( ) 0,

( ) ( )

22 2
( ) 0.

( ) ( )

r p q qp q
z z z

t a t b t a t b

r p q pp q
z z z

t a t b t a t b

r p qp q
z z z

t a t b t a t b

     
   

     
   

       
   

      (1.5) 

The condition for the characteristic equation  

                                                         2 ( 1) 0k p q k r     ,   (1.6) 
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of the differential equation (1.3) to have a natural root n, where n is the smaller if there 

are two natural number roots, is a necessary and sufficient condition for the differential 

equation (1.3) to have a particular polynomial solution of degree n . 

This condition for a polynomial solution applied to the differential equation (1.3) and 

the differential equations (1.5) will be given accordingly  by the relations 

                                                  

2

2

2

2

( 1) 0,

( 1) 0,

( 1) 0,

(3 ) 2 0,

n p q n r

n q p n r p q q

n p q n r p q p

n p q n r p q

    

      

      

       

     (1.7) 

where in each of the relations, n is a natural number (the smaller one if the relation is 

satisfied for two natural numbers). From these relations, the conditions of the following 

theorem, proved in [6] are obtained. 

 

Theorem 1.2. Let the differential equation (1.3) be given and let 
2( 1) 4 0p q r    . 

Let k  be the root of the characteristic equation (1.6). If the root k  satisfies one of the 

following conditions 

10    k   , the smaller if there are two natural numbers, 

20    1k p     or  ( )k q   , the smaller if there are two natural numbers, 

30    1k q     or  ( )k p   , the smaller if there are two natural numbers, 

40     2k p q      or ( 1)k   , the smaller if there are two natural numbers, 

then the differential equation (1.3) is integrable into closed form. 

 

Remark 1.1. The polynomial solution of the differential equation (1.3) is given by the 

Rodrigues’ formula 

1 1 1 1 ( )( ) ( ) [( ) ( ) ]p q n p n q nx t a t b t a t b           

 

2. Main results 

Let the 2D matrix differential equation (1.1) be given. Let the conditions 

( ) 0, 1A B C D A D B C C          be satisfied. The corresponding differential 

equations are 

                 1 1 1( ) ( ) [( 1) ( 1) ] ( ) 0,t a t b x A D t A b D a x A D B x              (2.1) 

                2 2 2( ) ( ) [( 1) ( 1) ] ( ) 0.t a t b x A D t D a Ab x A D B x             (2.2) 

The differential equation (2.1) is equivalent to a differential equation of the form 

1 1 1( ) 0,
( ) ( )

p q r
x x x

t a t b t a t b
    

   
 

if the following relations
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, 1, ( 1) ,

1, ,

D q A p B p q r

p A q D r A D B

     

    
 

are satisfied. Therefore, 

                                            1 1 1
1

( ) 0.
( ) ( )

A D BA D
x x x

t a t b t a t b

    
   

              (2.1*) 

The differential equation (2.2) is equivalent to a differential equation of the form 

2 2 2
* * *

( ) 0,
( ) ( )

p q r
x x x

t a t b t a t b
    

   
 

if the following relations  

* , * 1, *p A q D r A D B      

are satisfied. Therefore, 

    2 2 2
1

( ) 0.
( ) ( )

A D BA D
x x x

t a t b t a t b

    
   

                 (2.2*) 

 

Theorem 2.1. Let the 2D matrix differential equation (1.1) be given and let 
2

( ) 0, 1, ( ) 4 0A B C D A D B C C A D B            . Let k   be a root of the 

characteristic equation (1.2). If the root k  satisfies one of the following conditions 

10     k   , the smaller if there are two natural numbers, 

20     k A    or ( )k D   , the smaller if there are two natural numbers, 

30     1k D     or ( 1)k A    , the smaller if there are two natural numbers, 

40     1k A D      or ( 1)k   , the smaller if there are two natural numbers, 

then the 2D matrix differential equation (1.1) is integrable into closed form. 

 

Proof. The conditions for integrability of the 2D matrix differential equation (1.1) are 

derived from the conditions for integrability of the differential equation (1.3) given by 

Theorem 1.2 from the introduction, through the differential equation (2.1).         ■ 

 

Theorem 2.2. Let the 2D matrix differential equation (1.1) be given. Let the conditions 

of Theorem 2.1 be satisfied.  

- Let 0n  denote the natural number if condition 10 is satisfied; 

- Let 1n  denote the natural number if condition 20 is satisfied; 

- Let 2n  denote the natural number if condition 30 is satisfied; 

- Let 3n  denote the natural number if condition 40 is satisfied. 

Then the particular solution of the differential equation (2.1), as well as the first 

component function 1( )x t  of the 2D matrix differential equation (1.1) is given by the 

formulas 
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1 ( )1 1 1 1
1

1 ( )2 2 2
1

1 ( )3 3 3
1

( ) [( ) ( ) ] ,

( ) [( ) ( ) ] ,

[( ) ( ) ] .

n A n D nD

n A n D nA

n A n D n

x t b t a t b

x t a t a t b

x t a t b

  

  

  

   

   

  

 (2.3) 

In the first condition 10 , the differential equation (2.1) has a polynomial solution, which 

is given by Rodrigues’ formula 
1 ( )1 0 0 0

1 ( ) ( ) [( ) ( ) ] .
n A n D nA Dx t a t b t a t b
         

This polynomial solution of the 2D matrix differential equation (1.1) is given in Theorem 

1.1 from the introduction. 

Proof. Using the substitutions   

    

1 1

1
1 2

1
1 3

( ) ,

( ) ,

( ) ( )

A

D

A D

x t a z

x t b z

x t a t b z





 

 

 

  

       (2.4) 

the differential equation (2.1) transforms into the differential equations 

1 1 1

2 2 2

3 3 3

( ) ( ) [( 1) ( 1) ] 0,

( ) ( ) [( 3) ( 1) 2 ] ( 1) 0,

( ) ( ) [( 3) ( 1) 2 ] ( 1) 0,

t a t b z A D t A b D a z B z

t a t b z A D t A b D a a z A D B z

t a t b z A D t A b D a a z A D A B D z

            

              

                

 

i.e., into to the differential equations 

1 1 1

2 2 2

3 3 3

1
( ) 0,

( ) ( )

1 2 1
( ) 0,

( ) ( )

11 2
( ) 0

( ) ( )

A D B
z z z

t a t b t a t b

A D A B D
z z z

t a t b t a t b

A D A B DA D
z z z

t a t b t a t b

    
   

        
   

        
   

 

where 

1 1 2 2 3 3

1 2 3

1 , , 1 , 2 , 1 , 2 ,

, 1, 1.

p A q D p A q D p A q D

r B r A B D r A D A B D

          

          
 

Using Rodrigues’ formula for each of the differential equations, the corresponding 

formulas 

1 ( )1 1 1 1
1

1 ( )1 2 2 2
2

1 ( )1 3 3 3
3

( ) ( ) [( ) ( ) ] ,

( ) ( ) [( ) ( ) ] ,

( ) ( ) [( ) ( ) ]

n A n D nA D

n A n D nA D

n A n D nA D

z t a t b t a t b

z t a t b t a t b

z t a t b t a t b

  

   

  

    

    

    

 

are obtained. 

Using the substitutions (2.4), we get the formulas 
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1 1
1 1 1 2 1 3( ) , ( ) , ( ) ( )A D A Dx t a z x t b z x t a t b z           

which correspond to the formulas (2.3). 

In the first condition 10, the differential equation (2.1) has a polynomial solution 
1 ( )1 0 0 0

1 ( ) ( ) [( ) ( ) ] .
n A n D nA Dx t a t b t a t b
         

which is given by using Rodrigues’ formula. This polynomial solution of the 2D matrix 

differential equation is given by the formula in Theorem 1.1 from the introduction.             ■ 

 

The formula for the second component function of the 2D matrix differential equation 

(1.1) can be obtained from the differential equation 

1 1 2 2 1 1
1

( ) 0, [( ) ].t a x A x B x x t a x A x
B

           

using the differential equation (2.2) and the same procedure, the following theorem is 

obtained: 

 

Theorem 2.3. Let the 2D matrix differential equation (1.1) be given and let 
2

( ) 0, 1, ( ) 4 0A B C D A D B C C A D B            . Let k   be the root of the 

characteristic equation (1.2). If the root k  satisfies one of the following conditions 

10     k   , the smaller if there are two natural numbers, 

20     1k A     or ( 1)k D    , the smaller if there are two natural numbers, 

30   k D    or ( )k A   , the smaller if there are two natural numbers, 

40    1k A D      or ( 1)k   , the smaller if there are two natural numbers, 

then the 2D matrix differential equation (1.1) is integrable into closed form. 

 

Proof. The conditions for the integrability of the 2D matrix differential equation (1.1) are 

transferred from the conditions for integrability of the differential equation (1.3) given by 

Theorem 1.2 of the introduction, through the differential equation (2.2).          ■ 

 

Theorem 2.4. Let the 2D matrix differential equation (1.1) be given. Let the conditions 

of Theorem 2.3 be satisfied.  

- Let 0n  denote the natural number if condition 10 is satisfied. 

- Let 1n  denote the natural number if condition 20 is satisfied. 

- Let 2n  denote the natural number if condition 30 is satisfied. 

- Let 3n  denote the natural number if condition 40 is satisfied. 

Then the particular solution of the differential equation (2.2), as well as the second 

component function 2 ( )x t  of the 2D matrix differential equation (1.1) is given by the 

formulas
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1 ( )1 1 1
2

1 ( )1 2 2 2
2

1 ( )3 3 3
2

( ) [( ) ( ) ] ,

( ) [( ) ( ) ] ,

[( ) ( ) ] .

n A n D nD

n A n D nA

n A n D n

x t b t a t b

x t a t a t b

x t a t b

    

    

    

   

   

  

          (2.5) 

In the first condition 10 , the differential equation (2.2) has a polynomial solution, which 

is given by Rodrigues’ formula 

1 ( )1 0 0 0
2 ( ) ( ) [( ) ( ) ] .

A n D n nA Dx t a t b t a t b
           

This polynomial solution of the 2D matrix differential equation (1.1) is given by the 

formula in Theorem 1.1 from the introduction. 

Proof. Using the substitutions   

    

1
2 1

2 2

1
2 3

( ) ,

( ) ,

( ) ( )

A

D

A D

x t a z

x t b z

x t a t b z

 

 

  

 

 

  

      (2.6) 

the differential equation (2.2) transforms into the differential equations 

1 1 1

2 2 2

3 3 3

( ) ( ) [( 3) ( 2) ] ( 1) 0,

( ) ( ) [( 1) ] 0,

( ) ( ) [( 3) 2 ] ( 1) 0,

t a t b z A D t A b D a a z D A B z

t a t b z A D t Ab D a a z B z

t a t b z A D t Ab D a a b z A D A B D z

  

  

  

                

          

                

 

i.e., into the differential equations 

1 1 1

2 2 2

3 3 3

2 1 1
( ) 0,

( ) ( )

1
( ) 0,

( ) ( )

12 1
( ) 0

( ) ( )

A D D A B
z z z

t a t b t a t b

A D B
z z z

t a t b t a t b

A D A B DA D
z z z

t a t b t a t b

  

  

  

        
   

    
   

        
   

 

where 

1 1 2 2 3 3

1 2 3

* 2 , * 1, * , * 1 , * 2 , * 1 ,

* 1, * , * 1.

p A q D p A q D p A q D

r D A B r B r A D A B D

          

          
 

Using Rodrigues’ formula for each of the differential equations, the corresponding 

formulas 
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1 ( )1 1 1 1
1

1 ( )1 2 2 2
2

1 ( )1 3 3 3
3

( ) ( ) [( ) ( ) ] ,

( ) ( ) [( ) ( ) ] ,

( ) ( ) [( ) ( ) ]

n A n D nA D

n A n D nA D

n A n D nA D

z t a t b t a t b

z t a t b t a t b

z t a t b t a t b

      

     

     

    

    

    

 

are obtained. 

Using the substitutions (2.6), we get the formulas 

1 1
2 1 2 2 2 3( ) , ( ) , ( ) ( )A D A Dx t a z x t b z x t a t b z             , 

which correspond to the formulas (2.5). 

In the first condition 10, the differential equation (2.2) has a polynomial solution  

1 ( )1 0 0 0
2 ( ) ( ) [( ) ( ) ]

A n D n nA Dx t a t b t a t b
           

which is given by using Rodrigues’ formula. This polynomial solution of the 2D matrix 

differential equation (1.1) is given by the formula of Theorem 1.1 from the introduction.■ 

 

Remark 2.1. In accordance with Theorem 2.2 and Theorem 2.4, it can be concluded that 

there are connections 

0 0 1 1 2 2 3 3, 1, 1, .n n n n n n n n          

Remark 2.2. The results for the integrability of the 2D matrix differential equation (1.1) 

can also be transformed to the system of first-order differential equations of the form 

1 1 2

2 1 2

( ) 0,

( ) 0.

t a x A x B x

t b x x D x

   

   
 

 

3. Examples 

The results obtained will be shown via examples. 

 

Example 3.1. Let the 2D matrix differential equation 

1

2

( )( )1 0 01

( )0 3 02( )

1 2

1 4

x tx tt

x tt x t





         
         

         

 

be given, where 1, 2, 1, 4, 1, 3.A B C D a b         

The corresponding differential equations for the component functions are 

   1 1 1
2 4 6

( ) 0
1 3 ( 1) ( 3)

x x x
t t t t

    
   

        (3.1) 

   2 2 2
1 5 6

( ) 0.
1 3 ( 1) ( 3)

x x x
t t t t

    
   

        (3.2) 

The conditions of Theorem 2.1  and Theorem 2.3 
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2 2

( ) 1 ( 2) 1 4 (1 4 ( 2) 1) 48 0,

1,

( ) 4 (1 4) 4 ( 2) 1 0

A B C D A D B C

C

A D B

                   



        

 

are satisfied. The roots of the characteristic equation (1.2) are real numbers 1 2k    and 

2 3k   .   

According to Theorem 2.1, the conditions for integrability are determined from the table 

10 2, 3   ;  

20 2 1 1 , 3 1 2           or ( 2 4) 2 , ( 3 4) 1            ;  

30  2 4 1 1 , 3 4 1 0           or  ( 2 1 1) 0 , ( 3 1 1) 1            ; 

40  2 1 4 1 2 , 3 1 4 1 1             or  ( 2 1) 1 , ( 3 1) 2          . 

According to the conditions of Theorem 2.1 for the existence of the required natural 

number (the smallest if there are two), we get 2 0n   and 3 1n  . For 3 1n  , using the 

substitution 

    
1 3

1 3( 1) ( 3)x t t z                     (3.3) 

in the equation (3.1), we obtain the equation 

3 3 3
0 2 2

( ) 0.
1 3 ( 1) ( 3)

z z z
t t t t

    
   

 

According to the formula from Theorem 2.2, the particular solution is 

3 2( 1).z t    

By substitution (3.3), the particular solution of the equation (3.1) is 

3
1 2( 3) .x t     

According to Theorem 2.3, the conditions for integrability are determined from the table 

10     2, 3   ;  

20    2 1 1 2 , 3 1 1 3             or ( 2 5) 3 , ( 3 5) 2            ;  

30     2 4 2 , 3 4 1        or ( 2 1) 1 , ( 3 1) 2          ; 

40     2 4 2 , 3 4 1        or ( 2 1) 1 , ( 3 1) 2          . 

According to the conditions of Theorem 2.3 for the existence of the required natural 

number (the smallest if there are two), we get 2 1n   and 3 1n  . For 3 1n  , using the 

substitution 

    
4

2 3( 3)x t z       (3.4) 

in the equation (3.2), we obtain the equation 

3 3 3
1 3 2

( ) 0.
1 3 ( 1) ( 3)

z z z
t t t t

      
   

 

According to the formula from Theorem 2.4, the particular solution is 

3 2 6.z t     

By substitution (3.4), the particular solution of the equation (3.2) is
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4
2 2( 3) ( 3).x t t     

Finally, the particular solution of the 2D matrix differential equation is 

3

4

2 ( 3)
.

2 ( 3) ( 3)
p

t
X

t t





  
 
    

 

Example 3.2. Let the 2D matrix differential equation  

1

2

( )( )1 0 01

( )0 2 02( )

5
3

2

3
1

2

x tx tt

x tt x t





 
        

         
         

  

 

be given, where 
5 3

, 3, 1, , 1, 2.
2 2

A B C D a b         

The corresponding differential equations for the component functions are 

   1 1 1

7 3 3

2 2 4( ) 0
1 3 ( 1) ( 3)

x x x
t t t t

 
    

   
        (3.5) 

   2 2 2

5 1 3

2 2 4( ) 0.
1 3 ( 1) ( 3)

x x x
t t t t

 
    

   
        (3.6) 

The conditions of Theorem 2.1 and Theorem 2.3 

2 2

5 3 5 3
( ) ( 3) 1 ( ) ( ( ) ( 3) 1) 48 0,

2 2 2 2

1,

5 3
( ) 4 ( ) 4 ( 3) 4 0

2 2

A B C D A D B C

C

A D B

                     



        

 

are satisfied. The roots of the characteristic equation (1.2) are real numbers 1
1

2
k   and 

2
3

2
k   .   

According to Theorem 2.1, the conditions for integrability are determined from the table 

10    
1 3

,
2 2
  ; 

20     3,1  or 1,3 ; 

30     2, 4    or 4, 2   ; 

40     
1 3

,
2 2
   or 

3 1
,

2 2
  . 
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According to the conditions of Theorem 2.1 for the existence of the required natural 

number (the smallest if there are two), we get 1 1n  . For 1 1n  , using the substitution  

    

5

2
1 1( 1)x t z


         (3.7) 

in the equation (3.5), we obtain the equation 

1 1 1

3 3

32 2( ) 0.
1 2 ( 1) ( 2)

z z z
t t t t

 
    

   
 

According to the formula from Theorem 2.2, the particular solution is 

1
3

(2 3).
2

z t    

By substitution (3.7), the particular solution of the equation (3.5) is 

5

2
1

3
( 1) (2 3)

2
x t t


    . 

According to Theorem 2.3, the conditions for integrability are determined from the table 

10    
1 3

,
2 2
  ; 

20     2, 0  or 0, 2 ;  

30     1, 3    or 3, 1   ; 

40     
1 3

,
2 2
   or 

3 1
,

2 2
  . 

According to the conditions of Theorem 2.3 for the existence of the required natural 

number (the smallest if there are two), we get 1 0n  . For 1 0n  , using the substitution 

    

3

2
2 1( 1)x t z


         (3.8) 

in the equation (3.6), we obtain the equation 

1 1 1

1 1

02 2( ) 0.
1 2 ( 1) ( 2)

z z z
t t t t

  
 

    
   

 

According to the formula from Theorem 2.4, the particular solution is 

1 1.z   

By substitution (3.8), the particular solution of the equation (3.6) is 

3

2
2 ( 1) .x t


   

Finally, the particular solution of the 2D matrix differential equation is 
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5

2

3

2

3
( 1) (2 3)

2 .

( 1)

p

t t
X

t
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