FACULTY OF ELECTRICAL ENGINEERING

ETIMA 2025

THIRD INTERNATIONAL CONFERENCE 24-25 SEPTEMBER, 2025

TECHNICAL SCIENCES APPLIED IN ECONOMY, EDUCATION AND INDUSTRY

УНИВЕРЗИТЕТ "ГОЦЕ ДЕЛЧЕВ", ШТИП ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ

GOCE DELCEV UNIVERSITY, STIP FACULTY OF ELECTRICAL ENGINEERING

TPETA МЕЃУНАРОДНА КОНФЕРЕНЦИЈА THIRD INTERNATIONAL CONFERENCE

ЕТИМА / ЕТІМА 2025

ЗБОРНИК НА ТРУДОВИ CONFERENCE PROCEEDINGS

24-25 септември 2025 | 24-25 September 2025

ISBN: 978-608-277-128-1

DOI: https://www.doi.org/10.46763/ETIMA2531

Главен и одговорен уредник / Editor in Chief

проф.д-р Сашо Гелев Prof.d-r Saso Gelev

Jазично уредување / Language Editor

Весна Ристова (македонски) / Vesna Ristova (Macedonian)

Техничко уредување / Technical Editing

Дарко Богатинов / Darko Bogatinov

Издавач / Publisher

Универзитет "Гоце Делчев", Штип / Goce Delcev University, Stip Електротехнички факултет / Faculty of Electrical Engineering

Адреса на организационен комитет / Adress of the organizational committee

Универзитет "Гоце Делчев", Штип / Goce Delcev University, Stip Електротехнички факултет / Faculty of Electrical Engineering Адреса: ул. "Крсте Мисирков" бр. 10А / Adress: Krste Misirkov, 10А Пош. фах 201, Штип - 2000, С. Македонија / PO BOX 201, Stip 2000, North Macedonia E-mail: conf.etf@ugd.edu.mk

CIP - Каталогизација во публикација

Национална и универзитетска библиотека "Св. Климент Охридски", Скопје

62-049.8(062) 004-049.8(062)

МЕЃУНАРОДНА конференција ЕТИМА (3; 2025; Штип)

Зборник на трудови [Електронски извор] / Трета меѓународна конференција ЕТИМА 2025, 24-25 септември 2025 ; [главен и одговорен уредник Сашо Гелев] = Conference proceedings / Third international conference, 24-25 September 2025 ; [editor in chief Saso Gelev]. - Текст во PDF формат, содржи 357 стр., илустр. - Штип : Универзитет "Гоце Делчев", Електротехнички факултет ; Stip : "Goce Delchev" University, Faculty of Electrical engineering, 2025

Начин на пристапување (URL): https://js.ugd.edu.mk/index.php/etima/en. - Наслов преземен од екранот. - Опис на изворот на ден 30.10.2025. - Трудови на мак. и англ. јазик. - Библиографија кон трудовите

ISBN 978-608-277-128-1

- а) Електротехника -- Примена -- Собири б) Машинство -- Примена -- Собири
- в) Автоматика -- Примена -- Собири г) Инфоматика -- Примена -- Собири

COBISS.MK-ID 67297029

Трета меѓународна конференција ЕТИМА 24-25 Септември 2025 Third International Conference ETIMA 24-25 September 2025

OPГАНИЗАЦИОНЕН ОДБОР ORGANIZING COMMITTEE

Драган Миновски / Dragan Minovski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Сашо Гелев / Saso Gelev

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Тодор Чекеровски / Todor Cekerovski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Маја Кукушева Панева / Maja Kukuseva Paneva

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Билјана Читкушева Димитровска / Biljana Citkuseva Dimitrovska

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Дарко Богатинов / Darko Bogatinov

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Трета меѓународна конференција ЕТИМА 24-25 Септември 2025 Third International Conference ETIMA 24-25 September 2025

ПРОГРАМСКИ И НАУЧЕН ОДБОР SCIENTIFIC COMMITTEE

Антонио Курадо / António Curado

Политехнички институт во Виана до Кастело, Португалија Instituto Politécnico de Viana do Castelo, Portugal

Стелијан – Емилијан Олтеан / Stelian – Emilian Oltean

Факултет за инженерство и информатичка технологија, Медицински универзитет Георге Емил Паладе, фармација, наука и технологија во Таргу Муреш, Романија

Faculty of Engineering and Information Technology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Romania

Митко Богданоски / Mitko Bogdanoski

Воена академија, Универзитет "Гоце Делчев", Северна Македонија Military Academy, Goce Delcev University, North Macedonia

Верица Тасеска Ѓоргиевска / Verica Taseska Gjorgievska

Македонска академија на науките и уметностите, Северна Македонија Macedonian Academy of Sciences and Arts, North Macedonia

Југослав Ачкоски / Jugoslav Ackoski

Воена академија, Универзитет "Гоце Делчев", Северна Македонија Military Academy, Goce Delcev University, North Macedonia

Димитар Богатинов / Dimitar Bogatinov

Воена академија, Универзитет "Гоце Делчев", Северна Македонија Military Academy, Goce Delcev University, North Macedonia

Co Ногучи / So Noguchi

Висока школа за информатички науки и технологии Универзитет Хокаидо, Јапонија Graduate School of Information Science and Technology Hokkaido University, Japan

Диониз Гашпаровски / Dionýz Gašparovský

Факултет за електротехника и информациони технологии, Словачки Технички Универзитет во Братислава, Словачка Faculty of Electrical Engineering and Information Technology Slovak Technical University in Bratislava, Slovakia

Георги Иванов Георгиев / Georgi Ivanov Georgiev

Технички Универзитет во Габрово, Бугарија Technical University in Gabrovo, Bulgaria

Антон Белан / Anton Beláň

Факултет за електротехника и информациони технологии Словачки Технички Универзитет во Братислава, Словачка Faculty of Electrical Engineering and Information Technology Slovak Technical University in Bratislava, Slovakia

Ивелина Стефанова Балабанова / Ivelina Stefanova Balabanova

Технички Универзитет во Габрово, Бугарија Technical University in Gabrovo, Bulgaria

Бојан Димитров Карапенев / Boyan Dimitrov Karapenev

Технички Универзитет во Габрово, Бугарија Technical University in Gabrovo, Bulgaria

Сашо Гелев / Saso Gelev

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Влатко Чингоски / Vlatko Cingoski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Божо Крстајиќ / Bozo Krstajic

Електротехнички факултет Универзитет во Црна Гора, Црна Гора Faculty of Electrical Engineering, University in Montenegro, Montenegro

Милован Радуловиќ / Milovan Radulovic

Електротехнички факултет Универзитет во Црна Гора, Црна Гора Faculty of Electrical Engineering, University in Montenegro, Montenegro

Гоце Стефанов / Goce Stefanov

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Мирјана Периќ / Mirjana Peric

Електронски факултет Универзитет во Ниш, Србија Faculty of Electronic Engineerig, University of Nis, Serbia

Ана Вучковиќ / Ana Vuckovic

Електронски факултет, Универзитет во Ниш, Србија Faculty of Electronic Engineerig, University of Nis, Serbia

Тодор Чекеровски / Todor Cekerovski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Далибор Серафимовски / Dalibor Serafimovski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Мирослава Фаркаш Смиткова / Miroslava Farkas Smitková

Факултет за електротехника и информациони технологии Словачки Технички Универзитет во Братислава, Словачка Faculty of Electrical Engineering and Information Technology Slovak Technical University in Bratislava, Slovakia

Петер Јанига / Peter Janiga

Факултет за електротехника и информациони технологии Словачки Технички Универзитет во Братислава, Словачка Faculty of Electrical Engineering and Information Technology Slovak Technical University in Bratislava, Slovakia

Jана Радичова / Jana Raditschová

Факултет за електротехника и информациони технологии Словачки Технички Универзитет во Братислава, Словачка Faculty of Electrical Engineering and Information Technology Slovak Technical University in Bratislava, Slovakia

Драган Миновски / Dragan Minovski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Василија Шарац / Vasilija Sarac

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Александар Туџаров / Aleksandar Tudzarov

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Владимир Талевски / Vladimir Talevski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Владо Гичев / Vlado Gicev

Факултет за информатика, Универзитет "Гоце Делчев ", Штип, Северна Македонија; Faculty of Computer Science, Goce Delcev University, Stip, North Macedonia;

Марија Чекеровска / Marija Cekerovska

Машински факултет, Универзитет "Гоце Делчев ", Штип, Северна Македонија; Faculty of Mechanical Engineering, Goce Delcev University, Stip, North Macedonia;

Мишко Џидров / Misko Dzidrov

Машински факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија; Faculty of Mechanical Engineering, Goce Delcev University, Stip, North Macedonia;

Александар Крстев / Aleksandar Krstev

Факултет за информатика, Универзитет "Гоце Делчев ", Штип, Северна Македонија; Faculty of Computer Science, Goce Delcev University, Stip, North Macedonia;

Ванчо Аписки / Vancho Adziski

Факултет за природни и технички науки, Универзитет "Гоце Делчев ", Штип, Северна Македонија; Faculty of Natural and Technical Sciences, Goce Delcev University, Stip, North Macedonia;

Томе Димовски / Tome Dimovski

Факултет за информатички и комуникациски технологии, Универзитет "Св. Климент Охридски", Северна Македонија; Faculty of Information and Communication Technologies, University St Climent Ohridski, North Macedonia;

Зоран Котевски / Zoran Kotevski

Факултет за информатички и комуникациски технологии, Универзитет "Св. Климент Охридски", Северна Македонија; Faculty of Information and Communication Technologies, University St Climent Ohridski, North Macedonia;

Никола Рендевски / Nikola Rendevski

Факултет за информатички и комуникациски технологии, Универзитет "Св. Климент Охридски", Северна Македонија; Faculty of Information and Communication Technologies, University St Climent Ohridski, North Macedonia;

Илија Христовски / Ilija Hristovski

Економски факултет, Универзитет "Св. Климент Охридски", Северна Македонија; Faculty of Economy, University St Climent Ohridski, North Macedonia;

Христина Спасовска / Hristina Spasovska

Факултет за електротехника и информациски технологии, Универзитет "Св. Кирил и Методиј", Скопје, Северна Македонија; Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University, North Macedonia;

Роман Голубовски / Roman Golubovski

Природно-математички факултет, Универзитет "Св. Кирил и Методиј", Скопје, Северна Македонија; Faculty of Mathematics and Natural Sciences, Ss. Cyril and Methodius University, North Macedonia;

Маре Србиновска / Mare Srbinovska

Факултет за електротехника и информациски технологии, Универзитет "Св. Кирил и Методиј", Скопје, Северна Македонија; Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University, North Macedonia;

Билјана Златановска / Biljana Zlatanovska

Факултет за информатика, Универзитет "Гоце Делчев ", Штип, Северна Македонија; Faculty of Computer Science, Goce Delcev University, Stip, North Macedonia;

Александра Стојанова Илиевска / Aleksandra Stojanova Ilievska

Факултет за информатика, Универзитет "Гоце Делчев ", Штип, Северна Македонија; Faculty of Computer Science, Goce Delcev University, Stip, North Macedonia;

Мирјана Коцалева Витанова / Mirjana Kocaleva Vitanova

Факултет за информатика, Универзитет "Гоце Делчев", Штип, Северна Македонија; Faculty of Computer Science, Goce Delcev University, Stip, North Macedonia;

Ивана Сандева / Ivana Sandeva

Факултет за електротехника и информациски технологии, Универзитет "Св. Кирил и Методиј ", Скопје, Северна Македонија; Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University, North Macedonia;

Билјана Читкушева Димитровска / Biljana Citkuseva Dimitrovska

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Наташа Стојковиќ / Natasa Stojkovik
Факултет за информатика,
Универзитет "Гоце Делчев", Штип, Северна Македонија;
Faculty of Computer Science,
Goce Delcev University, Stip, North Macedonia;

Трета меѓународна конференција ЕТИМА Third International Conference ETIMA

PREFACE

The Third International Conference "Electrical Engineering, Technology, Informatics, Mechanical Engineering and Automation – Technical Sciences in the Service of the Economy, Education and Industry" (ETIMA'25), organized by the Faculty of Electrical Engineering at the "Goce Delchev" University – Shtip, represents a significant scientific event that enables interdisciplinary exchange of knowledge and experience among researchers, professors, and experts in the field of technical sciences. The conference was held in an online format and brought together 78 authors from five different countries.

The ETIMA conference aims to establish a forum for scientific communication, encouraging multidisciplinary collaboration and promoting technological innovations with direct impact on modern life. Through the presentation of scientific papers, participants shared the results of their research and development activities, contributing to the advancement of knowledge and practice in relevant fields. The first ETIMA conference was organized four years ago, featuring 40 scientific papers. The second conference took place in 2023 and included over 30 papers. ETIMA'25 continued this scientific tradition, presenting more than 40 papers that reflect the latest achievements in electrical engineering, technology, informatics, mechanical engineering, and automation.

At ETIMA'25, papers were presented that addressed current topics in technical sciences, with particular emphasis on their application in industry, education, and the economy. The conference facilitated fruitful discussions among participants, encouraging new ideas and initiatives for future research and projects.

ETIMA'25 reaffirmed its role as an important platform for scientific exchange and international cooperation. The organizing committee extends sincere gratitude to all participants for their contribution to the successful realization of the conference and its scientific value.

We extend our sincerest gratitude to all colleagues who, through the presentation of their papers, ideas, and active engagement in discussions, contributed to the success and scientific significance of ETIMA'25.

The Organizing Committee of the Conference

ПРЕДГОВОР

Третата меѓународна конференција "Електротехника, Технологија, Информатика, Машинство и Автоматика — технички науки во служба на економијата, образованието и индустријата" (ЕТИМА'25), организирана од Електротехничкиот факултет при Универзитетот "Гоце Делчев" — Штип, претставува значаен научен настан кој овозможува интердисциплинарна размена на знаења и искуства меѓу истражувачи, професори и експерти од техничките науки. Конференцијата се одржа во онлајн формат и обедини 78 автори од пет различни земји.

Конференцијата ЕТИМА има за цел да создаде форум за научна комуникација, поттикнувајќи мултидисциплинарна соработка и промовирајќи технолошки иновации со директно влијание врз современото живеење. Преку презентација на научни трудови, учесниците ги споделуваат резултатите од своите истражувања и развојни активности, придонесувајќи кон унапредување на знаењето и практиката во релевантните области.

Првата конференција ЕТИМА беше организирана пред четири години, при што беа презентирани 40 научни трудови. Втората конференција се одржа во 2023 година и вклучи над 30 трудови. ЕТИМА 25 продолжи со истата научна традиција, презентирајќи повеќе од 40 трудови кои ги отсликуваат најновите достигнувања во областа на електротехниката, технологијата, информатиката, машинството и автоматиката.

На ЕТИМА 25 беа презентирани трудови кои обработуваат актуелни теми од техничките науки, со посебен акцент на нивната примена во индустријата, образованието и економијата. Конференцијата овозможи плодна дискусија меѓу учесниците, поттикнувајќи нови идеи и иницијативи за идни истражувања и проекти.

ЕТИМА'25 ја потврди својата улога како значајна платформа за научна размена и интернационална соработка. Организациониот одбор упатува искрена благодарност до сите учесници за нивниот придонес кон успешната реализација на конференцијата и нејзината научна вредност. Конференцијата се одржа онлајн и обедини седумдесет и осум автори од пет различни земји.

Изразуваме голема благодарност до сите колеги кои со презентирање на своите трудови, идеи и активна вклученост во дискусиите придонесоа за успехот на ЕТИМА'25 и нејзината научна вредност.

Организационен одбор на конференцијата

СОДРЖИНА / TABLE OF CONTENTS:

СОВРЕМЕНО РАНОГРАДИНАРСКО ПРОИЗВОДСТВО СО ПРИМЕНА НА ОБНОВЛИВИ ЕНЕРГЕТСКИ ИЗВОРИ И ТЕХНОЛОГИИ15
ШИРОКОПОЈАСЕН ПРЕНОС НА ПОДАТОЦИ ПРЕКУ ЕЛЕКТРОЕНЕРГЕТСКАТА МРЕЖА25
TRANSIENT PHENOMENA IN BLACK START32
OPTIMIZATION OF SURPLUS ELECTRICITY MANAGEMENT FROM MUNICIPAL PHOTOVOLTAIC SYSTEMS: VIRTUAL STORAGE VS BATTERY SYSTEMS43
IMPACT OF LIGHT POLLUTION ON ENERGY EFFICIENCY53
ПЕРСПЕКТИВИ, ПРЕДИЗВИЦИ И ИНОВАЦИИ ВО ПЕРОВСКИТНИТЕ СОЛАРНИ ЌЕЛИИ61
ПРИМЕНА НА НАНОМАТЕРИЈАЛИ КАЈ ФОТОВОЛТАИЧНИ ЌЕЛИИ ЗА ЗГОЛЕМУВАЊЕ НА НИВНАТА ЕФИКАСНОСТ ПРЕКУ НАМАЛУВАЊЕ НА РАБОТНАТА ТЕМПЕРАТУРА68
LONG-TERM POWER PURCHASE AGREEMENT FOR PHOTOVOLTAIC ENERGY AS A SOLUTION FOR ENHANCING THE PROFITABILITY OF THE TASHMARUNISHTA PUMPED-STORAGE HYDRO POWER PLANT75
СПОРЕДБЕНА АНАЛИЗА НА ПОТРОШУВАЧКА, ЕНЕРГЕТСКА ЕФИКАСНОСТ И ТРОШОЦИ КАЈ ВОЗИЛА СО РАЗЛИЧЕН ТИП НА ПОГОН87
АВТОМАТСКИ СИСТЕМ ЗА НАВОДНУВАЊЕ УПРАВУВАН ОД ARDUINO МИКРОКОНТРОЛЕР95
ПРИМЕНА НА WAMS И WACS СИСТЕМИ ВО SMART GRID103
IoT-BASED ENVIRONMENTAL CONTROL IN 3D PRINTER ENCLOSURES FOR OPTIMAL PRINTING CONDITIONS112
BENEFITS OF STUDYING 8086 MICROPROCESSOR FOR UNDERSTANDING CONTEMPORARY MICROPROCESSOR123
ПРАКТИЧНА СИМУЛАЦИЈА НА SCADA СИСТЕМ ЗА СЛЕДЕЊЕ И РЕГУЛАЦИЈА НА НИВО НА ТЕЧНОСТ ВО РЕЗЕРВОАР130
ADVANCEMENTS IN INDUSTRIAL DIGITAL SENSORS (VERSION 3.0 TO 4.0) AND RADAR SYSTEMS FOR OBJECT DETECTION: A STATE-OF-THE-ART REVIEW. 140
CHALLENGES AND SOLUTIONS FOR ENHANCING DRONE-TO-TOC COMMUNICATION PERFORMANCE IN MILITARY AND CRISIS OPERATIONS 148
BRIDGING TELECOM AND AVIATION: ENABLING SCALABLE BVLOS DRONE OPERATIONS THROUGH AIRSPACE DIGITIZATION157
MEASURES AND RECOMMENDATIONS FOR EFFICIENCY IMPROVEMENT OF ELECTRICAL MOTORS167
USE OF MACHINE LEARNING FOR CURRENT DENSITY DISTRIBUTION ESTIMATION OF REBCO COATED CONDUCTORS180
APPLICATION OF ARTIFICIAL INTELLIGENCE IN DENTAL MEDICINE186
ИНТЕГРАЦИЈА НА ДИГИТАЛНИОТ СПЕКТРОФОТОМЕТАР ВО ДЕНТАЛНАТА МЕЛИПИНА – НОВИ МОЖНОСТИ ЗА ТОЧНОСТ И КВА ПИТЕТ 194

CORRELATION OF DENTAL MEDICINE STUDENTS' PERFORMANCE IN PRECLINICAL AND CLINICAL COURSES205
INTRAORAL ELECTROSTIMULATOR FOR RADIATION INDUCED XEROSTOMIA IN PATIENTS WITH HEAD AND NECK CANCER214
ELECTROMAGNETIC INTERFERENCE OF ENDODONTIC EQUIPMENT WITH GASTRIC PACEMAKER221
DENTAL IMPLANTS ANALYSIS WITH SEM MICROSCOPE226
ПРЕДНОСТИ И НЕДОСТАТОЦИ ПРИ УПОТРЕБА НА ЛАСЕР ВО РЕСТАВРАТИВНАТА СТОМАТОЛОГИЈА И ЕНДОДОНЦИЈА231
LASERS AND THEIR APPLICATION IN PEDIATRIC DENTISTRY238
INCREASE OF ENVIRONMENTALLY RESPONSIBLE BEHAVIOUR THROUGH EDUCATION AND TECHNOLOGICAL INNOVATION242
A DATA-DRIVEN APPROACH TO REAL ESTATE PRICE ESTIMATION: THE CASE STUDY SLOVAKIA249
ANALYSIS OF THE BACKWARD IMPACTS OF A PHOTOVOLTAIC POWER PLANT ON THE DISTRIBUTION SYSTEM261
VARIANT SOLUTIONS FOR A PARKING LOT COVERED WITH PHOTOVOLTAIC PANELS
COMPARISON OF ENERGY STATUS IN PORTUGAL AND IN SLOVAKIA279
DESIGN, ANALYSIS AND IMPLEMENTATION OF PHOTOVOLTAIC SYSTEMS 286
BATTERY STORAGE IN TRACTION POWER SUPPLY297
THE ROLE OF CYBERSECURITY AWARENESS TRAINING TO PREVENT PHISHING304
A REVIEW OF RESOURCE OPTIMIZATION TECHNIQUES IN INTRUSION DETECTION SYSTEMS
APPLICATION OF A ROBOTIC ARM IN A SIMPLE PICK-AND-DROP OPERATION 321
SIMULATION-BASED PERFORMANCE ANALYSIS OF A SECURE UAV-TO-TOC COMMUNICATION FRAMEWORK IN MILITARY AND EMERGENCY
OPERATIONS
DIGITALIZATION OF BPM USING THE CAMUNDA SOFTWARE TOOL ON THE EXAMPLE OF THE CENTRAL BANK OF MONTENEGRO339
DESIGNING A SECURE COMMUNICATION FRAMEWORK FOR UAV-TO-TOC OPERATIONS IN MILITARY AND EMERGENCY ENVIRONMENTS349

Трета меѓународна конференција ЕТИМА Third International Conference ETIMA

UDC: [504.5:628.9]:620.9-027.236 https://www.doi.org/10.46763/ETIMA253143a

IMPACT OF LIGHT POLLUTION ON ENERGY EFFICIENCY

David Kompan¹, Peter Janiga¹, Miroslava Smitkova¹, Ivan Bednárik¹, Juraj Zeman¹

¹Department of Power and Applied Electrical Engineering Slovak University of Technology Bratislava, Slovakia,

email: david.kompan@stuba.sk email: peter.janiga@stuba.sk email: miroslava.smitkova@stuba.sk email: ivan.bednarik@stuba.sk email: juraj.zeman@stuba.sk

Abstract

This paper examines the impact of light pollution on energy efficiency with a focus on the European context. Light pollution, caused by excessive and mismanaged artificial lighting, contributes not only to ecological degradation but also to unnecessary energy waste and increased greenhouse gas emissions. The analysis draws on existing literature, case studies, and European policy frameworks to identify effective strategies for addressing this issue. Results highlight three main areas: the potential of reducing electricity demand through efficient lighting design and smart management systems, the integration of renewable energy sources such as solar power into urban lighting infrastructures, and the role of technological advancements in LEDs and adaptive control systems. Case studies from European cities, along with projects in environmentally sensitive regions, demonstrate measurable energy savings and ecological benefits. Policy directives provide the regulatory basis, though challenges in implementation and public awareness remain. Overall, the findings suggest that mitigating light pollution represents both an environmental necessity and an economic opportunity, supporting sustainable urban development and improved quality of life.

Key words

Light pollution, energy efficiency, smart lighting, renewable energy, urban sustainability

1. Introduction

The impact of light pollution on energy efficiency has globally become an increasingly pressing issue, reflecting the broader challenge of balancing urban development, environmental protection, and sustainable energy management. Light pollution, generally understood as the alteration of natural night light levels by artificial sources, currently affects nearly 80% of the global population, and the extent of artificially illuminated areas continues to grow at an estimated annual rate of 2.2% [1,2]. This expansion is driven primarily by widespread use of outdoor lighting such as street lamps, illuminated advertisements, and residential lighting systems, which, while intended to enhance safety, comfort, and commercial visibility, also generate substantial unintended consequences. These consequences include the disruption of natural ecosystems, the unnecessary expenditure of energy resources, and the resulting increase in greenhouse gas emissions and municipal costs [3–5].

The connection between light pollution and energy inefficiency is particularly relevant in the context of urban planning and environmental sustainability. Inadequately designed or poorly

regulated lighting systems intensify energy consumption by producing excessive illumination, often in locations or at times where it is neither needed nor beneficial. Such inefficiency translates into considerable economic losses for cities and regions, since municipal budgets must cover the costs of electricity wasted by mismanaged lighting infrastructures. At the same time, these systems exacerbate carbon emissions, thereby undermining global and EU-level objectives to reduce environmental impact and combat climate change [3–5]. From an economic standpoint, existing research highlights that investments in energy efficiency measures, including optimized lighting technologies, can generate substantial long-term returns, with estimates suggesting that each euro invested in industrial energy efficiency may yield up to four euros in savings [6,7]. This evidence underlines the financial rationale for integrating light pollution mitigation into broader energy policies.

Beyond economic and energy-related considerations, the ecological implications of light pollution further emphasize the urgency of addressing this issue. Artificial night lighting disrupts wildlife behavior, affects species' reproductive cycles, and reduces biodiversity in both terrestrial and aquatic ecosystems, thereby compounding the environmental costs of inefficient energy use [2,4]. These ecological disruptions, when combined with rising energy demand, highlight the multidimensional nature of the challenge: energy efficiency cannot be pursued in isolation, but must instead be integrated with environmental and social dimensions of sustainability.

Mitigation strategies that target both light pollution and energy efficiency have shown promising results in practice. The adoption of energy-efficient lighting solutions, such as LED technologies with high luminous efficacy and long lifespans, has already demonstrated significant reductions in both energy consumption and excessive light emissions [8–10]. Furthermore, the implementation of smart lighting controls—such as adaptive dimming systems and occupancy-based sensors—has proven effective in minimizing unnecessary illumination while preserving the quality and safety of lighting environments [8–10]. Several European municipalities have successfully piloted these approaches, with case studies in Chiasso and Massagno serving as notable examples of how innovative solutions can achieve substantial energy savings while simultaneously enhancing urban ecosystems and reducing environmental stress [10].

Despite these advancements, considerable barriers remain to achieving large-scale improvements in energy efficiency through light pollution mitigation. The lack of comprehensive regulatory frameworks often results in fragmented and inconsistent policies across regions, which limits the scalability of successful local initiatives. Moreover, low levels of public awareness and insufficient stakeholder engagement pose additional challenges, as collective efforts are essential for ensuring the effectiveness of technological and regulatory measures [11].

In summary, light pollution represents not only an environmental concern but also a critical challenge to energy efficiency, with significant consequences for economic viability, public policy, and ecological health. The issue requires coordinated responses at multiple levels, encompassing technological innovation, legislative frameworks, and community participation. By addressing the problem holistically, the EU and other regions can move toward creating sustainable urban environments that minimize both unnecessary energy waste and ecological disruption, thereby aligning energy efficiency objectives with broader sustainability goals.

2. Methodology

This paper is based on a structured review of existing literature, case studies, and policy documents addressing the relationship between light pollution and energy efficiency. The aim of the methodology is to combine technical insights, practical experiences, and regulatory perspectives in order to present a comprehensive view of the topic.

The first step consisted of reviewing academic and technical publications on energy-efficient lighting technologies. These include recent comprehensive studies that summarize the development of LED systems, smart lighting controls, and their role in reducing energy consumption

The second step focused on practical evidence from case studies. Projects implemented in European cities, such as Barcelona, provide real data on how intelligent public lighting strategies reduce electricity demand while improving environmental performance. Further examples also highlight the relevance of energy-efficient lighting in environmentally sensitive areas, such as the Galapagos Islands, where sustainable lighting solutions were introduced to minimize ecological disruption. [12,13]

In addition to technological and practical sources, the analysis incorporated European policy documents and directives. The Energy Efficiency Directive (EED) establishes binding targets for reducing energy consumption across the EU [14]. Complementary frameworks, such as the Energy Performance of Buildings Directive (EPBD) and the Ecodesign Directive, further support the shift toward efficient lighting in both public spaces and building design [15,16].

Finally, contextual studies on light pollution and its broader impacts were included to underline why energy efficiency in lighting is not only a technical matter but also an environmental and social concern. Sources addressing the ecological consequences of artificial night lighting and strategies for reducing light pollution provide the necessary background for linking energy use with sustainability outcomes [17–19].

3. Results and Discussion

The findings from the reviewed literature, case studies, and policy documents provide a multifaceted picture of the relationship between light pollution and energy efficiency. Rather than focusing solely on the negative effects of excessive artificial lighting, the discussion explores how specific measures can both reduce energy consumption and mitigate environmental impacts. The results are organized into four thematic areas that emerged from the analyzed sources: reduction of energy consumption, integration of renewable energy sources, technological advancements in lighting, and the role of policy and regulation. In addition, the broader ecological, economic, and social implications are considered.

The following subsections present these perspectives in more detail, supported by examples from European practice and relevant international studies.

3.1 Energy Consumption Reduction

Artificial lighting represents a significant share of total electricity demand, particularly in urban areas where street lighting and public infrastructure operate continuously. Recent reviews

highlight that efficient lighting technologies, especially LEDs combined with smart control systems, can reduce consumption in the range of 28% to 40% in typical applications [20] These savings not only lower operational costs but also directly address the problem of light pollution by minimizing unnecessary emissions of artificial light into the environment.

Practical experience confirms the theoretical potential. In the Barcelona metro network, the introduction of occupancy-based dimming controls reduced electricity consumption by more than one third compared to baseline values. The system achieved savings of 36.22% while maintaining adequate illumination levels for passenger safety [12]. Similar results have been reported in other European municipalities where smart lighting has replaced conventional streetlights.

From a regulatory perspective, the European Energy Efficiency Directive provides a framework that encourages municipalities to implement such measures. It sets binding targets for energy savings, pushing cities and public authorities to adopt efficient lighting as part of broader energy management strategies [14,21]

In summary, energy consumption reduction is the most immediate and measurable benefit of addressing light pollution through improved lighting design. Lower demand for electricity translates into reduced operating costs, lower greenhouse gas emissions, and a more sustainable urban environment.

3.2 Integration of Renewable Energy Sources

Reducing energy consumption is only one part of the solution; integrating renewable energy sources into lighting systems further strengthens the link between energy efficiency and sustainability. Daylight utilization plays a central role in this regard. Studies show that when natural solar radiation is effectively incorporated into building design, the reliance on artificial lighting decreases considerably, leading to measurable reductions in electricity demand [17].

Hybrid systems combining solar power with LED technology have demonstrated superior performance compared to traditional lighting solutions. Such configurations provide stable illumination while simultaneously lowering grid dependency and operating costs [20]. In practice, photovoltaic installations on public buildings and urban infrastructure have been widely adopted as part of the European transition to renewable energy. The Energy Performance of Buildings Directive (EPBD 2024/1275) explicitly encourages the integration of photovoltaics into building envelopes to achieve higher energy efficiency and lower carbon emissions [15].

A notable example of renewable integration can be found in projects implemented in environmentally sensitive areas. The introduction of solar-powered LED systems in the Galapagos Islands reduced the environmental footprint of public lighting while maintaining high-quality illumination for residents and visitors [13]. This case illustrates how renewable integration not only reduces energy use but also contributes to preserving biodiversity and minimizing ecological disturbance.

Overall, the integration of renewable energy sources into lighting design extends the impact of efficiency measures. It directly links energy savings with climate goals, making lighting a central element in the broader shift toward sustainable urban infrastructure.

3.3 Technological Advancements in Lighting

Technological development in lighting has been one of the most effective tools for improving energy efficiency while simultaneously reducing light pollution. The most prominent shift has been the large-scale transition from incandescent and fluorescent lamps to LED technology. LEDs are characterized by significantly higher luminous efficacy (over 120 lm/w) [22], longer lifetime, and greater flexibility in design, which makes them the dominant solution for both public and private applications [23,24].

In addition to the hardware itself, innovative lighting control systems have emerged as a key factor in optimizing energy use. Adaptive systems equipped with sensors can adjust illumination according to occupancy, traffic flow, or environmental conditions. This approach reduces unnecessary lighting, lowers operating costs, and enhances user comfort. The application of these systems has been widely demonstrated in European pilot projects, showing both energy savings and improved quality of urban nightscapes [25,26].

Further technological progress involves new optical designs, high-efficiency reflectors, and intelligent control algorithms. These developments allow lighting to be directed more precisely, reducing spillover and skyglow, which are major contributors to light pollution. The adoption of Ecodesign Directive requirements ensures that such innovations are not only technologically feasible but also embedded into European product standards [27,28].

Evidence from municipalities such as Chiasso and Massagno, where conventional luminaires were replaced with modern LED systems, shows that technological upgrades can deliver substantial reductions in energy consumption while improving nighttime visibility and reducing environmental impact [13].

In summary, advancements in lighting technology represent the technical backbone of efforts to simultaneously increase energy efficiency and limit light pollution. When combined with renewable energy integration and smart management, these innovations offer a pathway toward sustainable and resilient urban lighting systems.

3.4 Policy and Regulation Perspective

Technological progress and practical case studies show clear potential for improving energy efficiency and reducing light pollution, yet without a strong regulatory framework, implementation often remains limited. In the European Union, several directives provide the foundation for action in this area. The Energy Efficiency Directive (EED) establishes binding energy-saving targets and requires member states to adopt measures that include improvements in public lighting systems [14,21]. The directive highlights the importance of reducing electricity demand in municipalities, making lighting upgrades one of the most cost-effective strategies.

Complementary frameworks strengthen this approach. The Energy Performance of Buildings Directive (EPBD 2024/1275) promotes the integration of renewable energy and efficient technologies in building design, directly linking daylight use, photovoltaics, and efficient luminaires with broader energy goals [15]. Similarly, the Ecodesign Directive sets minimum efficiency requirements for lighting products, ensuring that the transition toward energy-efficient solutions is embedded into the European market [16].

Recent policy analyses further emphasize the exemplary role of public buildings. According to a 2025 policy brief, the renovation of public facilities and the adoption of efficient lighting technologies demonstrate good practice and encourage wider replication across municipalities [29]. This highlights the role of local governments not only as implementers but also as leaders in raising awareness.

Despite these advances, challenges remain. National implementations of European directives are not uniform, and in some regions, awareness of light pollution as an environmental problem is still limited. Moreover, financial and administrative barriers can slow down the adoption of efficient technologies, particularly in smaller municipalities. These gaps underline the need for stronger coordination and incentives to ensure that policy frameworks translate into measurable reductions in energy consumption and light pollution.

3.5 Broader Implications

The interplay between light pollution and energy efficiency extends beyond technical and regulatory aspects, encompassing environmental, economic, and social dimensions. From an environmental perspective, excessive artificial lighting disrupts ecosystems, alters wildlife behavior, and contributes to biodiversity loss. Reducing unnecessary lighting not only saves energy but also preserves nocturnal environments, aligning with broader sustainability goals [17,19].

Economically, improved lighting systems directly lower operational costs for municipalities and private entities. Case studies have shown that investments in smart lighting and LED technology result in significant long-term savings, with reduced maintenance needs adding further benefits [30,31]. These savings can be reinvested in other sustainability initiatives, amplifying the positive impact.

Socially, reducing light pollution contributes to higher quality of life in urban areas. Darker skies improve well-being, strengthen the cultural connection to the natural environment, and create healthier living conditions by minimizing light-related disturbances to circadian rhythms. Initiatives such as the dark-sky movement demonstrate how public awareness and community engagement play a critical role in fostering changev [32].

Taken together, these broader implications emphasize that addressing light pollution is not only a matter of energy efficiency. It is a multidisciplinary challenge with the potential to deliver ecological protection, economic resilience, and social benefits. Recognizing these dimensions helps ensure that strategies for reducing light pollution are supported by diverse stakeholders and contribute to long-term sustainability.

4. Conclusion

This paper has examined the relationship between light pollution and energy efficiency through a review of existing literature, case studies, and European regulatory frameworks. The findings indicate that reducing artificial lighting demand is a key driver of both economic savings and environmental protection. Case studies, such as the Barcelona metro and projects in environmentally sensitive areas, demonstrate that intelligent lighting management and the

adoption of LED systems can deliver substantial energy savings while improving nighttime environments.

The integration of renewable energy sources, particularly photovoltaics and daylighting strategies, further enhances the efficiency of lighting systems and aligns with broader climate goals. At the same time, technological advancements in LEDs, adaptive controls, and efficient optical designs provide the technical foundation for minimizing unnecessary illumination and reducing the negative effects of light pollution.

Policy frameworks, including the Energy Efficiency Directive, the Energy Performance of Buildings Directive, and the Ecodesign Directive, create a strong regulatory basis for implementation. However, uneven national adoption and limited public awareness remain obstacles to widespread success. Strengthening coordination across different levels of governance and increasing incentives for municipalities are essential to ensure measurable results.

Beyond technical and regulatory aspects, the broader implications highlight that addressing light pollution improves ecological resilience, reduces operational costs, and enhances quality of life in urban areas. For this reason, reducing light pollution should be viewed not only as an energy-saving strategy but also as a step toward sustainable and healthier cities.

Future research and policy efforts should focus on expanding pilot projects, integrating advanced smart systems, and raising awareness among citizens and decision-makers. Only through combined technological, political, and social action can light pollution be effectively mitigated while achieving substantial improvements in energy efficiency.

Acknowledgement

This work was funded by the EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia under the project No. 09I04-03-V02-00033.

References

- [1] Falchi F, Furgoni R, et al. Light pollution in USA and Europe: The good, the bad and the ugly. Journal of Environmental Management 2019;248:109227. https://doi.org/10.1016/j.jenvman.2019.06.128.
- [2] ETC HE Report 2022/8: Review and Assessment of Available Information on Light Pollution in Europe. n.d.
- [3] Causes of increasing light pollution 2025. https://www.gfz.de/en/press/news/details/ursachen-der-zunehmenden-lichtverschmutzung (accessed September 2, 2025).
- [4] Itd R and M. Europe Lighting Fixtures Market Outlook, 2029 n.d. https://www.researchandmarkets.com/reports/5984927/europe-lighting-fixtures-market-outlook (accessed September 2, 2025).
- [5] The evolution of public lighting, from torches to smart services. Energy Cities 2023. https://energycities.eu/the-evolution-of-public-lighting-from-torches-to-smart-services/ (accessed September 2, 2025).
- [6] Keeping light under control. Narodowe Centrum Nauki n.d. https://ncn.gov.pl/en/aktualnosci/2025-03-20-swiatlo-pod-kontrola (accessed September 2, 2025).
- [7] Public lighting | EUCF n.d. https://www.eucityfacility.eu/public-lighting (accessed September 2, 2025).
- [8] How light pollution is damaging our cities Paradox Engineering 2025. https://www.pdxeng.ch/how-light-pollution-is-damaging-our-cities/ (accessed September 2, 2025).
- [9] Ministry of the Environment of the Czech Republic. Light pollution reduction measures in Europe. International Workshop on Light Pollution 2022, Prague, Czechia: n.d.

- [10] Association TLI. Dark Skies: The Impact of Light Pollution in Cities n.d. https://www.thelia.org.uk/resource/dark-skies-the-impact-of-light-pollution-in-cities.html (accessed September 2, 2025).
- [11]Paris public lighting. Energy Cities n.d. https://energy-cities.eu/best-practice/paris-public-lighting/ (accessed September 2, 2025).
- [12]Casals M, Gangolells M, et al. Reducing lighting electricity use in underground metro stations. Energy Conv Manag 2016;119:130–41. https://doi.org/10.1016/j.enconman.2016.04.034.
- [13] Velásquez C, Espín F, et al. Energy Efficiency in Public Lighting Systems Friendly to the Environment and Protected Areas. Sustainability 2024;16:5113. https://doi.org/10.3390/su16125113.
- [14]Directive (EU) 2023/1791 of the European Parliament and of the Council of 13 September 2023 on energy efficiency and amending Regulation (EU) 2023/955 (recast) (Text with EEA relevance). vol. 231. 2023.
- [15]Directive EU 2024/1275 EN EUR-Lex n.d. https://eur-lex.europa.eu/eli/dir/2024/1275/oj/eng (accessed September 2, 2025).
- [16]Directive 2009/125 EN EUR-Lex n.d. https://eur-lex.europa.eu/eli/dir/2009/125/oj/eng (accessed September 2, 2025).
- [17]Gaston KJ, Davies TW, et al. REVIEW: Reducing the ecological consequences of night-time light pollution: options and developments. Journal of Applied Ecology 2012;49:1256–66. https://doi.org/10.1111/j.1365-2664.2012.02212.x.
- [18]Light is Energy: Estimating the Impact of Light Pollution on Climate Change. DarkSky International 2022. https://darksky.org/news/light-is-energy-estimating-the-impact-of-light-pollution-on-climate-change/ (accessed September 2, 2025).
- [19]Falchi F, Cinzano P, et al. Limiting the impact of light pollution on human health, environment and stellar visibility. Journal of Environmental Management 2011;92:2714–22. https://doi.org/10.1016/j.jenvman.2011.06.029.
- [20]Olajiga O, Ani E, et al. A COMPREHENSIVE REVIEW OF ENERGY-EFFICIENT LIGHTING TECHNOLOGIES AND TRENDS. Engineering Science & Technology Journal 2024;5:1097–111. https://doi.org/10.51594/estj.v5i3.973.
- [21] Energy Efficiency Directive n.d. https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficiency-targets-directive-and-rules/energy-efficiency-directive_en (accessed September 2, 2025).
- [22] Arik M, Setlur A. Environmental and economical impact of LED lighting systems and effect of thermal management. Int J Energy Res 2010;34:1195–204. https://doi.org/10.1002/er.1639.
- [23]Rubinger RM, da Silva ER, et al. Comparative and quantitative analysis of white light-emitting diodes and other lamps used for home illumination. Opt Eng 2015;54:014104. https://doi.org/10.1117/1.OE.54.1.014104.
- [24]Franz M, Wenzl FP. Critical review on life cycle inventories and environmental assessments of LED-lamps. Crit Rev Environ Sci Technol 2017;47:2017–78. https://doi.org/10.1080/10643389.2017.1370989.
- [25]Castro M, Jara AJ, et al. Smart Lighting Solutions for Smart Cities. 2013 27th International Conference on Advanced Information Networking and Applications Workshops, 2013, p. 1374–9. https://doi.org/10.1109/WAINA.2013.254.
- [26]Todorović BM, Samardžija D. Road lighting energy-saving system based on wireless sensor network. Energy Efficiency 2017;10:239–47. https://doi.org/10.1007/s12053-016-9447-6.
- [27]Jiang J, To S, et al. Optical design of a freeform TIR lens for LED streetlight. Optik 2010;121:1761–5. https://doi.org/10.1016/j.ijleo.2009.04.009.
- [28]Lee X-H, Moreno I, et al. High-performance LED street lighting using microlens arrays. Opt Express 2013;21:10612–21. https://doi.org/10.1364/OE.21.010612.
- [29]Public Buildings & the New Energy Efficiency Directive (EU): Key Changes | Odyssee-Mure n.d. https://www.odyssee-mure.eu/publications/policy-brief/public-buildings-new-efficiency.html?utm_source=chatgpt.com (accessed September 2, 2025).
- [30]Vitta P, Dabasinskas L, et al. Concept of Intelligent Solid-State Street Lighting Technology. Elektron Elektrotech 2012;18:37–40. https://doi.org/10.5755/j01.eee.18.10.3057.
- [31]Kim DH, Jeon SH, et al. Direct Illuminance-Contribution-Based Lighting Control for IoT-Based Lighting Systems in Smart Buildings. Sustainability 2024;16:5054. https://doi.org/10.3390/su16125054.
- [32]Summers JK, Smith LM, et al. A Review of the Elements of Human Well-Being with an Emphasis on the Contribution of Ecosystem Services. Ambio 2012;41:327–40. https://doi.org/10.1007/s13280-012-0256-7.