FACULTY OF ELECTRICAL ENGINEERING

ETIMA 2025

THIRD INTERNATIONAL CONFERENCE 24-25 SEPTEMBER, 2025

TECHNICAL SCIENCES APPLIED IN ECONOMY, EDUCATION AND INDUSTRY

УНИВЕРЗИТЕТ "ГОЦЕ ДЕЛЧЕВ", ШТИП ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ

GOCE DELCEV UNIVERSITY, STIP FACULTY OF ELECTRICAL ENGINEERING

TPETA МЕЃУНАРОДНА КОНФЕРЕНЦИЈА THIRD INTERNATIONAL CONFERENCE

ЕТИМА / ЕТІМА 2025

ЗБОРНИК НА ТРУДОВИ CONFERENCE PROCEEDINGS

24-25 септември 2025 | 24-25 September 2025

ISBN: 978-608-277-128-1

DOI: https://www.doi.org/10.46763/ETIMA2531

Главен и одговорен уредник / Editor in Chief

проф.д-р Сашо Гелев Prof.d-r Saso Gelev

Јазично уредување / Language Editor

Весна Ристова (македонски) / Vesna Ristova (Macedonian)

Техничко уредување / Technical Editing

Дарко Богатинов / Darko Bogatinov

Издавач / Publisher

Универзитет "Гоце Делчев", Штип / Goce Delcev University, Stip Електротехнички факултет / Faculty of Electrical Engineering

Адреса на организационен комитет / Adress of the organizational committee

Универзитет "Гоце Делчев", Штип / Goce Delcev University, Stip Електротехнички факултет / Faculty of Electrical Engineering Адреса: ул. "Крсте Мисирков" бр. 10А / Adress: Krste Misirkov, 10А Пош. фах 201, Штип - 2000, С. Македонија / PO BOX 201, Stip 2000, North Macedonia E-mail: conf.etf@ugd.edu.mk

CIP - Каталогизација во публикација

Национална и универзитетска библиотека "Св. Климент Охридски", Скопје

62-049.8(062) 004-049.8(062)

МЕЃУНАРОДНА конференција ЕТИМА (3; 2025; Штип)

Зборник на трудови [Електронски извор] / Трета меѓународна конференција ЕТИМА 2025, 24-25 септември 2025 ; [главен и одговорен уредник Сашо Гелев] = Conference proceedings / Third international conference, 24-25 September 2025 ; [editor in chief Saso Gelev]. - Текст во PDF формат, содржи 357 стр., илустр. - Штип: Универзитет "Гоце Делчев", Електротехнички факултет ; Stip: "Goce Delchev" University, Faculty of Electrical engineering, 2025

Начин на пристапување (URL): https://js.ugd.edu.mk/index.php/etima/en. - Наслов преземен од екранот. - Опис на изворот на ден 30.10.2025. - Трудови на мак. и англ. јазик. - Библиографија кон трудовите

ISBN 978-608-277-128-1

- а) Електротехника -- Примена -- Собири б) Машинство -- Примена -- Собири
- в) Автоматика -- Примена -- Собири г) Инфоматика -- Примена -- Собири

COBISS.MK-ID 67297029

Трета меѓународна конференција ЕТИМА 24-25 Септември 2025 Third International Conference ETIMA 24-25 September 2025

OPГАНИЗАЦИОНЕН ОДБОР ORGANIZING COMMITTEE

Драган Миновски / Dragan Minovski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Сашо Гелев / Saso Gelev

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Тодор Чекеровски / Todor Cekerovski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Маја Кукушева Панева / Maja Kukuseva Paneva

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Билјана Читкушева Димитровска / Biljana Citkuseva Dimitrovska

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Дарко Богатинов / Darko Bogatinov

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Трета меѓународна конференција ЕТИМА 24-25 Септември 2025 Third International Conference ETIMA 24-25 September 2025

ПРОГРАМСКИ И НАУЧЕН ОДБОР SCIENTIFIC COMMITTEE

Антонио Курадо / António Curado

Политехнички институт во Виана до Кастело, Португалија Instituto Politécnico de Viana do Castelo, Portugal

Стелијан – Емилијан Олтеан / Stelian – Emilian Oltean

Факултет за инженерство и информатичка технологија, Медицински универзитет Георге Емил Паладе, фармација, наука и технологија во Таргу Муреш, Романија

Faculty of Engineering and Information Technology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Romania

Митко Богданоски / Mitko Bogdanoski

Воена академија, Универзитет "Гоце Делчев", Северна Македонија Military Academy, Goce Delcev University, North Macedonia

Верица Тасеска Ѓоргиевска / Verica Taseska Gjorgievska

Македонска академија на науките и уметностите, Северна Македонија Macedonian Academy of Sciences and Arts, North Macedonia

Југослав Ачкоски / Jugoslav Ackoski

Воена академија, Универзитет "Гоце Делчев", Северна Македонија Military Academy, Goce Delcev University, North Macedonia

Димитар Богатинов / Dimitar Bogatinov

Воена академија, Универзитет "Гоце Делчев", Северна Македонија Military Academy, Goce Delcev University, North Macedonia

Co Ногучи / So Noguchi

Висока школа за информатички науки и технологии Универзитет Хокаидо, Јапонија Graduate School of Information Science and Technology Hokkaido University, Japan

Диониз Гашпаровски / Dionýz Gašparovský

Факултет за електротехника и информациони технологии, Словачки Технички Универзитет во Братислава, Словачка Faculty of Electrical Engineering and Information Technology Slovak Technical University in Bratislava, Slovakia

Георги Иванов Георгиев / Georgi Ivanov Georgiev

Технички Универзитет во Габрово, Бугарија Technical University in Gabrovo, Bulgaria

Антон Белан / Anton Beláň

Факултет за електротехника и информациони технологии Словачки Технички Универзитет во Братислава, Словачка Faculty of Electrical Engineering and Information Technology Slovak Technical University in Bratislava, Slovakia

Ивелина Стефанова Балабанова / Ivelina Stefanova Balabanova

Технички Универзитет во Габрово, Бугарија Technical University in Gabrovo, Bulgaria

Бојан Димитров Карапенев / Boyan Dimitrov Karapenev

Технички Универзитет во Габрово, Бугарија Technical University in Gabrovo, Bulgaria

Сашо Гелев / Saso Gelev

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Влатко Чингоски / Vlatko Cingoski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Божо Крстајиќ / Bozo Krstajic

Електротехнички факултет Универзитет во Црна Гора, Црна Гора Faculty of Electrical Engineering, University in Montenegro, Montenegro

Милован Радуловиќ / Milovan Radulovic

Електротехнички факултет Универзитет во Црна Гора, Црна Гора Faculty of Electrical Engineering, University in Montenegro, Montenegro

Гоце Стефанов / Goce Stefanov

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Мирјана Периќ / Mirjana Peric

Електронски факултет Универзитет во Ниш, Србија Faculty of Electronic Engineerig, University of Nis, Serbia

Ана Вучковиќ / Ana Vuckovic

Електронски факултет, Универзитет во Ниш, Србија Faculty of Electronic Engineerig, University of Nis, Serbia

Тодор Чекеровски / Todor Cekerovski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Далибор Серафимовски / Dalibor Serafimovski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Мирослава Фаркаш Смиткова / Miroslava Farkas Smitková

Факултет за електротехника и информациони технологии Словачки Технички Универзитет во Братислава, Словачка Faculty of Electrical Engineering and Information Technology Slovak Technical University in Bratislava, Slovakia

Петер Јанига / Peter Janiga

Факултет за електротехника и информациони технологии Словачки Технички Универзитет во Братислава, Словачка Faculty of Electrical Engineering and Information Technology Slovak Technical University in Bratislava, Slovakia

Jана Радичова / Jana Raditschová

Факултет за електротехника и информациони технологии Словачки Технички Универзитет во Братислава, Словачка Faculty of Electrical Engineering and Information Technology Slovak Technical University in Bratislava, Slovakia

Драган Миновски / Dragan Minovski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Василија Шарац / Vasilija Sarac

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Александар Туџаров / Aleksandar Tudzarov

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Владимир Талевски / Vladimir Talevski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Владо Гичев / Vlado Gicev

Факултет за информатика, Универзитет "Гоце Делчев ", Штип, Северна Македонија; Faculty of Computer Science, Goce Delcev University, Stip, North Macedonia;

Марија Чекеровска / Marija Cekerovska

Машински факултет, Универзитет "Гоце Делчев ", Штип, Северна Македонија; Faculty of Mechanical Engineering, Goce Delcev University, Stip, North Macedonia;

Мишко Џидров / Misko Dzidrov

Машински факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија; Faculty of Mechanical Engineering, Goce Delcev University, Stip, North Macedonia;

Александар Крстев / Aleksandar Krstev

Факултет за информатика, Универзитет "Гоце Делчев ", Штип, Северна Македонија; Faculty of Computer Science, Goce Delcev University, Stip, North Macedonia;

Ванчо Аписки / Vancho Adziski

Факултет за природни и технички науки, Универзитет "Гоце Делчев ", Штип, Северна Македонија; Faculty of Natural and Technical Sciences, Goce Delcev University, Stip, North Macedonia;

Томе Димовски / Tome Dimovski

Факултет за информатички и комуникациски технологии, Универзитет "Св. Климент Охридски", Северна Македонија; Faculty of Information and Communication Technologies, University St Climent Ohridski, North Macedonia;

Зоран Котевски / Zoran Kotevski

Факултет за информатички и комуникациски технологии, Универзитет "Св. Климент Охридски", Северна Македонија; Faculty of Information and Communication Technologies, University St Climent Ohridski, North Macedonia;

Никола Рендевски / Nikola Rendevski

Факултет за информатички и комуникациски технологии, Универзитет "Св. Климент Охридски", Северна Македонија; Faculty of Information and Communication Technologies, University St Climent Ohridski, North Macedonia;

Илија Христовски / Ilija Hristovski

Економски факултет, Универзитет "Св. Климент Охридски", Северна Македонија; Faculty of Economy, University St Climent Ohridski, North Macedonia;

Христина Спасовска / Hristina Spasovska

Факултет за електротехника и информациски технологии, Универзитет "Св. Кирил и Методиј", Скопје, Северна Македонија; Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University, North Macedonia;

Роман Голубовски / Roman Golubovski

Природно-математички факултет, Универзитет "Св. Кирил и Методиј", Скопје, Северна Македонија; Faculty of Mathematics and Natural Sciences, Ss. Cyril and Methodius University, North Macedonia;

Маре Србиновска / Mare Srbinovska

Факултет за електротехника и информациски технологии, Универзитет "Св. Кирил и Методиј", Скопје, Северна Македонија; Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University, North Macedonia;

Билјана Златановска / Biljana Zlatanovska

Факултет за информатика, Универзитет "Гоце Делчев ", Штип, Северна Македонија; Faculty of Computer Science, Goce Delcev University, Stip, North Macedonia;

Александра Стојанова Илиевска / Aleksandra Stojanova Ilievska

Факултет за информатика, Универзитет "Гоце Делчев ", Штип, Северна Македонија; Faculty of Computer Science, Goce Delcev University, Stip, North Macedonia;

Мирјана Коцалева Витанова / Mirjana Kocaleva Vitanova

Факултет за информатика, Универзитет "Гоце Делчев", Штип, Северна Македонија; Faculty of Computer Science, Goce Delcev University, Stip, North Macedonia;

Ивана Сандева / Ivana Sandeva

Факултет за електротехника и информациски технологии, Универзитет "Св. Кирил и Методиј", Скопје, Северна Македонија; Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University, North Macedonia;

Билјана Читкушева Димитровска / Biljana Citkuseva Dimitrovska

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Наташа Стојковиќ / Natasa Stojkovik
Факултет за информатика,
Универзитет "Гоце Делчев", Штип, Северна Македонија;
Faculty of Computer Science,
Goce Delcev University, Stip, North Macedonia;

Трета меѓународна конференција ЕТИМА Third International Conference ETIMA

PREFACE

The Third International Conference "Electrical Engineering, Technology, Informatics, Mechanical Engineering and Automation – Technical Sciences in the Service of the Economy, Education and Industry" (ETIMA'25), organized by the Faculty of Electrical Engineering at the "Goce Delchev" University – Shtip, represents a significant scientific event that enables interdisciplinary exchange of knowledge and experience among researchers, professors, and experts in the field of technical sciences. The conference was held in an online format and brought together 78 authors from five different countries.

The ETIMA conference aims to establish a forum for scientific communication, encouraging multidisciplinary collaboration and promoting technological innovations with direct impact on modern life. Through the presentation of scientific papers, participants shared the results of their research and development activities, contributing to the advancement of knowledge and practice in relevant fields. The first ETIMA conference was organized four years ago, featuring 40 scientific papers. The second conference took place in 2023 and included over 30 papers. ETIMA'25 continued this scientific tradition, presenting more than 40 papers that reflect the latest achievements in electrical engineering, technology, informatics, mechanical engineering, and automation.

At ETIMA'25, papers were presented that addressed current topics in technical sciences, with particular emphasis on their application in industry, education, and the economy. The conference facilitated fruitful discussions among participants, encouraging new ideas and initiatives for future research and projects.

ETIMA'25 reaffirmed its role as an important platform for scientific exchange and international cooperation. The organizing committee extends sincere gratitude to all participants for their contribution to the successful realization of the conference and its scientific value.

We extend our sincerest gratitude to all colleagues who, through the presentation of their papers, ideas, and active engagement in discussions, contributed to the success and scientific significance of ETIMA'25.

The Organizing Committee of the Conference

ПРЕДГОВОР

Третата меѓународна конференција "Електротехника, Технологија, Информатика, Машинство и Автоматика — технички науки во служба на економијата, образованието и индустријата" (ЕТИМА'25), организирана од Електротехничкиот факултет при Универзитетот "Гоце Делчев" — Штип, претставува значаен научен настан кој овозможува интердисциплинарна размена на знаења и искуства меѓу истражувачи, професори и експерти од техничките науки. Конференцијата се одржа во онлајн формат и обедини 78 автори од пет различни земји.

Конференцијата ЕТИМА има за цел да создаде форум за научна комуникација, поттикнувајќи мултидисциплинарна соработка и промовирајќи технолошки иновации со директно влијание врз современото живеење. Преку презентација на научни трудови, учесниците ги споделуваат резултатите од своите истражувања и развојни активности, придонесувајќи кон унапредување на знаењето и практиката во релевантните области.

Првата конференција ЕТИМА беше организирана пред четири години, при што беа презентирани 40 научни трудови. Втората конференција се одржа во 2023 година и вклучи над 30 трудови. ЕТИМА 25 продолжи со истата научна традиција, презентирајќи повеќе од 40 трудови кои ги отсликуваат најновите достигнувања во областа на електротехниката, технологијата, информатиката, машинството и автоматиката.

На ЕТИМА 25 беа презентирани трудови кои обработуваат актуелни теми од техничките науки, со посебен акцент на нивната примена во индустријата, образованието и економијата. Конференцијата овозможи плодна дискусија меѓу учесниците, поттикнувајќи нови идеи и иницијативи за идни истражувања и проекти.

ЕТИМА'25 ја потврди својата улога како значајна платформа за научна размена и интернационална соработка. Организациониот одбор упатува искрена благодарност до сите учесници за нивниот придонес кон успешната реализација на конференцијата и нејзината научна вредност. Конференцијата се одржа онлајн и обедини седумдесет и осум автори од пет различни земји.

Изразуваме голема благодарност до сите колеги кои со презентирање на своите трудови, идеи и активна вклученост во дискусиите придонесоа за успехот на ЕТИМА'25 и нејзината научна вредност.

Организационен одбор на конференцијата

СОДРЖИНА / TABLE OF CONTENTS:

СОВРЕМЕНО РАНОГРАДИНАРСКО ПРОИЗВОДСТВО СО ПРИМЕНА НА ОБНОВЛИВИ ЕНЕРГЕТСКИ ИЗВОРИ И ТЕХНОЛОГИИ15
ШИРОКОПОЈАСЕН ПРЕНОС НА ПОДАТОЦИ ПРЕКУ ЕЛЕКТРОЕНЕРГЕТСКАТА МРЕЖА25
TRANSIENT PHENOMENA IN BLACK START32
OPTIMIZATION OF SURPLUS ELECTRICITY MANAGEMENT FROM MUNICIPAL PHOTOVOLTAIC SYSTEMS: VIRTUAL STORAGE VS BATTERY SYSTEMS43
IMPACT OF LIGHT POLLUTION ON ENERGY EFFICIENCY53
ПЕРСПЕКТИВИ, ПРЕДИЗВИЦИ И ИНОВАЦИИ ВО ПЕРОВСКИТНИТЕ СОЛАРНИ ЌЕЛИИ61
ПРИМЕНА НА НАНОМАТЕРИЈАЛИ КАЈ ФОТОВОЛТАИЧНИ ЌЕЛИИ ЗА ЗГОЛЕМУВАЊЕ НА НИВНАТА ЕФИКАСНОСТ ПРЕКУ НАМАЛУВАЊЕ НА РАБОТНАТА ТЕМПЕРАТУРА68
LONG-TERM POWER PURCHASE AGREEMENT FOR PHOTOVOLTAIC ENERGY AS A SOLUTION FOR ENHANCING THE PROFITABILITY OF THE TASHMARUNISHTA PUMPED-STORAGE HYDRO POWER PLANT75
СПОРЕДБЕНА АНАЛИЗА НА ПОТРОШУВАЧКА, ЕНЕРГЕТСКА ЕФИКАСНОСТ И ТРОШОЦИ КАЈ ВОЗИЛА СО РАЗЛИЧЕН ТИП НА ПОГОН87
АВТОМАТСКИ СИСТЕМ ЗА НАВОДНУВАЊЕ УПРАВУВАН ОД ARDUINO МИКРОКОНТРОЛЕР95
ПРИМЕНА НА WAMS И WACS СИСТЕМИ ВО SMART GRID103
IoT-BASED ENVIRONMENTAL CONTROL IN 3D PRINTER ENCLOSURES FOR OPTIMAL PRINTING CONDITIONS112
BENEFITS OF STUDYING 8086 MICROPROCESSOR FOR UNDERSTANDING CONTEMPORARY MICROPROCESSOR123
ПРАКТИЧНА СИМУЛАЦИЈА НА SCADA СИСТЕМ ЗА СЛЕДЕЊЕ И РЕГУЛАЦИЈА НА НИВО НА ТЕЧНОСТ ВО РЕЗЕРВОАР130
ADVANCEMENTS IN INDUSTRIAL DIGITAL SENSORS (VERSION 3.0 TO 4.0) AND RADAR SYSTEMS FOR OBJECT DETECTION: A STATE-OF-THE-ART REVIEW. 140
CHALLENGES AND SOLUTIONS FOR ENHANCING DRONE-TO-TOC COMMUNICATION PERFORMANCE IN MILITARY AND CRISIS OPERATIONS 148
BRIDGING TELECOM AND AVIATION: ENABLING SCALABLE BVLOS DRONE OPERATIONS THROUGH AIRSPACE DIGITIZATION157
MEASURES AND RECOMMENDATIONS FOR EFFICIENCY IMPROVEMENT OF ELECTRICAL MOTORS167
USE OF MACHINE LEARNING FOR CURRENT DENSITY DISTRIBUTION ESTIMATION OF REBCO COATED CONDUCTORS180
APPLICATION OF ARTIFICIAL INTELLIGENCE IN DENTAL MEDICINE186
ИНТЕГРАЦИЈА НА ДИГИТАЛНИОТ СПЕКТРОФОТОМЕТАР ВО ДЕНТАЛНАТА МЕЛИПИНА – НОВИ МОЖНОСТИ ЗА ТОЧНОСТ И КВА ПИТЕТ 194

CORRELATION OF DENTAL MEDICINE STUDENTS' PERFORMANCE IN PRECLINICAL AND CLINICAL COURSES205
INTRAORAL ELECTROSTIMULATOR FOR RADIATION INDUCED XEROSTOMIA IN PATIENTS WITH HEAD AND NECK CANCER214
ELECTROMAGNETIC INTERFERENCE OF ENDODONTIC EQUIPMENT WITH GASTRIC PACEMAKER221
DENTAL IMPLANTS ANALYSIS WITH SEM MICROSCOPE226
ПРЕДНОСТИ И НЕДОСТАТОЦИ ПРИ УПОТРЕБА НА ЛАСЕР ВО РЕСТАВРАТИВНАТА СТОМАТОЛОГИЈА И ЕНДОДОНЦИЈА231
LASERS AND THEIR APPLICATION IN PEDIATRIC DENTISTRY238
INCREASE OF ENVIRONMENTALLY RESPONSIBLE BEHAVIOUR THROUGH EDUCATION AND TECHNOLOGICAL INNOVATION242
A DATA-DRIVEN APPROACH TO REAL ESTATE PRICE ESTIMATION: THE CASE STUDY SLOVAKIA249
ANALYSIS OF THE BACKWARD IMPACTS OF A PHOTOVOLTAIC POWER PLANT ON THE DISTRIBUTION SYSTEM261
VARIANT SOLUTIONS FOR A PARKING LOT COVERED WITH PHOTOVOLTAIC PANELS
COMPARISON OF ENERGY STATUS IN PORTUGAL AND IN SLOVAKIA279
DESIGN, ANALYSIS AND IMPLEMENTATION OF PHOTOVOLTAIC SYSTEMS 286
BATTERY STORAGE IN TRACTION POWER SUPPLY297
THE ROLE OF CYBERSECURITY AWARENESS TRAINING TO PREVENT PHISHING304
A REVIEW OF RESOURCE OPTIMIZATION TECHNIQUES IN INTRUSION DETECTION SYSTEMS
APPLICATION OF A ROBOTIC ARM IN A SIMPLE PICK-AND-DROP OPERATION 321
SIMULATION-BASED PERFORMANCE ANALYSIS OF A SECURE UAV-TO-TOC COMMUNICATION FRAMEWORK IN MILITARY AND EMERGENCY
OPERATIONS
DIGITALIZATION OF BPM USING THE CAMUNDA SOFTWARE TOOL ON THE EXAMPLE OF THE CENTRAL BANK OF MONTENEGRO339
DESIGNING A SECURE COMMUNICATION FRAMEWORK FOR UAV-TO-TOC OPERATIONS IN MILITARY AND EMERGENCY ENVIRONMENTS349

Трета меѓународна конференција ЕТИМА Third International Conference ETIMA

UDC: [616.314.18-72:537.868]:616.33-76 https://www.doi.org/10.46763/ETIMA2531221ts

ELECTROMAGNETIC INTERFERENCE OF ENDODONTIC EQUIPMENT WITH GASTRIC PACEMAKER

Verica Toneva Stojmenova¹, Aleksandra Toneva Nikolova¹, Ivona Kovacevska¹, Ljupka Arsovski¹, Sonja Rogoleva Gjurovski¹, Marko Mladenovski¹, Sanja Nashkova¹

¹Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia address: Krste Misirkov, 10A, 2000, Stip email: verica.stojmenova@ugd.edu.mk

Abstract

Electromagnetic interference (EMI) from endodontic equipment could potentially affect a gastric pacemaker. This article provides an overview of interaction risks, potential consequences, and precautions related to such interference. Certain electronic dental devices may interfere with the pacemaker's function, but the level of risk depends on the type of equipment and its proximity to the implanted device. A gastric pacemaker operates using small electrical impulses to stimulate stomach muscles. If an endodontic device induces unintended electrical currents in the body, these could be picked up by the pacemaker's leads, potentially disrupting its normal function. Electromagnetic interference between a gastric pacemaker (also called a gastric electrical stimulator, GES) and endodontic equipment is therefore a potential concern, especially in dental procedures involving electronic devices.

Endodontic devices commonly used in root canal therapy include apex locators, electric motors for rotary files, electrosurgery units, and ultrasonic devices—all of which generate electrical or electromagnetic fields. In summary, patients with a gastric pacemaker can generally be treated safely in the dental setting, provided that management involves collaboration with both the gastroenterology team and the device manufacturer. The processes of deactivation and reactivation (switching the pacemaker off before, and back on after, the procedure) are straightforward and help minimize risks to both patient and device. Furthermore, it is important to maintain a distance of at least 15–30 cm (6–12 inches) between the implanted pacemaker and electrical equipment—particularly ultrasonic and electrosurgical instruments—and to use modern apex locators and rotary motors designed with low electromagnetic emissions, in order to reduce the likelihood of interference.

Key words

Endodontic equipment, gastric pacemaker, electromagnetic interference

Introduction

A gastric pacemaker (GES) is used to manage gastroparesis and other motility disorders by delivering electrical impulses to the stomach to regulate digestion [1]. Endodontic equipment commonly used in root canal therapy includes apex locators, electric motors for rotary files, electrosurgery units, and ultrasonic devices—all of which generate electrical or electromagnetic fields [2].

Electromagnetic interference (EMI) from endodontic equipment can potentially affect a gastric pacemaker through several mechanisms. Many endodontic devices (e.g., electronic apex locators, ultrasonic scalers, electrocautery devices) generate electromagnetic fields that may interfere with implanted medical devices such as gastric pacemakers. The gastric pacemaker

operates using small electrical impulses to stimulate stomach muscles. If an endodontic device induces unintended electrical currents in the body, these could be detected by the pacemaker's leads, potentially disrupting its normal function [3].

Some dental devices, especially ultrasonic instruments and electrosurgery units, operate at radio frequencies (RF) [4]. If the pacemaker's sensing circuits misinterpret these signals as biological activity, it may inhibit or misfire impulses, leading to improper gastric stimulation. The closer the endodontic device is to the gastric pacemaker, the higher the risk of interference. For example, if an ultrasonic scaler or electronic apex locator is used near the chest or abdomen, where the pacemaker is implanted, the risk is greater than when working on lower teeth [5].

Potential signs of interference include nausea, stomach bloating, or irregular gastric movements if the pacemaker malfunctions. In rare cases, dizziness or unusual heart rhythms may occur, especially if the gastric pacemaker overlaps in function with a cardiac pacemaker [6].

Endodontic equipment poses varying levels of interference risk to gastric pacemakers. Electronic apex locators present a low to moderate risk, particularly if used near the stomach region [7]. Ultrasonic scalers carry a moderate risk, as their radio-frequency emissions may interfere with pacemaker sensing [8]. Electrocautery devices pose a high risk due to strong EMI that can disrupt pacemaker function. Cordless endodontic handpieces present a low to moderate risk, depending on their operating frequency [9].

Materials and methods

Study design

For this review article on the electromagnetic interference from endodontic equipment and gastric pacemaker, a thorough search of relevant literature was performed using electronic databases such as PubMed, PMC, Medline, Science Direct and Google Scholar. Keywords including endodontic equipment or gastric pacemaker or electromagnetic interference were used to locate pertinent articles published in peer-reviewed journals. The selection criteria focused on studies, clinical trials, and reviews published in English within the last ten years. Priority was given to articles that addressed the materials, methods, techniques, and recent advancements within the field of endodontics.

Inclusion Criteria

This review considered studies that met the following criteria: they were published within the past ten years, involved human participants, were written in English, and included data on adult patients with medically refractory gastroparesis who underwent gastric electrical stimulation therapy. Eligible publications included peer-reviewed articles, review papers, observational studies, and clinical trials.

Exclusion Criteria

Studies were excluded if they focused on pediatric populations, involved animal research, or were categorized as books or grey literature. The selected articles were carefully reviewed, and essential information was gathered and synthesized to create a comprehensive summary of the topic. Furthermore, textbooks and manufacturers' literature were reviewed to complement the

findings from the literature search. The goal of this review is to provide a well-rounded and informative discussion on electromagnetic interference and its prevention in clinical practice.

Assessment and outcomes

The articles reviewed consistently emphasized the common use of endodontics in a variety of electromagnetic interference, including soft endodontic equipment and gastric pacemaker. An apex locator works by measuring the electrical resistance or impedance between the tip of the endodontic file inside the canal and the surrounding tissues. As the file approaches the root tip (apex), the device detects changes in electrical conductivity, allowing the dentist to identify the precise endpoint of the canal. This helps ensure the canal is cleaned and filled properly, avoiding damage to surrounding tissues and improving the success of the treatment. (Fig. 1).

Fig. 1 Electronic apex locator Source: www.endodonticsoralimplantology.blogspot.com

A gastric pacemaker, also known as a gastric electrical stimulator, is an implantable device designed to regulate stomach motility. It works by sending electrical pulses to the stomach muscles through electrode leads positioned in the abdominal region. The system includes a pulse generator implanted in the abdominal wall, leads that are attached to the stomach lining, and a battery-powered circuit board that controls the delivery of impulses. The device continuously monitors signals from the stomach and adjusts the stimulation patterns as needed to support proper digestive function.

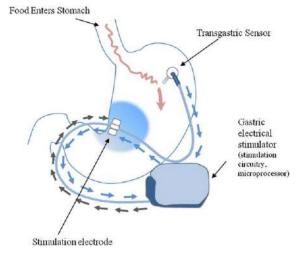


Fig. 2 View of gastric pacemaker and how it works Source: www.mriquestions.com

Discussion

To minimize the risks associated with using dental equipment in patients with a gastric pacemaker, several precautions should be taken. First and foremost, it's essential to inform the dentist or endodontist about the presence of the gastric pacemaker prior to any procedure. Dental professionals should use shielded equipment that meets medical electromagnetic interference (EMI) safety standards. Whenever possible, endodontic tools should be kept at a safe distance from the area where the pacemaker is implanted. Special care should be taken to avoid the prolonged use of electrosurgical or ultrasonic devices near the stomach. If any unusual symptoms occur during treatment, the procedure should be halted immediately and the pacemaker function should be evaluated [10].

Also, to minimize the risk of electromagnetic interference (EMI) during dental procedures for patients with a gastric pacemaker, certain precautions should be followed before, during, and after treatment. Before starting any dental work, it is important to review the patient's medical history and inform the dentist about the presence of the gastric pacemaker. Consulting with the patient's physician or gastroenterologist can also provide valuable information regarding the specific device and any recommended precautions. Additionally, checking the guidelines provided by the manufacturers of both the pacemaker and the dental equipment can help identify potential risks related to EMI [11].

During the procedure, maintaining a safe distance between electrical dental devices—especially ultrasonic and electrosurgical tools—and the implanted pacemaker is crucial. Ideally, these devices should be kept at least 15 to 30 centimeters (6 to 12 inches) away from the pacemaker site. Using shielded or low-EMI equipment, such as modern apex locators and rotary motors designed to emit minimal electromagnetic signals, is recommended to reduce interference [12]. When electrosurgical devices are necessary, it is important to use the lowest effective power settings and ensure grounding pads are properly applied to minimize risks. Throughout the treatment, the patient should be closely monitored for any symptoms such as dizziness, palpitations, or discomfort, and the procedure should be stopped immediately if any of these occur [13], [14], [15].

After completing the dental procedure, it may be necessary to verify the proper functioning of the pacemaker, especially if any concerns arise during treatment. Patients should also be educated on the importance of reporting any unusual symptoms or changes they experience following the procedure to ensure prompt medical evaluation if needed [16].

Conclusion

Although the likelihood of electromagnetic interference (EMI) occurring between a gastric pacemaker and endodontic dental equipment is generally considered to be low, it is still important to take appropriate safety measures. This is particularly true when using high-frequency dental devices, which have a greater potential to interfere with the pacemaker's function. To ensure the patient's safety throughout the procedure, clear and thorough communication between the patient, the dentist or endodontist, and the broader medical team is essential. By working together and sharing relevant medical information in advance, the healthcare providers can make informed decisions, minimize any possible risks, and proceed with greater confidence that the pacemaker's performance will not be compromised during dental treatment. Patients with a gastric pacemaker can be safely treated in a dental setting,

provided there is collaboration with the gastroenterology team and the device manufacturer. A thorough risk assessment should take into account both the management of the pacemaker and any medical conditions related to gastroparesis. Temporarily turning the device off and then reactivating it is a straightforward process that helps minimize potential risks to both the device and the patient as much as reasonably possible.

References

- [1] Gomez, G., Duran-Sindreu, F., Jara Clemente, F., Garofalo, R. R., Garcia, M., Bueno, R., & Roig, M. (2013). The effects of six electronic apex locators on pacemaker function: an in vitro study. *International endodontic journal*, 46(5), 399–405.
- [2] Venturi, M., & Breschi, L. (2007). A comparison between two electronic apex locators: an ex vivo investigation. *International endodontic journal*, 40(5), 362–373.
- [3] Dadalti, M. T., da Cunha, A. J., de Araújo, M. C., de Moraes, L. G., & Risso, P.deA. (2016). Electromagnetic interference of endodontic equipments with cardiovascular implantable electronic device. *Journal of dentistry*, 46, 68–72.
- [4] Zhang, J., & Chen, J. D. (2006). Systematic review: applications and future of gastric electrical stimulation. *Alimentary pharmacology & therapeutics*, 24(7), 991–1002.
- [5] Saleem, S., Aziz, M., Khan, A. A., Williams, M. J., Mathur, P., Tansel, A., Barber, A., & Abell, T. L. (2024). Gastric Electrical Stimulation for the Treatment of Gastroparesis or Gastroparesis-Like Symptoms: A Systemic Review and Meta-Analysis. *Neuromodulation : journal of the International Neuromodulation Society*, 27(2), 221–228.
- [6] Elayi, C. S., Lusher, S., Meeks Nyquist, J. L., Darrat, Y., Morales, G. X., & Miller, C. S. (2015). Interference between dental electrical devices and pacemakers or defibrillators: results from a prospective clinical study. *Journal of the American Dental Association* (1939), 146(2), 121–128.
- [7] Miller, C. S., Leonelli, F. M., & Latham, E. (1998). Selective interference with pacemaker activity by electrical dental devices. *Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics*, 85(1), 33–36.
- [8] Trenter, S. C., & Walmsley, A. D. (2003). Ultrasonic dental scaler: associated hazards. *Journal of clinical periodontology*, 30(2), 95–101.
- [9] Erdogan O. (2002). Electromagnetic interference on pacemakers. *Indian pacing and electrophysiology journal*, 2(3), 74–78.
- [10] Lahor-Soler, E., Miranda-Rius, J., Brunet-Llobet, L., & Sabaté de la Cruz, X. (2015). Capacity of dental equipment to interfere with cardiac implantable electrical devices. *European journal of oral sciences*, 123(3), 194–201.
- [11] Driessen, S., Napp, A., Schmiedchen, K., Kraus, T., & Stunder, D. (2019). Electromagnetic interference in cardiac electronic implants caused by novel electrical appliances emitting electromagnetic fields in the intermediate frequency range: a systematic review. Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology, 21(2), 219–229.
- [12] International Commission on Non-Ionizing Radiation Protection (ICNIRP) (2010). Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). *Health physics*, 99(6), 818–836
- [13] McRobbie D. (2011). Concerning guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (1 Hz-100 khz). *Health physics*, 100(4), 442.
- [14] Vecchia P. (2007). Exposure of humans to electromagnetic fields. Standards and regulations. *Annali dell'Istituto superiore di sanita*, 43(3), 260–267.
- [15] Fatahzadeh, M., & Glick, M. (2006). Stroke: epidemiology, classification, risk factors, complications, diagnosis, prevention, and medical and dental management. *Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics*, 102(2), 180–191.
- [16] Roy, C. R., & Martin, L. J. (2007). A comparison of important international and national standards for limiting exposure to EMF including the scientific rationale. *Health physics*, 92(6), 635–641.