# GOCE DELCEV UNIVERSITY, STIP, NORTH MACEDONIA FACULTY OF ELECTRICAL ENGINEERING

# **ETIMA 2023**

SECOND INTERNATIONAL CONFERENCE 27-29 SEPTEMBER, 2023



TECHNICAL SCIENCES APPLIED IN ECONOMY, EDUCATION AND INDUSTRY





# ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ, УНИВЕРЗИТЕТ "ГОЦЕ ДЕЛЧЕВ", ШТИП, СЕВЕРНА МАКЕДОНИЈА

FACULTY OF ELECTRICAL ENGINEERING, GOCE DELCEV UNIVERSITY, STIP, NORTH MACEDONIA

> ВТОРА МЕЃУНАРОДНА КОНФЕРЕНЦИЈА SECOND INTERNATIONAL CONFERENCE

# **ЕТИМА / ЕТІМА 2023**

ЗБОРНИК НА ТРУДОВИ CONFERENCE PROCEEDINGS

27-29 септември 2023 | 27-29 September 2023

ISBN: 978-608-277-040-6

DOI: https://www.doi.org/10.46763/ETIMA2321



# Главен и одговорен уредник / Editor in Chief

проф. д-р Сашо Гелев Prof.d-r Saso Gelev

# Јазично уредување / Language Editor

Весна Ристова / Vesna Ristova

## Техничко уредување / Technical Editing

Дарко Богатинов / Darko Bogatinov

#### Издавач / Publisher

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија

Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

# Адреса на организационен комитет / Address of the organising committee

Универзитет "Гоце Делчев", Штип, Северна Македонија Goce Delcev University, Stip, North Macedonia

Електротехнички факултет / Faculty of Electrical Engineering Адреса: Крсте Мисирков, 10 A 2000, Штип/ Address: Krste Misirkov, 10A, 2000 Stip **E-mail:** conf.etf@ugd.edu.mk

CIP - Каталогизација во публикација Национална и универзитетска библиотека "Св. Климент Охридски", Скопје

62-049.8(062) 004-049.8(062)

МЕЃУНАРОДНА конференција ЕТИМА (2; 2023)

Зборник на трудови [Електронски извор] / Втора меѓународна конференција ЕТИМА 2023, 27-29 септември 2023 = Conference proceedings / Second international conference, 27-29 September 2023 ; главен и одговорен уредник Сашо Гелев]. - Штип : Универзитет "Гоце Делчев", Електротехнички факултет ; Stip : "Goce Delcev" University, Faculty of Electrical engineering, 2024

Начин на пристапување (URL): <a href="https://www.doi.org/10.46763/ETIMA2321">https://www.doi.org/10.46763/ETIMA2321</a>. - Текст во PDF формат, содржи 200 стр.илустр. - Наслов преземен од екранот. - Опис на изворот на ден 25.03.2024. - Трудови на мак. и англ. јазик. - Библиографија кон трудовите. - Содржи и: Арреndix

ISBN 978-608-277-040-6

- а) Електротехника -- Примена -- Собири б) Машинство -- Примена -- Собири
- в) Автоматика -- Примена -- Собири г) Инфоматика -- Примена -- Собири

COBISS.MK-ID 63335173





# Втора меѓународна конференција ЕТИМА 27-29 септември 2023 Second International Conference ETIMA 27-29 September 2023

# OPГАНИЗАЦИОНЕН ОДБОР ORGANIZING COMMITTEE

#### Василија Шарац / Vasilija Sarac

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

#### Сашо Гелев / Saso Gelev

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

#### Тодор Чекеровски / Todor Cekerovski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

#### Маја Кукушева Панева / Maja Kukuseva Paneva

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

#### Билјана Читкушева Димитровска / Biljana Citkuseva Dimitrovska

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

#### Дарко Богатинов / Darko Bogatinov

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia





# Втора меѓународна конференција ЕТИМА 27-29 септември 2023 Secound International Conference ETIMA 27-29 September 2023

# ПРОГРАМСКИ И НАУЧЕН ОДБОР SCIENTIFIC COMMITTEE

#### Co Ногучи / So Noguchi

Висока школа за информатички науки и технологии Универзитет Хокаидо, Јапонија Graduate School of Information Science and Technology Hokkaido University, Japan

#### Диониз Гашпаровски / Dionýz Gašparovský

Факултет за електротехника и информациони технологии, Словачки Технички Универзитет во Братислава, Словачка Faculty of Electrical Engineering and Information Technology Slovak Technical University in Bratislava, Slovakia

#### Антон Белан / Anton Beláň

Факултет за електротехника и информациони технологии Словачки Технички Универзитет во Братислава, Словачка Faculty of Electrical Engineering and Information Technology Slovak Technical University in Bratislava, Slovakia

#### Георги Иванов Георгиев / Georgi Ivanov Georgiev

Технички Универзитет во Габрово, Бугарија Technical University in Gabrovo, Bulgaria

#### Ивелина Стефанова Балабанова / Ivelina Stefanova Balabanova

Технички Универзитет во Габрово, Бугарија Technical University in Gabrovo, Bulgaria

#### Бојан Димитров Карапенев / Boyan Dimitrov Karapenev

Технички Универзитет во Габрово, Бугарија Technical University in Gabrovo, Bulgaria

#### Сашо Гелев / Saso Gelev

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

#### Влатко Чингоски / Vlatko Cingoski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia



#### Божо Крстајиќ / Bozo Krstajic

Електротехнички факултет Универзитет во Црна Гора, Црна Гора Faculty of Electrical Engineering, University in Montenegro, Montenegro

#### Милован Радуловиќ / Milovan Radulovic

Електротехнички факултет Универзитет во Црна Гора, Црна Гора Faculty of Electrical Engineering, University in Montenegro, Montenegro

#### Гоце Стефанов / Goce Stefanov

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

# Мирјана Периќ / Mirjana Peric

Електронски факултет Универзитет во Ниш, Србија Faculty of Electronic Engineerig, University of Nis, Serbia

# Ана Вучковиќ / Ana Vuckovic

Електронски факултет Универзитет во Ниш, Србија Faculty of Electronic Engineerig, University of Nis, Serbia

#### Тодор Чекеровски / Todor Cekerovski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

#### Далибор Серафимовски / Dalibor Serafimovski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

#### Мирослава Фаркаш Смиткова / Miroslava Farkas Smitková

Факултет за електротехника и информациони технологии Словачки Технички Универзитет во Братислава, Словачка Faculty of Electrical Engineering and Information Technology Slovak Technical University in Bratislava, Slovakia

# Петер Јанига / Peter Janiga

Факултет за електротехника и информациони технологии Словачки Технички Универзитет во Братислава, Словачка Faculty of Electrical Engineering and Information Technology Slovak Technical University in Bratislava, Slovakia

#### Jана Радичова / Jana Raditschová

Факултет за електротехника и информациони технологии Словачки Технички Универзитет во Братислава, Словачка Faculty of Electrical Engineering and Information Technology Slovak Technical University in Bratislava, Slovakia

#### Драган Миновски / Dragan Minovski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

#### Василија Шарац / Vasilija Sarac

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

#### Александар Туџаров / Aleksandar Tudzarov

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

# Владимир Талевски / Vladimir Talevski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

#### Владо Гичев / Vlado Gicev

Факултет за информатика, Универзитет "Гоце Делчев ", Штип, Северна Македонија Faculty of Computer Science, Goce Delcev University, Stip, North Macedonia

#### Марија Чекеровска / Marija Cekerovska

Машински факултет, Универзитет "Гоце Делчев ", Штип, Северна Македонија Faculty of Mechanical Engineering, Goce Delcev University, Stip, North Macedonia

#### Мишко Џидров / Misko Dzidrov

Машински факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Mechanical Engineering, Goce Delcev University, Stip, North Macedonia

#### Александар Крстев / Aleksandar Krstev

Факултет за информатика, Универзитет "Гоце Делчев ", Штип, Северна Македонија Faculty of Computer Science, Goce Delcev University, Stip, North Macedonia



#### Ванчо Аписки / Vancho Adziski

Факултет за природни и технички науки, Универзитет "Гоце Делчев ", Штип, Северна Македонија Faculty of Natural and Technical Sciences, Goce Delcev University, Stip, North Macedonia

#### Томе Димовски / Tome Dimovski

Факултет за информатички и комуникациски технологии, Универзитет "Св. Климент Охридски", Северна Македонија Faculty of Information and Communication Technologies, University St. Climent Ohridski, North Macedonia

#### Зоран Котевски / Zoran Kotevski

Факултет за информатички и комуникациски технологии, Универзитет "Св. Климент Охридски", Северна Македонија Faculty of Information and Communication Technologies, University St. Climent Ohridski, North Macedonia

#### Никола Рендевски / Nikola Rendevski

Факултет за информатички и комуникациски технологии, Универзитет "Св. Климент Охридски", Северна Македонија Faculty of Information and Communication Technologies, University St. Climent Ohridski, North Macedonia

# Илија Христовски / Ilija Hristovski

Економски факултет, Универзитет "Св. Климент Охридски", Северна Македонија Faculty of Economy, University St. Climent Ohridski, North Macedonia

#### Христина Спасовска / Hristina Spasovska

Факултет за електротехника и информациски технологии, Универзитет "Св. Кирил и Методиј ", Скопје, Северна Македонија Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University, North Macedonia

#### Роман Голубовски / Roman Golubovski

Природно-математички факултет, Универзитет ,, Св. Кирил и Методиј ", Скопје, Северна Македонија Faculty of Mathematics and Natural Sciences, Ss. Cyril and Methodius University, North Macedonia

#### Маре Србиновска / Mare Srbinovska

Факултет за електротехника и информациски технологии, Универзитет "Св. Кирил и Методиј", Скопје, Северна Македонија Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University, North Macedonia

# Билјана Златановска / Biljana Zlatanovska

Факултет за информатика, Универзитет "Гоце Делчев ", Штип, Северна Македонија Faculty of Computer Science, Goce Delcev University, Stip, North Macedonia

#### Александра Стојанова Илиевска / Aleksandra Stojanova Ilievska

Факултет за информатика,

Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Computer Science,

Goce Delcev University, Stip, North Macedonia

## Мирјана Коцалева Витанова / Mirjana Kocaleva Vitanova

Факултет за информатика,

Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Computer Science,

Goce Delcev University, Stip, North Macedonia

#### Ивана Сандева / Ivana Sandeva

Факултет за електротехника и информациски технологии, Универзитет "Св. Кирил и Методиј", Скопје, Северна Македонија Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University, North Macedonia

# Билјана Читкушева Димитровска / Biljana Citkuseva Dimitrovska

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

#### Наташа Стојковиќ / Natasa Stojkovik

Факултет за информатика, Универзитет "Гоце Делчев ", Штип, Северна Македонија; Faculty of Computer Science, Goce Delcev University, Stip, North Macedonia;





# Втора меѓународна конференција ЕТИМА Second International Conference ETIMA

#### **PREFACE**

The Faculty of Electrical Engineering at University Goce Delcev (UGD), has organized the Second International Conference *Electrical Engineering, Informatics, Machinery and Automation - Technical Sciences applied in Economy, Education and Industry-ETIMA*.

ETIMA has a goal to gather the scientists, professors, experts, and professionals from the field of technical sciences in one place as a forum for exchanging the ideas, strengthening the multidisciplinary research and cooperation, and promoting the achievements of technology and its impact on every aspect of living. We hope that this conference will continue to be a venue for presenting the latest research results and developments on the field of technology.

Conference ETIMA was held as online conference. More than sixty colleagues contributed to this event, from five different countries with more than thirty papers.

We would like to express our gratitude to all the colleagues, who contributed to the success of ETIMA'23 by presenting the results of their current research and by launching the new ideas through many fruitful discussions.

We invite you and your colleague to attend ETIMA Conference in the future as well. One should believe that next time we will have opportunity to meet each other and exchange ideas, scientific knowledge and useful information as well as to involve as much as possible the young researchers into this scientific event.

The Organizing Committee of the Conference

# ПРЕДГОВОР

Меѓународната конференција *Електротехника, Технологија, Информатика, Машинство и Автоматика-технички науки во служба на економија, образование и индустрија-ЕТИМА* е организирана од страна на Електротехничкиот факултет при Универзитетот "Гоце Делчев".

ЕТИМА има за цел да ги собере на едно место научниците, професорите, експертите и професионалците од полето на техничките науки и да претставува форум за размена на идеи, да го зајканува мултидисциплинарното истражување и соработка и да ги промовира технолошките достигнувања и нивното влијание врз секој аспект од живеењето. Се надеваме дека оваа конференција ќе продолжи да биде настан на кој ќе се презентираат најновите резултати од истражувањата и развојот на полето на технологијата.

Конференцијата ЕТИМА се одржа online и на неа дадоа свој придонес повеќе од шеесет автори од пет различни земји со повеќе од триесет труда.

Сакаме да ја искажеме нашата благодарност до сите колеги кои придонесоа за успехот на ЕТИМА'23 со презентирање на резултати од нивните тековни истражувања и со лансирање на нови идеи преку многу плодни дискусии.

Организационен одбор на конференцијата



# СОДРЖИНА / TABLE OF CONTENTS:

| ANALYTICAL ESTIMATION OF OPTIMAL PV PANEL TILT BASED ON CLEAR-SKY IRRADIANCE MODEL                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ENVIRONMENTAL AND ENERGY UTILIZATION OF MUNICIPLE WASTE – ONE PRODUCT, TWO SOLUTIONS14                                                                                                                  |
| INTELLIGENT POWER MODULE CONTROLLED BY MICROCOMPUTER AND IMPLEMENTED IN AC MOTOR SPEED REGULATOR22                                                                                                      |
| COMPARATIVE ENVIRONMENTAL ANALYSIS BETWEEN CONVENTIONAL AND COGENERATION GAS-FIRED CENTRAL HEATING SYSTEMS32                                                                                            |
| COMPARATIVE ANALYSIS BETWEEN BIFACIAL AND MONOFACIAL SOLAR PANELS USING PV*SOL SOFTWARE44                                                                                                               |
| TECHNO-ECONOMIC EVALUATON OF RETROFITTING A 210 MW THERMAL HEAVY-OIL POWER PLANT WITH A PHOTOVOLTAIC SOLAR THERMAL ENERGY STORAGE SYSTEM USING MOLTEN SALT: A CASE STUDY OF TEC NEGOTINO                |
| CHARGING STATIONS CONNECTED TO STREET LIGHT POWER SYSTEM46                                                                                                                                              |
| ELECTRICITY PRODUCTION OF PVPP FOR ELECTRICITY MARKET47                                                                                                                                                 |
| ENERGY MIX OF THE SLOVAK REPUBLIC55                                                                                                                                                                     |
| SWOT ANALYSIS OF HYDROGEN ECONOMY59                                                                                                                                                                     |
| PHYSICAL LIMITATIONS OF DIMMING OF 400 W RATED HALIDE LAMPS (A CASE STUDY)60                                                                                                                            |
| ФУНКЦИОНИРАЊЕ НА ПАЗАРИ НА ЕЛЕКТРИЧНА ЕНЕРГИЈА: МОДЕЛИ<br>НА ПАЗАРИ НА ЕЛЕКТРИЧНА ЕНЕРГИЈА68                                                                                                            |
| EASY AND FAST ESTIMATION OF THERMAL STABILITY OF HTS MAGNETS UNDER SIMPLE SITUATION76                                                                                                                   |
| INVESTIGATION OF TURN-TO-TURN CONTACT RESISTANCES OF LARGE-<br>SCALE D-SHAPED NO-INSULATION HIGH-TEMEPERATURE<br>SUPERCONDUCTING MAGNETS TO ACHIEVE SHORT CHARGNING DELAY<br>AND HIGH THERMAL STABILITY |
| IMPACT OF CORE SATURATION ON OPERATING CHARACTERISTICS OF THREE-PHASE SQUIRREL CAGE MOTOR84                                                                                                             |
| PRINCIPLES AND APPLICATIONS OF ORAL ELECTROSURGERY93                                                                                                                                                    |
| MOLTEN SALT THERMAL ENERGY STORAGE FOR RENEWABLE ENERGY: SYSTEM DESIGN, MATERIALS, AND PERFORMANCE100                                                                                                   |
| ДЕНТАЛНИТЕ ЛАСЕРИ - ПРЕДИЗВИК НА СОВРЕМЕНАТА<br>СТОМАТОЛОГИЈА110                                                                                                                                        |
| ANALYSIS OF DEVELOPING NATIVE ANDROID APPLICATIONS USING XML AND JETPACK COMPOSE                                                                                                                        |
| ENSURING INFORMATION SECURITY IN THE DIGITAL AGE119                                                                                                                                                     |
| CLOUD COMPUTING AND VIRTUALIZATION: CAN CLOUD COMPUTING EXIST SEPARATELY FROM VIRTUALIZATION?124                                                                                                        |

| THE IMPACT OF ONLINE TEACHING ON THE DENTAL STUDENTS' EXAM |
|------------------------------------------------------------|
| SUCCESS                                                    |
| КОМПАРАТИВНА АНАЛИЗА НА СТАНДАРДИ И МЕТОДОЛОГИИ ЗА         |
| УПРАВУВАЊЕ СО ИНФОРМАЦИСКО-БЕЗБЕДНОСНИ РИЗИЦИ НА           |
| ТЕХНИЧКИТЕ И ЕЛЕКТРОНСКИТЕ СИСТЕМИ ОД КРИТИЧНАТА           |
| ИНФРАСТРУКТУРА139                                          |
| УЧЕЊЕ СО ПОМОШ НА МОБИЛНИ УРЕДИ – ПРИДОБИВКИ И             |
| ПРЕДИЗВИЦИ НА НОВОТО ВРЕМЕ140                              |
| TRANSCUTANEOUS ELECTRICAL NERVE STIMULATION METHOD IN      |
| PATIENTS WITH XEROSTOMIA147                                |
| БИОТЕХНОЛОШКА ПРОЦЕДУРА НА ДОБИВАЊЕ НА АВТОЛОГЕН           |
| ДЕНТИНСКИ ГРАФТ ЗА СТОМАТОЛОШКИ И МЕДИЦИНСКИ ЦЕЛИ148       |
| PHYSIODISPENSER – AND ITS USE IN DENTAL MEDICINE149        |
| BIOMECHANICAL BEHAVIOR OF ENDOSONICS153                    |
| ДИГИТАЛНИ ОТПЕЧАТОЦИ-СОВРЕМЕН ТРЕНД НА ДЕНЕШНИЦАТА158      |
| DESIGN AND IMPLEMENTATION OF SCADA SYSTEMS167              |
| ПРЕДНОСТИ И НЕДОСТАТОЦИ ПРИ ИЗВЕДУВАЊЕ ONLINE HACTABA ПО   |
| МАТЕМАТИКА                                                 |
| ALGORITHMIC METHOD IN DYNAMIC DOSING SYSTEMS BASED ON      |
| WEIGHT MEASURING PRINCIPLES181                             |
| IMPLICATIONS FOR THE ENVIRONMENTAL-ENGINEERING COMPROMISE  |
| AS A RESULT OF POWER AND ECONOMY TUNING A DIESEL ENGINE189 |
| AUTONOMOUS ROBOTIC VACUUM CLEANER190                       |



# Втора меѓународна конференција ЕТИМА Second International Conference ETIMA

UDC: 681.269.2.06-5]:[004.421.2:517.443 https://www.doi.org/10.46763/ETIMA2321181g

# ALGORITHMIC METHOD IN DYNAMIC DOSING SYSTEMS BASED ON WEIGHT MEASURING PRINCIPLES

#### Vladimir Gebov 1

<sup>1</sup>South West University in Blagoevgrad, email: askon@swu.com

#### **Abstract**

Algorithmic method and a technical solution are suggested in order to increase performance of worm-and-wheel dosing systems (bagging machines) operating on weight measuring principles. The results from the weight measuring processed by using Fourier transformation and extrapolation of the weight transformation curve. The method applied in an algorithm for controlling weight in two situation of the working cycle of the flour-bagging machine: selective weight measurement of net and tare. The algorithm allows increasing the productivity without changing the mechanical design of the machine. This improvement helps make the machine competitive with the best Western packaging machine manufacturers.

#### **Key words**

Bulk dosing systems, dynamic weigh, extrapolation, algorithmic method

#### Introduction

Dosing of bulk materials for production purposes is a very common process. Most dosing appliances and machines based on indirect methods for mass measuring by accepting specific weight and bulk materials' flow as measured quantities. However, these parameters influence the weight precision rather somewhat negatively.

In order to improve enterprise' competitiveness in a market economy the quality of products should be constantly increasing, and by extension productivity. In accordance to ISO 9001 for products' quality certification, one of the requirements is that precision in packaging should be constantly improved and controlled. The paper aims to improve precision in dynamic dosing of packaged (in bags) flour as well as to increase productivity requirements.

Some basic factors, which influence batching, are "deposing on walls", "the sinusoidal features of bulk flow during worm-and-wheel dosing", unequal humidity and different aerated indices of bulk materials, etc. A controlling algorithm compensates factors that alter slowly in the course of time (humidity). Other factors lead to serious errors in weight measuring (deposits of measured quantities), thus they have to identify and made evident by alarm indicators [1].

Decisive factors, which increase precision of dynamic measuring, are "determined deviations", which result from the sinusoidal law in worm-and-wheel feeding. Another is random distribution of flour specific gravity during dosing. Both characteristics must taken into consideration.

Typical Requirements of Bulk Material Dosing Devices

The base for a classification of different dosing and proportioning devices for bulk materials is a prior definition of the associated requirements and the expected performance measures. For this, it is common sense to concentrate on the following four basic characteristics:

- I. Accuracy. The accuracy of a dosing or weighing system is the degree of closeness of measurements of a quantity (e.g. massflow) to that quantity's true value).
- II. *Stability*. The stability of a bulk material dosing unit typically defined as a time interval in which the accuracy definitions associated to the system can guaranteed without any manual intervention.
- III. Availability. The availability of a dosing unit can defined as the typical ratio between the times where the system is operatable and the total working time in a defined period.
- IV. *Productivity*. Productivity depends on the proper functioning of the above process characteristics and then on the requirements for high economic indicators of the process. Higher productivity means less energy costs, labor costs, and higher competitiveness in a dynamically changing market. This article proposes a general solution for increase productivity based on controlling algorithm.

# 1. General Classification of Bulk-Material Dosing Devices

The base for a classification of different dosing and proportioning devices for bulk materials is the former definition of the functional entities of those machines. For this, it is reasonable to distinguish three main functional elements of typical dosing devices:

(i). Measuring, (ii). Conveying and (iii). Controlling. The combination of either any two or all three of these basic elements defines the specific character of the equipment, as shown in Fig.1

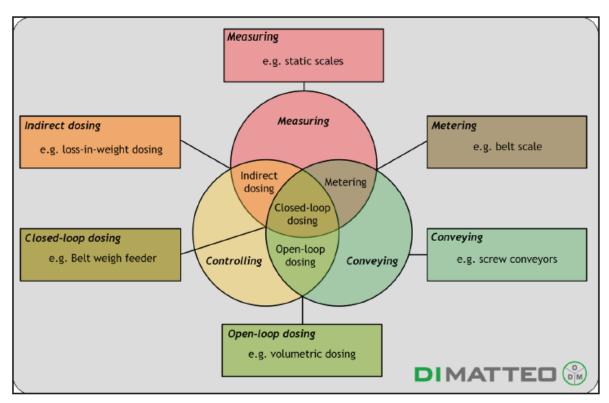



Fig. 4 Classification of different dosing/metering/weighing devices based on three basic functional elements

Here, it is possible to name six different classes of machines as a general taxonomy for the proportioning of bulk materials. The exact definition and corresponding aspects are summarised within Table 1.

Table 1 Overview of different dosing/metering/weighing devices

| Class of    | ass of Measuring Metering |                     | Indirect            | Open-loop     | Closed-loop       |  |
|-------------|---------------------------|---------------------|---------------------|---------------|-------------------|--|
| Machine     |                           |                     | dosing              | dosing        | dosing            |  |
|             |                           |                     |                     |               |                   |  |
|             | The actual                | The material        | The actual          | The actual    | The actual        |  |
|             | volume V                  | is                  | volume V            | conveying     | weight <b>M</b>   |  |
|             | or weight m               | conveyed            | or weight m         | speed v is    | or volume ${f V}$ |  |
|             | of the                    | with a              | of the              | controlled    | and               |  |
|             | material is               | certain             | material is         | based on a    | the actual        |  |
|             | measured                  | conveying           | measured            | pre-defined   | conveying         |  |
|             | and used to               | speed <b>v</b> and  | and used to         | calibrated    | speed v           |  |
|             | define                    | at the              | define the          | relation in   | is measured to    |  |
|             | the actual                | same time           | actual amount       | order achieve | calculate the     |  |
|             | amount                    | the                 | at a                | a certain     | M actual mass     |  |
| on          | at .a given actual        |                     | given time          | volume flow.  | flow or           |  |
| Description | time                      | massflow is         | and at the          | V or mass     | volume flow       |  |
| scr         |                           | determined          | same time a         | flow M        | V. The actual     |  |
| De          |                           | based on a          | separate            |               | conveying         |  |
| , ,         |                           | measured            | conveying           |               | speed             |  |
|             |                           | weight              | system is           |               | continuously      |  |
|             |                           | <b>m</b> [kg].      | controlled in       |               | controlled in     |  |
|             |                           | M[kg/h] is          | order to            |               | order to          |  |
|             |                           | define by           | achieve a           |               | achieve a         |  |
|             |                           | v [m/s],            | certain             |               | desired mass      |  |
|             |                           | l <b>m</b> [kg] and | volume flow         |               | or volume         |  |
|             |                           | L[m] length         | V or                |               | flow.             |  |
|             |                           | of the scale.       | mass flow M         |               |                   |  |
| M 1         | [17                       | [/-]                |                     |               | [/-]              |  |
| Measured    | <b>m</b> [kg],            | v [m/s],            | v [m/s], m[kg]      | -             | v [m/s],          |  |
| values      | V [m³]                    | <b>m</b> [kg]       |                     |               | m[kg], <b>V</b>   |  |
|             |                           |                     |                     |               | [[m³/h], <b>M</b> |  |
| C 1         |                           | r / 1               | <b>X</b> 7.F. 2/1.1 | F / J         | [kg/h             |  |
| Control     | -                         | v [m/s]<br><b>M</b> | V [m³/h],           | v [m/s]       | v [m/s] ->        |  |
| variables   | variables                 |                     | M                   |               | V [m³/h],         |  |
|             |                           | [kg/h]              | [kg/h]              |               | M                 |  |
| Type of     | _                         | Continuous          | Discontinuous       | Continuous    | [kg/h]            |  |
| operation   | _                         | Continuous          | Discontinuous       | Continuous    |                   |  |
| Type of     |                           |                     | Gravimetric         | Gravimetric   |                   |  |
| dosing      |                           |                     | Gravinicuic         | Gravinicuic   |                   |  |
| Example     | Silo scale                | Belt scale          | Differential        | Screw         | Weigh Scale       |  |
| Zampie      | Silo Beule                | Don Boulo           | dosing              | conveyor wit  | ,, orgin bound    |  |
|             |                           |                     | setups (e.g.        | pre-defined   |                   |  |
|             |                           |                     | loss-in-            | calibrated    |                   |  |
|             |                           |                     | (weight             | relation      |                   |  |
|             |                           |                     | systems             | between       |                   |  |
|             |                           |                     | 5,5001115           | volume and    |                   |  |
|             |                           |                     |                     | screw speed   |                   |  |
|             |                           |                     | l                   | seren speed   |                   |  |

Source: author based on [5]

In this article we sugest new combination of dosing sytem based on combination between Open-loop dosing and Closed-loop dosing used in bag filling machine of the flour in mill factory. This is the first step to increase productivity of the bag-filling machine.

# 2. Discontinuous batching dosing system for bulk material

The chart for batching and dosing bulk materials as shown in Fig. 1 includes a worm-and-wheel mechanism driven by an electric motor, weigh-measuring transformer, and a regulating unit for feeding and dosing. The regulator is a position regulator. Theoretically, it is well known that best results for precision and quick action are achieved when a 5-sector speed diagram is used [2]. Conducted experiments show that different parts of the speed diagram can optimized in order to increase precision [3].

In Fig. 2, shown discontinuous batching dosing system completed with two-bag filing machine work in DEM Kulpin – Serbia. Two control system work synchronously with one belt for filled bags. These bag filling machine work semi-auto mode. The operator attaches an empty bag to the machine's outlet valve screw and then everything is automatic including dumping the finished bag onto the belt. In new systems bag filling machine assembled with bag placer and all the process is automatically. The two bag filling machines synchronized with each other through a connected algorithm.

The block diagram of the discontinuous batching dosing system shown in Fig3. This dosing principle chosen because it provides maximum accuracy with high productivity. This is necessary because of the market.



Fig. 5 Bag Filling machines in mil factory Kulpin, Serbia

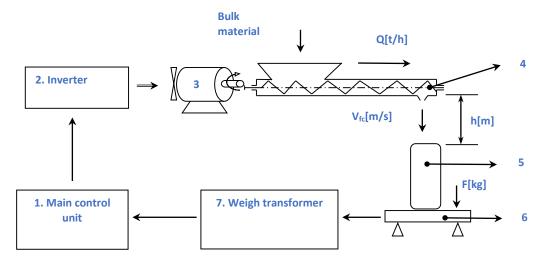



Fig. 6 Electronic system for dynamic dosing in worm-and-wheel mechanisms 1 - Main control unit; 2 - Frequency control of the asynchrony electro motor; 3 - 3-phase electro motor; 4 - dosing worm-and-wheel mechanism; 5 - Bag; 6 - Tens metric system; 7 - Weigh transformer;

Basic advantages of the system:

- 1. Main control unit is controller based on microprocessor MC9S12DG256 with 24 DI, 24 DO and ADC7730 with two analog input for tense system, one analog input for measure temperature with DS18B20 one wire temperature sensor. The kernel of the software work in *real time* and Interrupt handling done through a priority matrix. In this way measuring and control system work properly. The author developed this controller and system software. The controller and system software used in many applications and systems more than 15 years.
- 2. Inverter selected *senseless technology*, which achieves better speed control both at a constant level and during braking, which, compared to ordinary inverters, is decisive for achieving higher weigh accuracy.
- 3. 3-phase asynchronously electro motor selected for *reliability* and price
- 4. Dosing worm-and-wheel mechanism made with additional *spreader wheel* and additional hopper for *pre-volume dosing*.
- 5. Tense system work with two cell connected to ADC7730 in continuous conversion mode. The 16-bit analog to digital conversion work continuously with time of conversion about 10 mSec. ADC7730 has key features Offset Drift: 5 nV/°C, Gain Drift: 2 ppm/°C, Line Frequency Rejection>150 dB, Buffered Differential Inputs, Programmable Filter Cutoffs Specified for Drift Over Time

#### 3. Model of the technological cycle of the bag filling process

When dosing bulk materials the periodic constituent changes in accordance to the sinusoidal law [1]:

$$m(t) = m_{stat}(t) + \hat{m}_{din} \sin(\omega t + \varphi_0), \qquad (1)$$

Where

- m\*(t) the mass of the total material for a certain time interval t
- m<sub>stat</sub>(t) defines the linear mass gradient
- m<sub>din</sub>(t) defines the periodic change of mass. This compound is a result of the spiral of the dosing auger.

We can determine the force exercised by the falling bulk flow onto the tens metric system:

$$F_{\Sigma}(t) = F(t) + F(t) = \underbrace{m_{stat}(t)g + \hat{m}_{din}\sin(\omega t + \varphi_0 + \tau)}_{product\_in\_bag} + \underbrace{\sqrt{2gh}\frac{dm_{stat}(t)}{dt} + \hat{m}_{din}\cos(\omega t + \varphi_0 + \tau)}_{falling\_column}$$
(2)

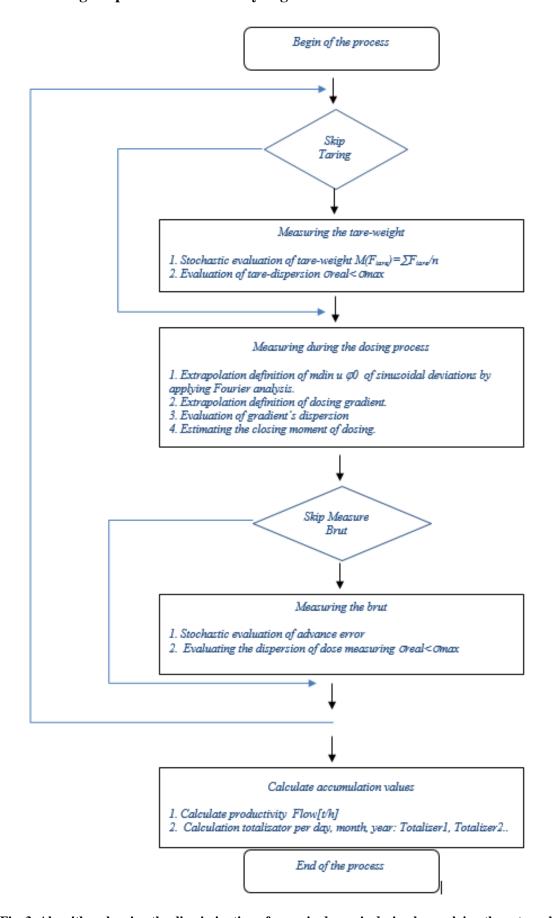
Where

- F(t) force of the weight of the flour in the sack
- $\widetilde{F}(t)$  force of the weight of the flour above the sack

The weight of the falling material is determined by

$$M_{\sum fc} = \stackrel{*}{M}(t) + \widetilde{M}(t) = \sqrt{2gh} \frac{dm(t)}{dt} + \int_{0}^{\tau} \hat{m}_{din} \sin(\omega t + \varphi_0) dt$$
(3)

Where


- M(t) The mass of the flour, proportional to the h height from the bag to the dosing auger, as well as to the auger performance dm(t)/dt
- $\widetilde{M}(t)$  The mass of the flour defined from sinusoidal influence of the auger

From (2) and (3) the difference between the falling material and the dynamic constituent of the force on the tens metric system can estimated as:

$$\Delta \tilde{F}(t) = \tilde{F}(t) - \tilde{M}(t) = \hat{m}_{din} \cos(\omega t + \varphi_0 + \tau) + \hat{m}_{din} \frac{\cos(\omega \tau + \varphi_0) - \cos(\varphi_0)}{\omega}$$

$$\Delta \tilde{F}(t) = \hat{m}_{din} \left(\cos(\omega t + \varphi_0 + \tau) + \frac{\cos(\omega \tau + \varphi_0) - \cos(\varphi_0)}{\omega}\right)$$
(4)

# 4. Technological process controlled by Algorithm



 $Fig.\ 3.\ Algorithm\ showing\ the\ discrimination\ of\ error\ in\ dynamic\ dosing\ by\ applying\ the\ extrapolation\ method$ 

#### **Results**

Estimating the error from the tare measurement and the error from the measurement of the weight value - gross, allows the transition to an accelerated mode of operation. When these two values approach the minimum allowable, it goes into *turbo* operation mode.

For machines that use closed bags with valve filling of the packages, the performance limited by the speed of the valve, which is limited to 8 seconds + 2 seconds for releasing and filling the new bag. This limits the productivity to 9.0t/h.

Compared to western companies such as PAGLIERANI and FAVEMA on a similar technique, whose productivity is 7.5t/h, one can see the significant advantage obtained when using the algorithm in terms of the productivity indicator. The measurements and experiments were made on machines of the company Askon EOOD, which operate in Bulgaria, Serbia, BiH, Romania.

Table 2 Productivity of the bag-filling machine with different type cycles calculate in case of 25kg charge.

| Type of       | Measuring  | Closing  | Dosing   | Closing   | Measuring  | Cycle | Product. |
|---------------|------------|----------|----------|-----------|------------|-------|----------|
| machine       | Tare [Sec] | low clap | Fast and | high      | Tare [Sec] | Time  | [t/h]    |
|               |            |          | Fine     | clap[Sec] |            | [Sec] |          |
| Common        | 4.0        | 1.0      | 5.0      | 1.0       | 4.0        | 15    | 6.0      |
| With          | 0          | 1.0      | 5.0      | 1.0       | 0          | 7     | 12.9     |
| algorithm     |            |          |          |           |            |       |          |
| Algorithm+    | 0          | 1.0      | 4.0      | 1.0       | 0          | 6     | 15.0     |
| advanced fill |            |          |          |           |            |       |          |

#### **Conclusions**

In today's conditions of strong competition and lack of workers, the productivity of machine equipment is of great importance. The competition in the market for technological equipment intended for flourmills in the European market, as well as in the world, imposes high criteria regarding the performance quality indicators of the machines and systems used in the production of flour and milled products. The price and reliability of the equipment are not sufficient criteria when choosing a certain type of equipment. The publication offers an algorithmic method that allows increasing the productivity of flour packaging machines by 25-30%. This method is applicable to all machines operating in the milling industry, regardless of supplier. The application of the algorithmic method allows to significantly increasing the performance without the need to change the mechanics or electronics. Only the pre-dosing module also implies mechanical changes to the packaging machines. A specialized software has developed which, through an online statistical analysis of the deviations of the measurement of the weight of the dose and the tare, provides an assessment of the possibility of applying the algorithm to a randomly selected machine. The algorithm works completely autonomously and does not require any settings or manipulations by the operator.

#### Reference

- [1] Ovcharov, Stefan/Gebov, Vladimir: "High precision extrapolation method in dynamic dosing systems based on weight measuring principles". Agricultural Engineering 12(2006), 1-4,p. 39-44.
- [2] Jordanov S.: "Automation of the producing mechanisms", TU -Sofia -2011.
- [3] Stokov, J./Mladenov, S., "Automatic dosing of the bulk materials", "Food industry", 2000, N: 4, page 12-16.
- [4] https://www.researchgate.net/publication/318642078\_A\_Taxonomy\_of\_Bulk\_Material\_Dosing\_Systems\_for\_Solid\_Recovered\_Fuels