FACULTY OF ELECTRICAL ENGINEERING

ETIMA 2025

THIRD INTERNATIONAL CONFERENCE 24-25 SEPTEMBER, 2025

TECHNICAL SCIENCES APPLIED IN ECONOMY, EDUCATION AND INDUSTRY

УНИВЕРЗИТЕТ "ГОЦЕ ДЕЛЧЕВ", ШТИП ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ

GOCE DELCEV UNIVERSITY, STIP FACULTY OF ELECTRICAL ENGINEERING

TPETA МЕЃУНАРОДНА КОНФЕРЕНЦИЈА THIRD INTERNATIONAL CONFERENCE

ЕТИМА / ЕТІМА 2025

ЗБОРНИК НА ТРУДОВИ CONFERENCE PROCEEDINGS

24-25 септември 2025 | 24-25 September 2025

ISBN: 978-608-277-128-1

DOI: https://www.doi.org/10.46763/ETIMA2531

Главен и одговорен уредник / Editor in Chief

проф.д-р Сашо Гелев Prof.d-r Saso Gelev

Jазично уредување / Language Editor

Весна Ристова (македонски) / Vesna Ristova (Macedonian)

Техничко уредување / Technical Editing

Дарко Богатинов / Darko Bogatinov

Издавач / Publisher

Универзитет "Гоце Делчев", Штип / Goce Delcev University, Stip Електротехнички факултет / Faculty of Electrical Engineering

Адреса на организационен комитет / Adress of the organizational committee

Универзитет "Гоце Делчев", Штип / Goce Delcev University, Stip Електротехнички факултет / Faculty of Electrical Engineering Адреса: ул. "Крсте Мисирков" бр. 10А / Adress: Krste Misirkov, 10А Пош. фах 201, Штип - 2000, С. Македонија / PO BOX 201, Stip 2000, North Macedonia E-mail: conf.etf@ugd.edu.mk

CIP - Каталогизација во публикација

Национална и универзитетска библиотека "Св. Климент Охридски", Скопје

62-049.8(062) 004-049.8(062)

МЕЃУНАРОДНА конференција ЕТИМА (3; 2025; Штип)

Зборник на трудови [Електронски извор] / Трета меѓународна конференција ЕТИМА 2025, 24-25 септември 2025 ; [главен и одговорен уредник Сашо Гелев] = Conference proceedings / Third international conference, 24-25 September 2025 ; [editor in chief Saso Gelev]. - Текст во PDF формат, содржи 357 стр., илустр. - Штип : Универзитет "Гоце Делчев", Електротехнички факултет ; Stip : "Goce Delchev" University, Faculty of Electrical engineering, 2025

Начин на пристапување (URL): https://js.ugd.edu.mk/index.php/etima/en. - Наслов преземен од екранот. - Опис на изворот на ден 30.10.2025. - Трудови на мак. и англ. јазик. - Библиографија кон трудовите

ISBN 978-608-277-128-1

- а) Електротехника -- Примена -- Собири б) Машинство -- Примена -- Собири
- в) Автоматика -- Примена -- Собири г) Инфоматика -- Примена -- Собири

COBISS.MK-ID 67297029

Трета меѓународна конференција ЕТИМА 24-25 Септември 2025 Third International Conference ETIMA 24-25 September 2025

OPГАНИЗАЦИОНЕН ОДБОР ORGANIZING COMMITTEE

Драган Миновски / Dragan Minovski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Сашо Гелев / Saso Gelev

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Тодор Чекеровски / Todor Cekerovski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Маја Кукушева Панева / Maja Kukuseva Paneva

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Билјана Читкушева Димитровска / Biljana Citkuseva Dimitrovska

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Дарко Богатинов / Darko Bogatinov

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Трета меѓународна конференција ЕТИМА 24-25 Септември 2025 Third International Conference ETIMA 24-25 September 2025

ПРОГРАМСКИ И НАУЧЕН ОДБОР SCIENTIFIC COMMITTEE

Антонио Курадо / António Curado

Политехнички институт во Виана до Кастело, Португалија Instituto Politécnico de Viana do Castelo, Portugal

Стелијан – Емилијан Олтеан / Stelian – Emilian Oltean

Факултет за инженерство и информатичка технологија, Медицински универзитет Георге Емил Паладе, фармација, наука и технологија во Таргу Муреш, Романија

Faculty of Engineering and Information Technology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Romania

Митко Богданоски / Mitko Bogdanoski

Воена академија, Универзитет "Гоце Делчев", Северна Македонија Military Academy, Goce Delcev University, North Macedonia

Верица Тасеска Ѓоргиевска / Verica Taseska Gjorgievska

Македонска академија на науките и уметностите, Северна Македонија Macedonian Academy of Sciences and Arts, North Macedonia

Југослав Ачкоски / Jugoslav Ackoski

Воена академија, Универзитет "Гоце Делчев", Северна Македонија Military Academy, Goce Delcev University, North Macedonia

Димитар Богатинов / Dimitar Bogatinov

Воена академија, Универзитет "Гоце Делчев", Северна Македонија Military Academy, Goce Delcev University, North Macedonia

Co Ногучи / So Noguchi

Висока школа за информатички науки и технологии Универзитет Хокаидо, Јапонија Graduate School of Information Science and Technology Hokkaido University, Japan

Диониз Гашпаровски / Dionýz Gašparovský

Факултет за електротехника и информациони технологии, Словачки Технички Универзитет во Братислава, Словачка Faculty of Electrical Engineering and Information Technology Slovak Technical University in Bratislava, Slovakia

Георги Иванов Георгиев / Georgi Ivanov Georgiev

Технички Универзитет во Габрово, Бугарија Technical University in Gabrovo, Bulgaria

Антон Белан / Anton Beláň

Факултет за електротехника и информациони технологии Словачки Технички Универзитет во Братислава, Словачка Faculty of Electrical Engineering and Information Technology Slovak Technical University in Bratislava, Slovakia

Ивелина Стефанова Балабанова / Ivelina Stefanova Balabanova

Технички Универзитет во Габрово, Бугарија Technical University in Gabrovo, Bulgaria

Бојан Димитров Карапенев / Boyan Dimitrov Karapenev

Технички Универзитет во Габрово, Бугарија Technical University in Gabrovo, Bulgaria

Сашо Гелев / Saso Gelev

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Влатко Чингоски / Vlatko Cingoski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Божо Крстајиќ / Bozo Krstajic

Електротехнички факултет Универзитет во Црна Гора, Црна Гора Faculty of Electrical Engineering, University in Montenegro, Montenegro

Милован Радуловиќ / Milovan Radulovic

Електротехнички факултет Универзитет во Црна Гора, Црна Гора Faculty of Electrical Engineering, University in Montenegro, Montenegro

Гоце Стефанов / Goce Stefanov

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Мирјана Периќ / Mirjana Peric

Електронски факултет Универзитет во Ниш, Србија Faculty of Electronic Engineerig, University of Nis, Serbia

Ана Вучковиќ / Ana Vuckovic

Електронски факултет, Универзитет во Ниш, Србија Faculty of Electronic Engineerig, University of Nis, Serbia

Тодор Чекеровски / Todor Cekerovski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Далибор Серафимовски / Dalibor Serafimovski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Мирослава Фаркаш Смиткова / Miroslava Farkas Smitková

Факултет за електротехника и информациони технологии Словачки Технички Универзитет во Братислава, Словачка Faculty of Electrical Engineering and Information Technology Slovak Technical University in Bratislava, Slovakia

Петер Јанига / Peter Janiga

Факултет за електротехника и информациони технологии Словачки Технички Универзитет во Братислава, Словачка Faculty of Electrical Engineering and Information Technology Slovak Technical University in Bratislava, Slovakia

Jана Радичова / Jana Raditschová

Факултет за електротехника и информациони технологии Словачки Технички Универзитет во Братислава, Словачка Faculty of Electrical Engineering and Information Technology Slovak Technical University in Bratislava, Slovakia

Драган Миновски / Dragan Minovski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Василија Шарац / Vasilija Sarac

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Александар Туџаров / Aleksandar Tudzarov

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Владимир Талевски / Vladimir Talevski

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Владо Гичев / Vlado Gicev

Факултет за информатика, Универзитет "Гоце Делчев ", Штип, Северна Македонија; Faculty of Computer Science, Goce Delcev University, Stip, North Macedonia;

Марија Чекеровска / Marija Cekerovska

Машински факултет, Универзитет "Гоце Делчев ", Штип, Северна Македонија; Faculty of Mechanical Engineering, Goce Delcev University, Stip, North Macedonia;

Мишко Џидров / Misko Dzidrov

Машински факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија; Faculty of Mechanical Engineering, Goce Delcev University, Stip, North Macedonia;

Александар Крстев / Aleksandar Krstev

Факултет за информатика, Универзитет "Гоце Делчев ", Штип, Северна Македонија; Faculty of Computer Science, Goce Delcev University, Stip, North Macedonia;

Ванчо Аписки / Vancho Adziski

Факултет за природни и технички науки, Универзитет "Гоце Делчев ", Штип, Северна Македонија; Faculty of Natural and Technical Sciences, Goce Delcev University, Stip, North Macedonia;

Томе Димовски / Tome Dimovski

Факултет за информатички и комуникациски технологии, Универзитет "Св. Климент Охридски", Северна Македонија; Faculty of Information and Communication Technologies, University St Climent Ohridski, North Macedonia;

Зоран Котевски / Zoran Kotevski

Факултет за информатички и комуникациски технологии, Универзитет "Св. Климент Охридски", Северна Македонија; Faculty of Information and Communication Technologies, University St Climent Ohridski, North Macedonia;

Никола Рендевски / Nikola Rendevski

Факултет за информатички и комуникациски технологии, Универзитет "Св. Климент Охридски", Северна Македонија; Faculty of Information and Communication Technologies, University St Climent Ohridski, North Macedonia;

Илија Христовски / Ilija Hristovski

Економски факултет, Универзитет "Св. Климент Охридски", Северна Македонија; Faculty of Economy, University St Climent Ohridski, North Macedonia;

Христина Спасовска / Hristina Spasovska

Факултет за електротехника и информациски технологии, Универзитет "Св. Кирил и Методиј", Скопје, Северна Македонија; Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University, North Macedonia;

Роман Голубовски / Roman Golubovski

Природно-математички факултет, Универзитет "Св. Кирил и Методиј", Скопје, Северна Македонија; Faculty of Mathematics and Natural Sciences, Ss. Cyril and Methodius University, North Macedonia;

Mape Србиновска / Mare Srbinovska

Факултет за електротехника и информациски технологии, Универзитет "Св. Кирил и Методиј", Скопје, Северна Македонија; Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University, North Macedonia;

Билјана Златановска / Biljana Zlatanovska

Факултет за информатика, Универзитет "Гоце Делчев ", Штип, Северна Македонија; Faculty of Computer Science, Goce Delcev University, Stip, North Macedonia;

Александра Стојанова Илиевска / Aleksandra Stojanova Ilievska

Факултет за информатика, Универзитет "Гоце Делчев ", Штип, Северна Македонија; Faculty of Computer Science, Goce Delcev University, Stip, North Macedonia;

Мирјана Коцалева Витанова / Mirjana Kocaleva Vitanova

Факултет за информатика, Универзитет "Гоце Делчев", Штип, Северна Македонија; Faculty of Computer Science, Goce Delcev University, Stip, North Macedonia;

Ивана Сандева / Ivana Sandeva

Факултет за електротехника и информациски технологии, Универзитет "Св. Кирил и Методиј", Скопје, Северна Македонија; Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University, North Macedonia;

Билјана Читкушева Димитровска / Biljana Citkuseva Dimitrovska

Електротехнички факултет, Универзитет "Гоце Делчев", Штип, Северна Македонија Faculty of Electrical Engineering, Goce Delcev University, Stip, North Macedonia

Наташа Стојковиќ / Natasa Stojkovik
Факултет за информатика,
Универзитет "Гоце Делчев", Штип, Северна Македонија;
Faculty of Computer Science,
Goce Delcev University, Stip, North Macedonia;

Трета меѓународна конференција ЕТИМА Third International Conference ETIMA

PREFACE

The Third International Conference "Electrical Engineering, Technology, Informatics, Mechanical Engineering and Automation – Technical Sciences in the Service of the Economy, Education and Industry" (ETIMA'25), organized by the Faculty of Electrical Engineering at the "Goce Delchev" University – Shtip, represents a significant scientific event that enables interdisciplinary exchange of knowledge and experience among researchers, professors, and experts in the field of technical sciences. The conference was held in an online format and brought together 78 authors from five different countries.

The ETIMA conference aims to establish a forum for scientific communication, encouraging multidisciplinary collaboration and promoting technological innovations with direct impact on modern life. Through the presentation of scientific papers, participants shared the results of their research and development activities, contributing to the advancement of knowledge and practice in relevant fields. The first ETIMA conference was organized four years ago, featuring 40 scientific papers. The second conference took place in 2023 and included over 30 papers. ETIMA'25 continued this scientific tradition, presenting more than 40 papers that reflect the latest achievements in electrical engineering, technology, informatics, mechanical engineering, and automation.

At ETIMA'25, papers were presented that addressed current topics in technical sciences, with particular emphasis on their application in industry, education, and the economy. The conference facilitated fruitful discussions among participants, encouraging new ideas and initiatives for future research and projects.

ETIMA'25 reaffirmed its role as an important platform for scientific exchange and international cooperation. The organizing committee extends sincere gratitude to all participants for their contribution to the successful realization of the conference and its scientific value.

We extend our sincerest gratitude to all colleagues who, through the presentation of their papers, ideas, and active engagement in discussions, contributed to the success and scientific significance of ETIMA'25.

The Organizing Committee of the Conference

ПРЕДГОВОР

Третата меѓународна конференција "Електротехника, Технологија, Информатика, Машинство и Автоматика — технички науки во служба на економијата, образованието и индустријата" (ЕТИМА'25), организирана од Електротехничкиот факултет при Универзитетот "Гоце Делчев" — Штип, претставува значаен научен настан кој овозможува интердисциплинарна размена на знаења и искуства меѓу истражувачи, професори и експерти од техничките науки. Конференцијата се одржа во онлајн формат и обедини 78 автори од пет различни земји.

Конференцијата ЕТИМА има за цел да создаде форум за научна комуникација, поттикнувајќи мултидисциплинарна соработка и промовирајќи технолошки иновации со директно влијание врз современото живеење. Преку презентација на научни трудови, учесниците ги споделуваат резултатите од своите истражувања и развојни активности, придонесувајќи кон унапредување на знаењето и практиката во релевантните области.

Првата конференција ЕТИМА беше организирана пред четири години, при што беа презентирани 40 научни трудови. Втората конференција се одржа во 2023 година и вклучи над 30 трудови. ЕТИМА 25 продолжи со истата научна традиција, презентирајќи повеќе од 40 трудови кои ги отсликуваат најновите достигнувања во областа на електротехниката, технологијата, информатиката, машинството и автоматиката.

На ЕТИМА 25 беа презентирани трудови кои обработуваат актуелни теми од техничките науки, со посебен акцент на нивната примена во индустријата, образованието и економијата. Конференцијата овозможи плодна дискусија меѓу учесниците, поттикнувајќи нови идеи и иницијативи за идни истражувања и проекти.

ЕТИМА'25 ја потврди својата улога како значајна платформа за научна размена и интернационална соработка. Организациониот одбор упатува искрена благодарност до сите учесници за нивниот придонес кон успешната реализација на конференцијата и нејзината научна вредност. Конференцијата се одржа онлајн и обедини седумдесет и осум автори од пет различни земји.

Изразуваме голема благодарност до сите колеги кои со презентирање на своите трудови, идеи и активна вклученост во дискусиите придонесоа за успехот на ЕТИМА'25 и нејзината научна вредност.

Организационен одбор на конференцијата

СОДРЖИНА / TABLE OF CONTENTS:

СОВРЕМЕНО РАНОГРАДИНАРСКО ПРОИЗВОДСТВО СО ПРИМЕНА НА ОБНОВЛИВИ ЕНЕРГЕТСКИ ИЗВОРИ И ТЕХНОЛОГИИ15
ШИРОКОПОЈАСЕН ПРЕНОС НА ПОДАТОЦИ ПРЕКУ ЕЛЕКТРОЕНЕРГЕТСКАТА МРЕЖА25
TRANSIENT PHENOMENA IN BLACK START32
OPTIMIZATION OF SURPLUS ELECTRICITY MANAGEMENT FROM MUNICIPAL PHOTOVOLTAIC SYSTEMS: VIRTUAL STORAGE VS BATTERY SYSTEMS43
IMPACT OF LIGHT POLLUTION ON ENERGY EFFICIENCY53
ПЕРСПЕКТИВИ, ПРЕДИЗВИЦИ И ИНОВАЦИИ ВО ПЕРОВСКИТНИТЕ СОЛАРНИ ЌЕЛИИ61
ПРИМЕНА НА НАНОМАТЕРИЈАЛИ КАЈ ФОТОВОЛТАИЧНИ ЌЕЛИИ ЗА ЗГОЛЕМУВАЊЕ НА НИВНАТА ЕФИКАСНОСТ ПРЕКУ НАМАЛУВАЊЕ НА РАБОТНАТА ТЕМПЕРАТУРА68
LONG-TERM POWER PURCHASE AGREEMENT FOR PHOTOVOLTAIC ENERGY AS A SOLUTION FOR ENHANCING THE PROFITABILITY OF THE TASHMARUNISHTA PUMPED-STORAGE HYDRO POWER PLANT75
СПОРЕДБЕНА АНАЛИЗА НА ПОТРОШУВАЧКА, ЕНЕРГЕТСКА ЕФИКАСНОСТ И ТРОШОЦИ КАЈ ВОЗИЛА СО РАЗЛИЧЕН ТИП НА ПОГОН87
АВТОМАТСКИ СИСТЕМ ЗА НАВОДНУВАЊЕ УПРАВУВАН ОД ARDUINO МИКРОКОНТРОЛЕР95
ПРИМЕНА НА WAMS И WACS СИСТЕМИ ВО SMART GRID103
IoT-BASED ENVIRONMENTAL CONTROL IN 3D PRINTER ENCLOSURES FOR OPTIMAL PRINTING CONDITIONS112
BENEFITS OF STUDYING 8086 MICROPROCESSOR FOR UNDERSTANDING CONTEMPORARY MICROPROCESSOR123
ПРАКТИЧНА СИМУЛАЦИЈА НА SCADA СИСТЕМ ЗА СЛЕДЕЊЕ И РЕГУЛАЦИЈА НА НИВО НА ТЕЧНОСТ ВО РЕЗЕРВОАР130
ADVANCEMENTS IN INDUSTRIAL DIGITAL SENSORS (VERSION 3.0 TO 4.0) AND RADAR SYSTEMS FOR OBJECT DETECTION: A STATE-OF-THE-ART REVIEW. 140
CHALLENGES AND SOLUTIONS FOR ENHANCING DRONE-TO-TOC COMMUNICATION PERFORMANCE IN MILITARY AND CRISIS OPERATIONS 148
BRIDGING TELECOM AND AVIATION: ENABLING SCALABLE BVLOS DRONE OPERATIONS THROUGH AIRSPACE DIGITIZATION157
MEASURES AND RECOMMENDATIONS FOR EFFICIENCY IMPROVEMENT OF ELECTRICAL MOTORS167
USE OF MACHINE LEARNING FOR CURRENT DENSITY DISTRIBUTION ESTIMATION OF REBCO COATED CONDUCTORS180
APPLICATION OF ARTIFICIAL INTELLIGENCE IN DENTAL MEDICINE186
ИНТЕГРАЦИЈА НА ДИГИТАЛНИОТ СПЕКТРОФОТОМЕТАР ВО ДЕНТАЛНАТА МЕЛИПИНА – НОВИ МОЖНОСТИ ЗА ТОЧНОСТ И КВА ПИТЕТ 194

CORRELATION OF DENTAL MEDICINE STUDENTS' PERFORMANCE IN PRECLINICAL AND CLINICAL COURSES205
INTRAORAL ELECTROSTIMULATOR FOR RADIATION INDUCED XEROSTOMIA IN PATIENTS WITH HEAD AND NECK CANCER214
ELECTROMAGNETIC INTERFERENCE OF ENDODONTIC EQUIPMENT WITH GASTRIC PACEMAKER221
DENTAL IMPLANTS ANALYSIS WITH SEM MICROSCOPE226
ПРЕДНОСТИ И НЕДОСТАТОЦИ ПРИ УПОТРЕБА НА ЛАСЕР ВО РЕСТАВРАТИВНАТА СТОМАТОЛОГИЈА И ЕНДОДОНЦИЈА231
LASERS AND THEIR APPLICATION IN PEDIATRIC DENTISTRY238
INCREASE OF ENVIRONMENTALLY RESPONSIBLE BEHAVIOUR THROUGH EDUCATION AND TECHNOLOGICAL INNOVATION242
A DATA-DRIVEN APPROACH TO REAL ESTATE PRICE ESTIMATION: THE CASE STUDY SLOVAKIA249
ANALYSIS OF THE BACKWARD IMPACTS OF A PHOTOVOLTAIC POWER PLANT ON THE DISTRIBUTION SYSTEM261
VARIANT SOLUTIONS FOR A PARKING LOT COVERED WITH PHOTOVOLTAIC PANELS
COMPARISON OF ENERGY STATUS IN PORTUGAL AND IN SLOVAKIA279
DESIGN, ANALYSIS AND IMPLEMENTATION OF PHOTOVOLTAIC SYSTEMS 286
BATTERY STORAGE IN TRACTION POWER SUPPLY297
THE ROLE OF CYBERSECURITY AWARENESS TRAINING TO PREVENT PHISHING304
A REVIEW OF RESOURCE OPTIMIZATION TECHNIQUES IN INTRUSION DETECTION SYSTEMS
APPLICATION OF A ROBOTIC ARM IN A SIMPLE PICK-AND-DROP OPERATION 321
SIMULATION-BASED PERFORMANCE ANALYSIS OF A SECURE UAV-TO-TOC COMMUNICATION FRAMEWORK IN MILITARY AND EMERGENCY
OPERATIONS
DIGITALIZATION OF BPM USING THE CAMUNDA SOFTWARE TOOL ON THE EXAMPLE OF THE CENTRAL BANK OF MONTENEGRO339
DESIGNING A SECURE COMMUNICATION FRAMEWORK FOR UAV-TO-TOC OPERATIONS IN MILITARY AND EMERGENCY ENVIRONMENTS349

Трета меѓународна конференција ЕТИМА Third International Conference ETIMA

UDC: [621.315.2.014.1:537.63.08]:004.85.032.26 https://www.doi.org/10.46763/ETIMA2531180t

USE OF MACHINE LEARNING FOR CURRENT DENSITY DISTRIBUTION ESTIMATION OF REBCO COATED CONDUCTORS

Junichiro Takei¹, Takanobu Mato¹, So Noguchi¹

¹ Hokkaido University, Japan, email: takei.jiyunichirou.v2@elms.hokudai.ac.jp email: mato@ist.hokudai.ac.jp email: noguchi@ssi.hokudai.ac.jp

Abstract

Rare-earth barium copper oxide (REBCO) coated conductors (CC) have the following advantages: high current density under high magnetic fields and mechanical strength. The REBCO CCs are expected to be applied for high field applications. However, the REBCO CCs have inhomogeneous critical current density due to local cracks or voids in the REBCO layer. It is known that these local defects might cause the normal-state transition, which can lead to significant damage to the magnet. It is necessary to perform non-destructive measurement of the REBCO conductor properties. A Hall Probe Measurement (HPM) is a non-destructive inspection method for critical current density distribution. In the HPM, a magnetic field is applied to the REBCO CC and the field induced by the shielding current is measured. Subsequently, the current density distribution is estimated from the measured field using inverse analysis, in common, based on the Biot-Savart Law or the Fourier transform. However, the resolution of the current density distribution by these methods is coarse and sometimes insufficient to detect the micro-scale defects. In this research, we have built a method to estimate the critical current distribution using a convolutional neural network (CNN). The CNN model is trained using a set of distributions of the critical current density and the field. The estimation accuracy of the CNN model is investigated, and we compare the estimation results with those using conventional methods.

Key words

REBCO coated conductor, Critical current density distribution, Hall probe measurement, CNN

Introduction

Several useful technologies have been developed that can be realized with superconducting technology. The establishment of technology for superconductivity applications is desired. REBCO (REBa₂Cu₃O_{7- δ}), a cuprate superconductor using rare earths, has excellent superconducting properties. REBCO can maintain high current density even at high temperatures and high magnetic fields. REBCO conductors also have excellent structural mechanical strength. Because of these characteristics, there is a strong demand for REBCO to be used in high-field devices such as fusion reactor magnets and NMR. This is because these devices require high currents and are used in high magnetic fields, and a large mechanical force is applied to the coils.

For applications, REBCO Coated Conductor, which is coated with copper on the outside, is used. However, REBCO CCs often have fine defects in the REBCO layer during the manufacturing process. Defects in the REBCO layer cause a localized decrease in critical current I_c . A localized drop in I_c is directly related to damage to the equipment due to unexpected normal-state transitions and failure of NMR operation [1] - [3]. Therefore, the presence of

defects must be confirmed and removed by non-destructive inspection before and after the magnet operations.

As a non-destructive inspection method, a magnetic field is applied to a conductor and the distribution of defects is determined by computing the current density distribution of the shielding current. The method of obtaining the current density distribution by measuring and analyzing the magnetic field on the conductor created by the shielding current is called Hall Probe Measurements (HPM) [4]. Conventionally, the magnetic field distribution obtained by HPM has been converted into a current density distribution by inverse analysis using a method based on the relationship between magnetization and magnetic field [5] or a two-dimensional fast Fourier transform (FFT) [6]. However, the resolution of the current density distribution obtained by these methods is low and insufficient for inspection of REBCO conductors. The size of defects can lead to fracture, and the shape of defects can have a negative effect on the equipment, such as a normal-state transition. To determine the size and shape of acceptable defects, a higher resolution current density distribution analysis method is required.

In this study, we propose a novel method using a Convolutional Neural Network (CNN) to compute the current density distribution from the measured field. The inversely computed current density is compared with the one using the conventional FFT-based method. The estimation accuracy is also discussed in the paper.

2. Proposed Method

There are two main points where machine learning-based current density distribution estimation has advantages over FFT-based methods in terms of accuracy. The first is that the resolution of the estimation is independent of the spatial variation of the current density distribution. FFT-based methods have the problem that resolution is reduced, especially in areas where the current density distribution changes significantly. FFT-based methods perform electromagnetic field analysis based on the Biot-Savart law on the acquired magnetic field distribution. The estimation results strongly depend on the distance of the source current and the point where the magnetic field is measured. Prediction by machine learning is based on a set of damped magnetic field distributions and the current density distribution that gives the magnetic field distribution. In this way, the output current density distribution is derived from the unattenuated magnetic field distribution. Therefore, machine learning may be used to estimate the current density distribution required from the undamped magnetic field distribution.

The second point is that the estimation accuracy does not depend on the number of measurement points of the magnetic field distribution. FFT-based methods cannot obtain detailed magnetic field distribution if the number of measurement points of the magnetic field distribution is small. The accuracy of the estimated current density distribution is highly dependent on that of the measured magnetic field distribution. This is because FFT-based methods are based on electromagnetic field analysis. If the number of magnetic field measurement points is small, the portion that cannot constitute a detailed magnetic field distribution increases. As a consequence, the accuracy of the current density distribution estimation is compromised. On the other hand, machine learning-based methods estimates the current density distribution based on underlying patterns learned from the training data. The accuracy may be improved by devising training data. Combines detailed current density distribution with magnetic field distribution by coarse measurement points. This set is used as training data. Theoretically, this approach could achieve a more accurate estimation of the current density distribution without increasing the number of measurement points. Spatial constraints limit the number of measurement points for magnetic field distribution. For these reasons, machine learning-based methods have the potential to provide accurate estimates that are not possible with FFT-based methods.

Specific uses of machine learning are as follows. First, the user creates current density distributions for J_x and J_y from simulation software or random distributions. The user then calculates the magnetic field distribution B_z corresponding to the sensor height from the created current density distribution. The user performs training of the machine learning model with the current density distribution as output and the magnetic field distribution as input. This operation is performed using a CNN model. The trained CNN solves the inverse problem of finding the current density distribution.

3. Model verification

For verification, the current density distribution is estimated using both the FFT-based, and CNN-based methods applied to the same magnetic field data. The number of measurement points is kept identical for both calculations. The accuracy of using machine learning is compared with that of FFT-based methods. The effectiveness of CNN-based current density estimation is verified.

The input of the CNN-based model is a magnetic field distribution, and the output is the current density distribution. The CNN-based model has five convolutional layers, connected to the fully connected layer, generating the current density map. The hyperparameters are shown in Table 1. The training data is prepared under the assumption that the critical current density J_{ct} has degraded. J_{ct} degradation is assumed to occur extensively on one side of the width direction. Therefore, J_{ct} is different on the left and right in the width direction. The range of J_{ct} is -300~300 A/cm for J_{xt} and -15~15 A/cm for J_{yt} . They are arranged in inverse parallel to satisfy the current conservation law. This is a distribution based on the Bean model. The magnetic field is computed from J_{xt} and J_{yt} based on Biot-Savart's law. They are prepared in 5,000 sets. They are used as training data. The training data is confirmed to be distributed consistently within the given range.

The CNN-based methods are compared to FFT-based methods. Figs. 1-2 shows two distributions (referred to as condition1 and condition2, respectively) which are used as validation data. Condition 1 is a case in the training data. Condition 2 is a simpler case. It is the result of a magnetization simulation of a conductor with no degradation and uniform J_c . The validation data are generated by a finite element simulation. The finite element simulations are performed using COMSOL®. The validation data are modeled by a more complex n-value model. The two methods are compared in terms of error distribution and mean error values.

Table 1 Various hyperparameters in the model of this study

Parameters	Values	
Hyperparameters		
Batch Size	256	
Epochs	1000	
Layers	5	
Padding	Zeros	
Pooling	Max Pooling	
Optimizer	Adam	
Loss Function	Mean Squared Error	

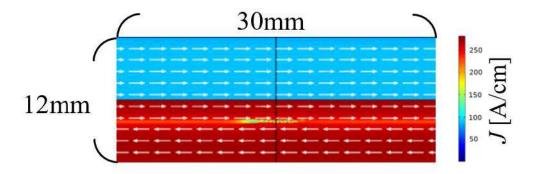


Fig. 1 Data used for verification, Condition 1. This figure is described by the distribution of the magnitude J of the current density.

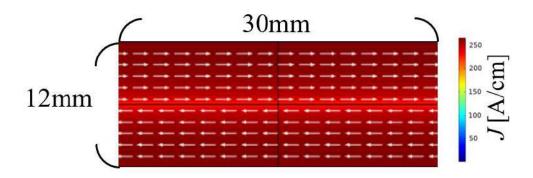


Fig. 2 Data used for verification, Condition 2. This figure is also described by the distribution of the magnitude J of the current density.

For condition 1, which is close to the trend of the training data, the error distribution was as shown in Fig. 3. In the case of condition 2, which differed from the trend of the training data, the error distribution was as shown in Fig. 4. For these results, shown in Figs. 3-4 are the magnitudes J of the current density, calculated from J_x and J_y obtained in the analysis.

Figs. 3-4 show that the estimation by the CNN-based method is particularly accurate in the axial direction, which in this case has fewer measurement points along the y-axis than the FFT-based method. The method using CNN does not directly perform electromagnetic field analysis but rather relies on training data for estimation. This is because the estimation results from the CNN-based method well reflect the trends in the training data. The accuracy of FFT estimation strongly depends on the number of sampling points. Therefore, as long as there is a physical limit to the number of sampling points in terms of the installation of the Hall sensor, it can be said that machine learning can provide more accurate estimates than FFT.

The CNN-based method also accurately estimates the current density distributions that are not explicitly included in the training data. This suggests that the CNN-based method has the potential to flexibly estimate the current density distribution of conductors with defects, which is a complex condition.

The average error for the two test conditions is shown in Fig. 5. The error of the CNN-based model is much less than FTT-based model in both cases. These results show that a single CNN can be used to analyze more complex conditions while maintaining accuracy for simpler conditions, depending on the training data.

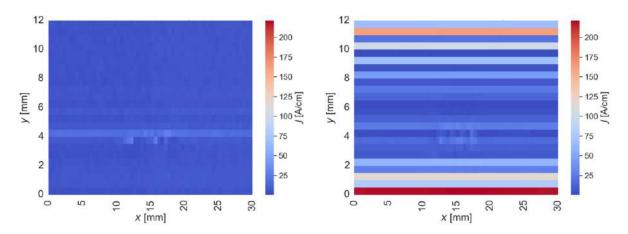


Fig. 3 Error distribution of estimated current density for condition 1 with using (left) CNN-based, (right) FFT-based.

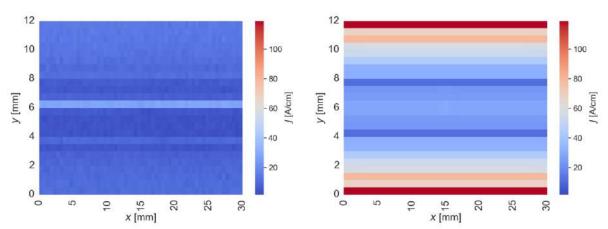


Fig. 4 Error distribution of estimated current density for condition 2 with using (left) CNN-based, (right) FFT-based.

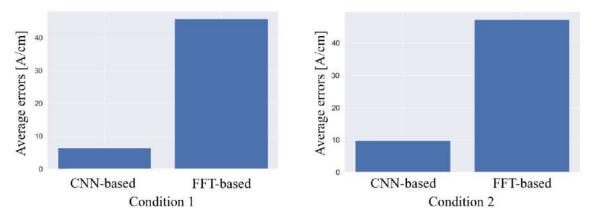


Fig. 5 Comparison of the average errors in each validation for Condition 1 (left) and Condition 2 (right).

4. Conclusion

In this study, we proposed the CNN-based model to inversely compute the current density distribution from the measured magnetic fields. The estimated current density is compared with the one using the conventional FFT-based method. As a result, the CNN-based method is found

to be more accurate than the FFT-based method. The difference is particularly large when the number of sampling points of the magnetic field is small. This result shows the expected accuracy beyond the conventional limitation of the number of magnetic field measurement points. The CNN-based method can analyze simple and complex conditions simultaneously and with high accuracy. This has the potential to create more versatile models for defects of various geometries. Given this, the use of machine learning is one of the possible approaches to achieve higher resolution in current density distribution estimation.

For future prospects, we plan to apply the CNN-based model to compute the current density in the REBCO CC with defects. This is more complex than the conditions verified in this study. The experimental validation is also required because the experimental data includes several uncertainties, such as the noise voltage from instruments and the assembly errors. In addition, to check the reliability of the results is important when the number of magnetic field measurement points is reduced.

References

- [1] Yanagisawa, Yoshinori *et al.*: "Effect of YBCO-coil shape on the screening current-induced magnetic field intensity". *IEEE Trans. Appl. Supercond.* 20(3), 2010, pp. 744-747.
- [2] Ahn, Min-Cheol *et al.*: "Experimental study on hysteresis of screening-current-induced field in an HTS magnet for NMR applications". *IEEE Trans. Appl. Supercond.* 24(3), 2014, no. 4301605.
- [3] Zhang, Min *et al.*: "Reel-To-Reel critical current Measurement of REBCO coated conductors". *Supercond. Sci. Technol.* 27(9), 2014, no. 095010.
- [4] Li, Xiao-Fen *et al.*: "Effect of YBCO-coil shape on the screening current-induced magnetic field intensity". *IEEE Trans. Appl. Supercond.* 27(4), 2017, no. 3800205.
- [5] Xing, Weibing *et al.*: "Magnetic flux mapping, magnetization, and current distributions of YBa₂Cu₃O₇ thin films by scanning Hall probe measurements". *J. Appl. Phys.* 76, 1994, pp.4244-4255.
- [6] Roth, Bradley, J *et al.*: Using a magnetometer to image a two-dimensional current distribution". *J. Appl. Phys.* 65(1), 1989, pp. 361-372.