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ON THE INTERGRABILITY OF A SUBCLASS OF 2D MATRIX
DIFFERENTIAL EQUATIONS

BILJANA ZLATANOVSKA AND BORO M. PIPEREVSKI

Abstract. In this paper, the 2D matrix differential equations are considered. Under certain
conditions, using the Rodrigues’ formula for these 2D matrix differential equations, a
particular solution is obtained. Finally, this theory is supported by examples.

Dedicated to the Day of Differential Equations in Macedonia 2024

1. Introduction

The subclass a 2D matrix differential equation of the form
P.-X+M-X =0 (1.2)

is considered, where

t-a 0 A B t 0 (t
0 t-b C D X2 () 0 X9 (t)
X (t) is matrix function, A,B,C,D,a,be R and xq(t), xo (t) are real functions of one
real variable t by first derivate x' (t), x'o (t) .

In [1,2,3], the following theorem is proved:

Theorem 1.1. The 2D matrix differential equation (1.1) with the condition
A-B-C-D-(A-D-B-C) =0 has the polynomial solution of a degree n and no other

polynomial solution of degree less that n if and only if there exists a natural number n
such that

10
r(M +ng)=1,r(M +mE)=2,E:{0 1]m<n,m—natural number,

i.e., n is the root of the quadratic equation

(A+k)(D+k)-BC=0 (1.2)
In the case where two natural numbers are the roots of the equation (1.2), then the number
n is the smaller one. The solution is given by the formula

Keywords. 2D matrix differential equations, Rodrigues’ formula, integrability .
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92 BILJANA ZLATANOVSKA AND BORO M. PIPEREVSKI

(t _ a)_A(t _ b)l—D [(t _ a) A+n (t _ b) D+n—1](n)
X=l A+n _ _ _
_ B (t—a)l A(t—b) D[(t_a)A+n 1(t_b)D+n](n)
Let the differential equation of the form

(azt2 +aqt+ag)x" + (bt +by) X" + ¢y x=0,
be given and let a and b be different real roots of the quadratic equation
a2t2 +at+ag =0, a, #0. Let this differential equation be written in the form
t-a)t-b)x"+[(p+q)t—(ag+bp)]x"+rx=0

ie.,
X"+ ( P4 )X+ r x=0,
t—a t-b (t-a)(t-b)
(1.3)
where
pbiathy o bbby
a-b b-a

Using the substitutions
x=(t-a)ylPz,
x=(t-h)92z,, (1.4)
x=(t—a) P (t—b) 9z,

the equation (1.3) transforms into at most three other equations of the same type [4, 5, 6],
which are given with the differential equations

t-a)(t-b)z" +[(2-p+a)t—(ag+b(2-p)]z +(r—pg+q)z =0,
t-a)t-b)z," +[2+p-at-(@-g)+b(2-p)]zy +(r—pa+p)z, =0,

(t-a)(t-b)zg" +[(4-p-a)t—(a(2-a)+b2-p)lzg +(r— p-q+2)z5=0,
i.e., with the differential equations

N+ 2—p

7 + 4 )z + r-pa+qa

t-a t-b (t—a)(t—b)

" p 2-0,_., Tr—pg+p

z L 1 AT S s LI R

2 P T2 Ty o) 2

w ,2—Pp 2-qQ,_, Fr—p-g+2

+ + Z3 +——————— 23 =0.
( ) 23 EOEDE

(1.5)

Z
"% _a t-b

The condition for the characteristic equation
k? +(p+q-1k+r=0, (1.6)
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of the differential equation (1.3) to have a natural root n, where n is the smaller if there
are two natural number roots, is a necessary and sufficient condition for the differential
equation (1.3) to have a particular polynomial solution of degree n.

This condition for a polynomial solution applied to the differential equation (1.3) and
the differential equations (1.5) will be given accordingly by the relations

n2+(p+q—1)n+r=0,

n2+(q—p+1)n+r—pq+q=0, 17)
n® +(p-9g+Yn+r—-pg+p=0,
n2+(B-p-qn+r—p-q+2=0,
where in each of the relations, n is a natural number (the smaller one if the relation is
satisfied for two natural numbers). From these relations, the conditions of the following
theorem, proved in [6] are obtained.

Theorem 1.2. Let the differential equation (1.3) be given and let (p+q —1)2 —4r>0.

Let k be the root of the characteristic equation (1.6). If the root k satisfies one of the
following conditions

1° keN ,the smaller if there are two natural numbers,

2° k+p-1eN or —(k+q)eN, the smaller if there are two natural numbers,

3% k+g-1eN or —(k+ p)eN, the smaller if there are two natural numbers,
4% k+p+g-2eN or —(k +1) e N, the smaller if there are two natural numbers,
then the differential equation (1.3) is integrable into closed form.

Remark 1.1. The polynomial solution of the differential equation (1.3) is given by the
Rodrigues’ formula

x=(t-a)"P(t-b)"I[(t~a)" Pt )"

2. Main results

Let the 2D matrix differential equation (1.1) be given. Let the conditions
A-B-C-D-(A-D-B-C)=0,C=1 be satisfied. The corresponding differential
equations are

(t-a)(t-b)x +[(A+D+1t-(A+)b-Da]x +(AD-B)x =0, (2.1)
(t-a)(t-b)x," +[(A+D+1)t—(D+1)a-Ab]x, +(AD-B)x, =0. (2.2)
The differential equation (2.1) is equivalent to a differential equation of the form

P q . . r
X A (——+——)x +——————— X =
L e e T

if the following relations
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D=g,A=p-1B=(p-1q-r,

p=A+1,9=D,r=AD-B
are satisfied. Therefore,

« ,A+1 D ' AD-B
Xl + ( + ) Xl + Xl =0.
t—-a t-b (t—a)(t-b)
The differential equation (2.2) is equivalent to a differential equation of the form
p p* q*., r*
Xo +( + )Xy +————— %y =
(t—a)(t-b)

(2.1%)

t—-a t-b
if the following relations

p*=Ag*=D+1r*=AD-B
are satisfied. Therefore,

" A D+1, . AD-B
Xp +(——+—)X +—— X2 =0
t-a t-b (t—a)(t—b)

(2.2%)
Theorem 2.1. Let the 2D matrix differential equation (1.1) be given and let
A-B-C-D-(A-D-B-C)#0,C=1(A-D)>+4B>0. Let ke R be a root of the
characteristic equation (1.2). If the root k satisfies one of the following conditions

1° k eN , the smaller if there are two natural numbers,

2° k+AeN or —(k+D)eN, the smaller if there are two natural numbers,

3% k+D-1eN or —(k + A+1) e N, the smaller if there are two natural numbers,
4% k+A+D-1eN or —(k +1) e N, the smaller if there are two natural numbers,
then the 2D matrix differential equation (1.1) is integrable into closed form.

Proof. The conditions for integrability of the 2D matrix differential equation (1.1) are
derived from the conditions for integrability of the differential equation (1.3) given by
Theorem 1.2 from the introduction, through the differential equation (2.1). [

Theorem 2.2. Let the 2D matrix differential equation (1.1) be given. Let the conditions
of Theorem 2.1 be satisfied.

- Let ng denote the natural number if condition 1°is satisfied;
- Let n; denote the natural number if condition 2°is satisfied;
- Let n, denote the natural number if condition 3°is satisfied;
- Let n3 denote the natural number if condition 4°is satisfied.

Then the particular solution of the differential equation (2.1), as well as the first
component function x (t) of the 2D matrix differential equation (1.1) is given by the
formulas
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X = (t—b)" Pt —a)n A t )P
X = (t _ a)—A[(t _ a)n2+A(t _ b)n2+1—D](n2) ’ (2.3)
X = [(t— a)ng—A(t _ b)n3+1—D](n3).

In the first condition 1°, the differential equation (2.1) has a polynomial solution, which
is given by Rodrigues’ formula

X]_ — (t _ a)—A(t . b)l—D [(t _ a)n0+A(t _ b)n0+D—1](n0).
This polynomial solution of the 2D matrix differential equation (1.1) is given in Theorem

1.1 from the introduction.
Proof. Using the substitutions

X =(t-a) "z,
x, = (t—-b)Pz,, (2.4)
X =(t-a) A(t-b)'"z

the differential equation (2.1) transforms into the differential equations

(t-a)(t-b)z" +[(-A+D+1)t-(-A+1)b-Dalz; -Bz =0,

(t-a)(t-b)z," +[(A-D+3)t-(A+)b+Da-2a]z, + (A-D-B+1)z, =0,

(t-a)(t-b)zg +[(-A-D+3)t+(A-1)b+Da-2alzy +(AD-A-B-D+1)z3=0,
i.e., into to the differential equations

" 1_A D ’ B

y +(—+—)a - 3 =0,
t-a t-b (t—a)(t-Db)

» A1+A 2-D,._, A-B-D+1

Zy +( + )Zz + Zy =0,
t-a t-Db (t—a)(t-Db)

nw A1-A 2-D,_+ AD-A-B-D+1

23 +( + )Z3 + 23=0
t-a t-Db (t—a)(t—hb)

where
ph=1-Aqg=Dp,=1+A0g=2-D,p3=1-Ag3=2-D,
h=-Bnrn=A-B-D+1r=AD-A-B-D+1
Using Rodrigues’ formula for each of the differential equations, the corresponding
formulas

7 = (t-a) (t-b)" Pt —a) At - b)),
22 _ (t _ a)—A(t _ b) D—l[(t _ a)n2+A(t _ b)n2+1—D](n2) ,
23 = (t—a)* (t—b)P Y[t — )8 A (t — b))

are obtained.
Using the substitutions (2.4), we get the formulas
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X =(t-a)"z, x =-0b)""z,x=(t-2 t-b" "z
which correspond to the formulas (2.3).
In the first condition 1°, the differential equation (2.1) has a polynomial solution
X]_ — (t _ a)—A(t _ b)l—D [(t _ a)n0+A(t _ b)n0+D—1](n0).
which is given by using Rodrigues’ formula. This polynomial solution of the 2D matrix
differential equation is given by the formula in Theorem 1.1 from the introduction. |

The formula for the second component function of the 2D matrix differential equation
(1.1) can be obtained from the differential equation

(t-a)x +Ax +Bx, =0, X, =—%[(t—a) X +Ax].

using the differential equation (2.2) and the same procedure, the following theorem is
obtained:

Theorem 2.3. Let the 2D matrix differential equation (1.1) be given and let
A-B-C-D-(A-D-B-C)=#0,C :1,(A—D)2 +4B >0. Let k e R be the root of the
characteristic equation (1.2). If the root k satisfies one of the following conditions

1°  keN , the smaller if there are two natural numbers,
2° k+A-1eN or —(k+D+1)eN, the smaller if there are two natural numbers,

3° k+DeN or —(k+ A)eN, the smaller if there are two natural numbers,
4° k+A+D-1eN or —(k +1) e N, the smaller if there are two natural numbers,
then the 2D matrix differential equation (1.1) is integrable into closed form.

Proof. The conditions for the integrability of the 2D matrix differential equation (1.1) are
transferred from the conditions for integrability of the differential equation (1.3) given by
Theorem 1.2 of the introduction, through the differential equation (2.2). [

Theorem 2.4. Let the 2D matrix differential equation (1.1) be given. Let the conditions
of Theorem 2.3 be satisfied.

- Let ny denote the natural number if condition 1°is satisfied.
- Let n denote the natural number if condition 2°is satisfied.
- Let n; denote the natural number if condition 3°is satisfied.
- Let nz denote the natural number if condition 4°is satisfied.
Then the particular solution of the differential equation (2.2), as well as the second

component function X, (t) of the 2D matrix differential equation (1.1) is given by the
formulas
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Xp = (t ~b) P[(t —a)T At by P
Xp = (t—a) At —a) 2 ALt —p)2 P (25

% % *
X2 — [(t _ a)n3+l—A(t _ b)ng—D ](n3) )
In the first condition 1°, the differential equation (2.2) has a polynomial solution, which
iS given by Rodrigues’ formula

* * %
X2 — (t _ a)l—A(t _ b)_D[(t _ a)A+n0—l(t _ b) D+n0 ](no)
This polynomial solution of the 2D matrix differential equation (1.1) is given by the

formula in Theorem 1.1 from the introduction.
Proof. Using the substitutions

X, =(t-a) "z,
X, = (t—b)"Pz5, (2.6)

Xp = (t-a) A (t-b) "z
the differential equation (2.2) transforms into the differential equations
(t-a)(t-b)z" +[(-A+D+3)t-(-A+2)b-Da-aJz +(D-A-B+1)z =0,
(t-a)(t-b)zy +[(A-D+)t-Ab+Da-al]z, —Bz; =0,
(t-a)(t-b)z3 +[(-A-D+3)t+Ab+Da-a-2b]z; +(AD-A-B-D+1)z; =0,
i.e., into the differential equations

o 2-A D+1, . D-A-B+1 .

Zl +( + )Zl + Zl =O,
t—-a t-b (t—a)(t—b)

s A 1-D, « B *

o + + o — Z, =0,

2 * T (t—a)(t—b) 2

w 2-A 1-D, »w AD-A-B-D+1 .

23 +( + )23 + 23 =0
t—-a t-b (t—a)(t—b)

where
*=2-Aq*=D+1 p,*=A0,*=1-D, p3*=2-A03*=1-D,
h*=D-A-B+1lr*=-B,r*=AD-A-B-D+1
Using Rodrigues’ formula for each of the differential equations, the corresponding
formulas
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27 = (t-a)* Lt —b) [(t—a)T A e b)),
25 = (t-a) At -b)P[(t - 2) 2 A -b)"2 L)),

73 = (t-)* Mt -b)°[(t-a) A -b) P
are obtained.
Using the substitutions (2.6), we get the formulas

X =(t—-a)"z, % = (t-b) "z, x =(t-a) " t-b) "z,
which correspond to the formulas (2.5).
In the first condition 1°, the differential equation (2.2) has a polynomial solution
* * *
X2 — (t _ a)l—A(t _ b)—D [(t B a) A+n0—1 (t _ b) D+n0 ](no)

which is given by using Rodrigues’ formula. This polynomial solution of the 2D matrix
differential equation (1.1) is given by the formula of Theorem 1.1 from the introduction.m

Remark 2.1. In accordance with Theorem 2.2 and Theorem 2.4, it can be concluded that
there are connections

Ng=Ng, M =M =1, Ny =ny +1, ng =ng.
Remark 2.2. The results for the integrability of the 2D matrix differential equation (1.1)
can also be transformed to the system of first-order differential equations of the form

(t-a)x +Ax +Bx, =0,

(t—b)x, +% +Dx, =0.
3. Examples
The results obtained will be shown via examples.
Example 3.1. Let the 2D matrix differential equation
{t +1 0 } X (t) +[1 —ZMXﬂt)} B m
0 t-3 XZ' (t) 1 4 X2 () 0

be given, where A=1,B=-2,C=1,D=4,a=-1b=3.

The corresponding differential equations for the component functions are

X' +( 2, 4 )X+ J % =0 (3.1)
t+1 t-3 t+)(-3
" 1 5 ' 6
Xy + + Xo + X =0. 3.2
2 (gt t+1)(t-3) 2 (32

The conditions of Theorem 2.1 and Theorem 2.3
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A-B-C-D-(A-D-B-C)=1-(-2)-1-4-(1-4—(-2)-1)=—48=0,
C=1,
(A-D)%2 +4B=(1-4)% +4-(-2)=1>0

are satisfied. The roots of the characteristic equation (1.2) are real numbers k; =-2 and
ky =-3.
According to Theorem 2.1, the conditions for integrability are determined from the table
1° —2,-3¢N;
20 2+1=-1¢N,-3+1=-2¢N or (-2+4)=-2¢N,—(-3+4)=-1¢N;
3 2+4-1=1eN,-3+4-1=0eN or —(-2+1+1)=0eN,—(-3+1+1)=1eN;
49 241+4-1=2eN,-3+1+4-1=1eN or —(-2+1)=1eN,—(-3+1)=2€eN.
According to the conditions of Theorem 2.1 for the existence of the required natural
number (the smallest if there are two), we get n, =0 and ny =1. For ny =1, using the
substitution

x =t+1) Lt -3z (3.3)
in the equation (3.1), we obtain the equation
2,
t+D(t-3)
According to the formula from Theorem 2.2, the particular solution is

73 =-2(t +1).
By substitution (3.3), the particular solution of the equation (3.1) is
¥ =-2(t-3)7°.

According to Theorem 2.3, the conditions for integrability are determined from the table
1° -2,-3¢N;
20 2+1-1=-2¢N,-3+1-1=-3¢N or -(-2+5)=-3¢N,—(-3+5)=-2¢N;
3 —2+4=2eN,-3+4=1eNor (-2+1)=1eN,~(-3+1)=2eN;
4% 2+4=2eN,-3+4=1eNor -(-2+1)=1eN,—(-3+1)=2eN.,
According to the conditions of Theorem 2.3 for the existence of the required natural

z"+(i+_—2)z'+
3 T4l 1-33

number (the smallest if there are two), we get n; =1 and n; =1. For n3 =1, using the
substitution

Xy =(t-3)"z3 (3.4)
in the equation (3.2), we obtain the equation
73 + (i + _—3) 73 + 2 23 =0.
t+1 t-3 t+D (-3
According to the formula from Theorem 2.4, the particular solution is
73 =—2t 6.

By substitution (3.4), the particular solution of the equation (3.2) is
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X, =—2(t —3)*(t +3)
Finally, the particular solution of the 2D matrix differential equation is

« - —2(t-3)73
Pl 2a-3)tt+3) |

Example 3.2. Let the 2D matrix differential equation
5

{t—l 0 } Ko |, |2 3 {xl(t)}:{O}
0 t-2 er(t) 1 _§ X2(t) 0
2

be given, where A:g,B:—S,C :1,D:—§,a:1,b:2.

The corresponding differential equations for the component functions are

T3 3

" 2 2N\, 4
X1+ + X + X1 =0 3.5
LT t+1)(t-3) (3:5)

s 1 3

" 2 2 ' 4
Xo + + Xo + X =0. 3.6
2 HET T t+)(-3) 2 (3.6)

The conditions of Theorem 2.1 and Theorem 2.3
A-B-C-D-(A-D- B.C)zé.(_g).]_.(_E).(§.(_§)_(_3).1)=—48¢0,
2 27 2 2
C=1

(A—D)2+4B=(g+g)2 +4.(=3)=4>0

are satisfied. The roots of the characteristic equation (1.2) are real numbers k; =% and

3
K, =—=.
27

According to Theorem 2.1, the conditions for integrability are determined from the table
1 3

10 PN & N 1
2 2

20 31eN orl1,3eN:
¥ 2,-4e¢Nor-4,-2¢N;
1 3 31

42 = -—=¢gNor-=,=¢N.
2 2 2 2
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According to the conditions of Theorem 2.1 for the existence of the required natural
number (the smallest if there are two), we get ny =1. For ny =1, using the substitution

5
Xl = (t —1) 2 Zl (37)
in the equation (3.5), we obtain the equation
3 3
24 +(—2+—2)zl' +¥z1 =0.
t-1 t-2 t-H(t-2)

According to the formula from Theorem 2.2, the particular solution is
3
7 =——(2t-3).
1=75 (2t-3)

By substitution (3.7), the particular solution of the equation (3.5) is
5

xlz—g(t—l)_Z(Zt—B).

According to Theorem 2.3, the conditions for integrability are determined from the table
r 1 3.n;
2 2
2° 2,0eNor0,2eN;
3 -1,-3¢Nor-3-1¢N;
1 3 31
42 = -=¢gNor-=-,-¢N.
2 2 2 2
According to the conditions of Theorem 2.3 for the existence of the required natural

number (the smallest if there are two), we get ;" =0. For n; =0, using the substitution

3
X =(t-1) 2z (3.8)
in the equation (3.6), we obtain the equation
11
* 2 2 *1 0 *
3y +(—E+—=)y +————— =
LT t-D(t-2)*
According to the formula from Theorem 2.4, the particular solution is
7 =1.
By substitution (3.8), the particular solution of the equation (3.6) is
3
X2 = (t —1) 2 .

Finally, the particular solution of the 2D matrix differential equation is
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(1]

(2]

(3]

(4]

(5]

(6]

5
—g(t—l)_z(Zt—3) |

X =
P 3

t-1) 2
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